Programme Information

<table>
<thead>
<tr>
<th>Programme Title</th>
<th>Programme Code</th>
<th>HECoS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences with French for Science</td>
<td>C1R1</td>
<td>For Registry Use Only</td>
</tr>
<tr>
<td>Biological Sciences with German for Science</td>
<td>C1R2</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences with Spanish for Science</td>
<td>C1R4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Award</th>
<th>Length of Study</th>
<th>Mode of Study</th>
<th>Entry Point(s)</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc</td>
<td>4 Years</td>
<td>Full-time</td>
<td>October</td>
<td>260 ECTS 520 CATS</td>
</tr>
<tr>
<td>Dip HE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>120 ECTS 240 CATS</td>
</tr>
<tr>
<td>Cert HE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>60 ECTS 120 CATS</td>
</tr>
</tbody>
</table>

The Cert. HE / Dip. HE are exit awards and are not available for entry. All students must apply to and join the BSc.

Ownership

<table>
<thead>
<tr>
<th>Awarding Institution</th>
<th>Faculty</th>
<th>Natural Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial College London</td>
<td></td>
<td>Natural Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Institution</th>
<th>Department</th>
<th>Life Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial College London</td>
<td></td>
<td>Life Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associateship</th>
<th>Main Location(s) of Study</th>
<th>South Kensington</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associateship of the Royal College of Science (ARCS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External Reference

<table>
<thead>
<tr>
<th>Relevant</th>
<th>QAA Benchmark Statement(s) and/or other external reference points</th>
<th>Biosciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHEQ Level</td>
<td></td>
<td>Level 6</td>
</tr>
<tr>
<td>EHEA Level</td>
<td></td>
<td>1st cycle</td>
</tr>
</tbody>
</table>

External Accreditor(s) (if applicable) Not applicable

<table>
<thead>
<tr>
<th>External Accreditor:</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accreditation received:</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Collaborative Provision Not applicable

<table>
<thead>
<tr>
<th>Collaborative partner</th>
<th>Collaboration type</th>
<th>Agreement effective date</th>
<th>Agreement expiry date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Programme Overview

The four-year BSc Biological Sciences with French/German/Spanish for Science programmes include training in the chosen language using language labs in the first and second year. Students spend the third year attending taught courses and conducting a research project at an approved educational institute in another European country. Students will then specialise in the final year, making their choice from a wide range of options and research projects.

Studying the Biological Sciences BSc programme you will be actively engaged in a curriculum that will be enriched from year 1 onwards by the Department of Life Sciences’ research environment. The curriculum addresses the broad fundamental knowledge required to understanding the living organisms from their basic biochemistry, genetics and information flow in cells to detailed knowledge of the relationships, evolution, and key features of certain groups of organisms. You will gain understanding of the processes by which the diversity of life on earth has arisen, interacts with its environment.

All students on Biological Sciences programmes follow the same core modules in the first year of study, where the programme will range from biological chemistry to ecology and biodiversity. This will be complemented by a Life Science Skills programme that will provide training in quantitative skills, programming, statistics and scientific writing and presentation. You will develop a synoptic understanding of Biological Sciences before starting to specialise in year 2 by taking elective modules. By selecting modules from different areas a broad biological sciences training is possible or you can make selections leading to specialisation in a range of areas including Ecology, Environmental Science, Biodiversity, Microbiology, Immunology, Molecular Biology, Stem Cells, Neuroscience, Developmental Biology and Bioinformatics. Our final year specialised modules are based around our wide-ranging, world class research expertise and you will be brought to the edge of knowledge in your chosen specialised modules, taught by experts.

Through laboratory, computational and field work you will learn the skills you need to design, carry out and analyse the data from biological experiments

You will have the opportunity to contribute to the department’s research by undertaking a 10 week, full time research project.

You will learn from the full range of academic staff in the department, including world leaders, as well as postgraduate students, your peers and visiting scientists to the department. You will develop into effective, independent Life Scientists; life-long learners with high self-efficacy; and rational and evidence-based decision makers.

A high proportion of Graduates in Biological Sciences go onto further study including PhD study or enter a range of employments including, research and development in pharma, biotech, ecological consultancy, science policy, research and technical consultancy, business and finance.

Learning Outcomes

Please refer to the Teaching Toolkit for advice on the role and purpose of Intended Learning Outcomes (ILO): www.imperial.ac.uk/staff/educational-development/teaching-toolkit/intended-learning-outcomes

On completion of this programme, graduates will be able to:
On achieving the Cert HE:
1. Interpret and apply core terminology and key concepts used in life sciences;
2. Integrate fundamental biological and/or biochemical principles to explore biological complexity;
3. Integrate concepts from a range of disciplines, including physics, chemistry and maths, to solve problems in life sciences;
4. Demonstrate effective verbal, written communication and presentation skills;

On achieving the Dip HE, the ILOs (1-4) above and
5. Explore ethical and social issues in life sciences, and consider the potential impact of novel technologies;
6. Formulate hypotheses, design experiments, and apply lab and/or field skills to collect and critically evaluate relevant data;
7. Conduct statistical analyses using programming skills, adhering to publication standards;
8. Collaborate successfully in diverse, multicultural and international teams;

On achieving the BSc, all the ILOs (1-8) above and
9. Demonstrate excellent verbal, written communication and presentation skills across a range of academic and disciplinary activities, including research, assessment, dissemination and communication with diverse audiences;
10. Solve complex real-world problems within their degree specialisation, using a range of appropriate laboratory, computational or field skills;
11. Create independent, enquiry-based, extended and novel work that demonstrates critical analysis and evaluation.
12. Demonstrate an awareness of the outstanding research problems of their chosen Life Science specialities through exploring topics in the final year, research-led modules and be able to evaluate and understand how they are being or can be tackled.
13. Display a strong sense of personal and professional identity as a life scientist, and feel confident to apply the scientific method to real-world life science problems;
14. Ability to communicate in and comprehend both written and spoken forms of the chosen language in a variety of contexts using a range of registers and styles with special emphasis on the language of science and technology; creativity and originality; translation
15. Knowledge of the structure and vocabulary of the chosen language, understanding of the culture(s), history, scientific history and literature of the chosen language, knowledge of the history and nature of the francophone/Spanish speaking/German speaking world, capacity for textual analysis and comparative analysis, ability to construct a coherent argument or debate; capacity for close analysis of visual material and comparative analysis
16. Ability to create a hypothesis, and evaluate hypotheses, theories, and evidence within their proper contexts; the ability to reason from the particular to the general; academic integrity; deductive reasoning; independence of thought; critical appraisal of a range of genres in the target language; engagement with both primary and secondary material and an appreciation of the differences between them
17. Ability to cope with cultural differences and adapt to unknown environments; clarity of expression; planning and strategy; taking responsibility; adaptability in response to feedback; self- motivation and independence; self-reflection; note taking; listening; oral presentations with/without electronic aids; rapport building; and negotiation skills; preparing written material; team working; initiative; leadership; curiosity and an enquiring mind; IT; logical processing of information; referencing
The Imperial Graduate Attributes are a set of core competencies which we expect students to achieve through completion of any Imperial College degree programme. The Graduate Attributes are available at: www.imperial.ac.uk/students/academic-support/graduate-attributes

Entry Requirements

<table>
<thead>
<tr>
<th>Academic Requirement</th>
<th>A level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AAA overall, to include:</td>
</tr>
<tr>
<td></td>
<td>A in Biology</td>
</tr>
<tr>
<td></td>
<td>A in Chemistry, Mathematics or Physics</td>
</tr>
<tr>
<td></td>
<td>A in another subject</td>
</tr>
<tr>
<td>General Studies and Critical Thinking are not accepted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>International Baccalaureate (IB)</td>
</tr>
<tr>
<td></td>
<td>Minimum 38 overall</td>
</tr>
<tr>
<td></td>
<td>6 in Biology at higher level</td>
</tr>
<tr>
<td></td>
<td>6 in Chemistry, Physics or Mathematics at higher level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-academic Requirements</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>English Language Requirement</th>
<th>Higher requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Please check for other Accepted English Qualifications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admissions Test/Interview</th>
<th>There is no admissions test associated with entry to this programme and applicants will not normally be interviewed.</th>
</tr>
</thead>
</table>

The programme’s competency standards documents are available from the department.

Learning & Teaching Approach

Learning and Teaching Delivery Methods

Lectures and large group-teaching incorporating a range of active leaning approaches, laboratory practicals working as individuals, in pairs or small groups, field work, computational work, seminars, tutorials and problem classes, interactive online learning material, online concepts and skills videos and interactive group work, student presentations as individuals and small groups, team-based learning, dissertation and individual research projects.

Overall Workload

Your overall workload consists of face-to-face sessions and independent learning. While your actual contact hours may vary according to the optional modules you choose to study, the following gives an indication of how much time you will need to allocate to different activities at each level of the programme. At Imperial, each ECTS credit taken equates to an expected total study time of 25 hours. Therefore, the expected total study time is 1500 hours per year.

Typically in the first two years you will spend in the order of 30% of your time on lectures, laboratory work and small group teaching and seminars and similar (around 400 hours) and in the order of 70% of your time on independent study.
Assessment Strategy

Assessment Methods

Formative assessment.
Performance in problem classes, quizzes in lectures, digital resources for self-assessment including online quizzes and problems, by discussions in tutorials as well as written and or verbal feedback on a range of non-examined tasks, including the types of summatively assessed tasks listed below.

Summative Assessment
Written Examinations
Laboratory write-ups
Essays
Reports
Dissertations
Presentations
Individual research project report
Viva voce examination
Peer assessment
Poster presentations

<table>
<thead>
<tr>
<th>Assessment Mode</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>60</td>
<td>48</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>Coursework</td>
<td>40</td>
<td>52</td>
<td>0</td>
<td>44</td>
</tr>
</tbody>
</table>

Academic Feedback Policy

Coursework submission is managed by our education office and in most cases coursework is submitted electronically via BlackBoard and feedback is provided electronically or by a feedback form attached to items of coursework. Feedback is also provided via Blackboard on formative quizzes. You will receive feedback normally within 10 working days, but this might be longer for some very substantial pieces of work, such as a dissertation. Personal tutors hold timetabled tutorials to give feedback on examination performance and can be approached by their tutees at any point in the year for further guidance. The education office manages the timely return of coursework feedback and the Director of Undergraduate Studies routinely monitors the quality and quantity of feedback provided. In some instances, generic class feedback is returned to all students via email or a Blackboard announcement once coursework is marked.

Re-sit Policy

The College’s Policy on Re-sits is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/

Mitigating Circumstances Policy

The College’s Policy on Mitigating Circumstances is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/

Additional Programme Costs

This section should outline any additional costs relevant to this programme which are not included in students' tuition fees.

<table>
<thead>
<tr>
<th>Description</th>
<th>Mandatory/Optional</th>
<th>Approximate cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Trips</td>
<td>Optional</td>
<td>£1500</td>
</tr>
</tbody>
</table>
Programme Structure

Year 1 – FHEQ Level 4
Students study all core modules.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Elective</th>
<th>Group*</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE40005</td>
<td>Biological Chemistry and Microbiology</td>
<td>Core</td>
<td></td>
<td>Autumn-Summer</td>
<td>15</td>
</tr>
<tr>
<td>LIFE40008</td>
<td>Evolution and Diversity</td>
<td>Core</td>
<td></td>
<td>Autumn-Summer</td>
<td>15</td>
</tr>
<tr>
<td>LIFE40006</td>
<td>Cell Biology and Genetics</td>
<td>Core</td>
<td></td>
<td>Spring-Summer</td>
<td>15</td>
</tr>
<tr>
<td>LIFE40007</td>
<td>Ecology and Evolution</td>
<td>Core</td>
<td></td>
<td>Spring-Summer</td>
<td>15</td>
</tr>
<tr>
<td>CLCC40033</td>
<td>French/German/Spanish Level 4 (Language for Science) History and Politics</td>
<td>Core</td>
<td></td>
<td>Autumn-Spring</td>
<td>10</td>
</tr>
</tbody>
</table>

Credit Total 70

Year 2 - FHEQ Level 5
Students study all core modules. Students select three electives for study, one from each of Groups A, B and C.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Elective</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE50016</td>
<td>Applied Molecular Biology</td>
<td>Core</td>
<td></td>
<td>Autumn</td>
<td>7.5</td>
</tr>
<tr>
<td>LIFE50011</td>
<td>Genetics</td>
<td>Core</td>
<td></td>
<td>Autumn</td>
<td>7.5</td>
</tr>
<tr>
<td>LIFE50025</td>
<td>Bioinformatics, Statistics and Programming (Biological Sciences)</td>
<td>Core</td>
<td></td>
<td>Autumn-Spring</td>
<td>5</td>
</tr>
<tr>
<td>LIFE50003</td>
<td>Tutored Dissertation</td>
<td>Core</td>
<td></td>
<td>Summer</td>
<td>7.5</td>
</tr>
<tr>
<td>LIFE50005</td>
<td>Cell and Developmental Biology</td>
<td>Elective</td>
<td>A</td>
<td>Spring</td>
<td>10</td>
</tr>
<tr>
<td>LIFE50017</td>
<td>Molecular Microbiology</td>
<td>Elective</td>
<td>A</td>
<td>Spring</td>
<td>10</td>
</tr>
<tr>
<td>LIFE50009</td>
<td>Essentials of Ecology: Theory and Practice</td>
<td>Elective</td>
<td>A</td>
<td>Spring</td>
<td>10</td>
</tr>
<tr>
<td>LIFE50006</td>
<td>Cellular and Molecular Neuroscience</td>
<td>Elective</td>
<td>B</td>
<td>Spring</td>
<td>10</td>
</tr>
<tr>
<td>LIFE50012</td>
<td>Immunology</td>
<td>Elective</td>
<td>B</td>
<td>Spring</td>
<td>10</td>
</tr>
<tr>
<td>LIFE50002</td>
<td>Behavioural Ecology</td>
<td>Elective</td>
<td>B</td>
<td>Spring</td>
<td>10</td>
</tr>
<tr>
<td>LIFE50024</td>
<td>Vertebrate Form and Evolution</td>
<td>Elective</td>
<td>C</td>
<td>Summer</td>
<td>7.5</td>
</tr>
<tr>
<td>LIFE50008</td>
<td>Ecological Field Skills</td>
<td>Elective</td>
<td>C</td>
<td>Summer</td>
<td>7.5</td>
</tr>
<tr>
<td>LIFE50014</td>
<td>Molecular and Cell Biology Skills</td>
<td>Elective</td>
<td>C</td>
<td>Summer</td>
<td>7.5</td>
</tr>
<tr>
<td>LIFE50018</td>
<td>Computational ‘Oomics</td>
<td>Elective</td>
<td>C</td>
<td>Summer</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Year 3 - FHEQ Level 6
Students study all core modules.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/Elective</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE60035</td>
<td>Year Abroad (Language for Science)</td>
<td>Core</td>
<td></td>
<td>Autumn-Summer</td>
<td>60</td>
</tr>
</tbody>
</table>

Credit Total: 65

Year 4 - FHEQ Level 6
All year 4 modules are electives and students will select three electives for study, one from each of Groups A, B and C and a research project option from Group D. Elective modules in Groups A, B and C are capped normally at 40-45 students/module and students choose their top three choices from each group with final allocations being made by an algorithm that maximises the allocation of highest number of top choices across the cohort.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/Elective</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE60061</td>
<td>Stem Cells, Regeneration and Ageing</td>
<td>Elective</td>
<td>A</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60056</td>
<td>Metabolic and Network Engineering</td>
<td>Elective</td>
<td>A</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60055</td>
<td>Medical Microbiology</td>
<td>Elective</td>
<td>A</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60057</td>
<td>Plant Biotechnology and Development</td>
<td>Elective</td>
<td>C</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60059</td>
<td>Current Topics in Developmental Biology</td>
<td>Elective</td>
<td>A</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60044</td>
<td>African Biology Field Course</td>
<td>Elective</td>
<td>A</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60067</td>
<td>Bacterial Molecular Machines</td>
<td>Elective</td>
<td>B</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60052</td>
<td>Integrative Systems Biology</td>
<td>Elective</td>
<td>B</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60043</td>
<td>Advanced Topics in Parasitology and Vector Biology</td>
<td>Elective</td>
<td>B</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60063</td>
<td>Symbiosis, Plant Immunity and Disease</td>
<td>Elective</td>
<td>B</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60042</td>
<td>Advanced Topics in Immunity and Infection</td>
<td>Elective</td>
<td>A</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60065</td>
<td>The Microbiome</td>
<td>Elective</td>
<td>C</td>
<td>Spring</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60050</td>
<td>Evolutionary Applications</td>
<td>Elective</td>
<td>B</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60045</td>
<td>Biodiversity and Conservation Biology</td>
<td>Elective</td>
<td>B</td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60058</td>
<td>Molecular Basis of Bacterial Infection</td>
<td>Elective</td>
<td>C</td>
<td>Spring-Summer</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60047</td>
<td>Bioinformatics</td>
<td>Elective</td>
<td>C</td>
<td>Spring</td>
<td>15</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Type</td>
<td>Group</td>
<td>Semester</td>
<td>Credit</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------</td>
<td>-------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>LIFE60060</td>
<td>Synthetic Biology</td>
<td>Elective C</td>
<td></td>
<td>Spring</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60064</td>
<td>Systems Neuroscience</td>
<td>Elective C</td>
<td></td>
<td>Spring-Summer</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60046</td>
<td>Biodiversity Genomics</td>
<td>Elective A</td>
<td></td>
<td>Spring</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60041</td>
<td>Advanced Immunology</td>
<td>Elective C</td>
<td></td>
<td>Spring</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60051</td>
<td>Global Change Biology</td>
<td>Elective C</td>
<td></td>
<td>Spring</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60049</td>
<td>Disease Ecology and Epidemiology</td>
<td>Elective B</td>
<td></td>
<td>Autumn</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60040</td>
<td>Science Communications plus Dissertation</td>
<td>Elective D</td>
<td></td>
<td>Spring-Summer</td>
<td>15</td>
</tr>
<tr>
<td>LIFE60066</td>
<td>Research Project (Lab, Data, Field)</td>
<td>Elective D</td>
<td></td>
<td>Spring-Summer</td>
<td>15</td>
</tr>
<tr>
<td>CLCC60020</td>
<td>French/German/Spanish Scientific and Technical</td>
<td>Core</td>
<td></td>
<td>Autumn-Spring</td>
<td>5</td>
</tr>
<tr>
<td>CLCC60021</td>
<td>Translation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLCC60022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credit Total 65

* ‘Group’ refers to module grouping (e.g. a group of electives from which one/two module(s) must be chosen).
Progression and Classification

Progression

In order to progress to the next level of study, you must have passed all modules (equivalent to 60 ECTS) in the current level of study at first attempt, at resit or by a compensated pass.

The overall weighted average for each year must be 40%, including where a module(s) has been compensated, in order for you to progress to the next year of the programme.

Classification

The marks from modules in each year contribute towards the final degree classification.

In order to be considered for an award, you must have achieved the minimum number of credits at the required levels prescribed for that award and met any programme specific requirements as set out in the Programme Specification.

Your classification will be determined through:

i) Aggregate Module marks for all modules

ii) Year Weightings

For this award, Year One is weighted at 7.5%, Year Two at 35% and Year Three at 0% and Year 4 at 57.5%.

The College sets the class of undergraduate degree that may be awarded as follows:

i) First 70% or above for the average weighted module results

ii) Upper Second 60% or above for the average weighted module results

iii) Lower Second 50% or above for the average weighted module results

iv) Third 40% or above for the average weighted module results

Programme Specific Regulations

N/A
Supporting Information

The Programme Handbook is available from the department.

The Module Handbook is available from the department.

The College’s entry requirements for postgraduate programmes can be found at: www.imperial.ac.uk/study/pg/apply/requirements

The College’s Quality & Enhancement Framework is available at: www.imperial.ac.uk/registry/proceduresandregulations/qualityassurance

The College’s Academic and Examination Regulations can be found at: www.imperial.ac.uk/about/governance/academic-governance/regulations

Imperial College is an independent corporation whose legal status derives from a Royal Charter granted under Letters Patent in 1907. In 2007 a Supplemental Charter and Statutes was granted by HM Queen Elizabeth II. This Supplemental Charter, which came into force on the date of the College’s Centenary, 8th July 2007, established the College as a University with the name and style of “The Imperial College of Science, Technology and Medicine". www.imperial.ac.uk/admin-services/secretariat/college-governance/charters/

Imperial College London is regulated by the Office for Students (OfS) www.officeforstudents.org.uk/advice-and-guidance/the-register/

This document provides a definitive record of the main features of the programme and the learning outcomes that a typical student may reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities provided. This programme specification is primarily intended as a reference point for prospective and current students, academic and support staff involved in delivering the programme and enabling student development and achievement, for its assessment by internal and external examiners, and in subsequent monitoring and review.

Modifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Approved</th>
<th>Date</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>