Programme Information

<table>
<thead>
<tr>
<th>Award</th>
<th>Length of Study</th>
<th>Mode of Study</th>
<th>Entry Point(s)</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc</td>
<td>1 calendar year (12 months)</td>
<td>Full-Time</td>
<td>Annually in October</td>
<td>90 ECTS; 180 CATS</td>
</tr>
<tr>
<td>PG Diploma</td>
<td>1 calendar year (12 months)</td>
<td>Full-Time</td>
<td>N/A</td>
<td>60 ECTS; 120 CATS</td>
</tr>
<tr>
<td>PG Certificate</td>
<td>9 months</td>
<td>Full-Time</td>
<td>N/A</td>
<td>30 ECTS; 60 CATS</td>
</tr>
</tbody>
</table>

The PG Diploma and PG Certificate are intermediate awards and are not available for entry. All students must apply to and join the MSc.

Ownership

- **Awarding Institution**: Imperial College London
- **Faculty**: Faculty of Engineering
- **Teaching Institution**: Imperial College London
- **Department**: Materials
- **Associateship**: Royal School of Mines
- **Main Location(s) of Study**: South Kensington Campus

External Reference

- **Relevant QAA Benchmark Statement(s) and/or other external reference points**: Master’s Degree in Engineering
- **FHEQ Level**: 7
- **EHEA Level**: 2nd Cycle

External Accreditor(s) (if applicable)

External Accreditor 1: Institute of Materials, Minerals and Mining (IoM3)

- **Accreditation received**: 2018
- **Accreditation renewal**: 2022

Collaborative Provision

<table>
<thead>
<tr>
<th>Collaborative partner</th>
<th>Collaboration type</th>
<th>Agreement effective date</th>
<th>Agreement expiry date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Specification Details

<table>
<thead>
<tr>
<th>Programme Lead</th>
<th>Johannes Lischner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student cohorts covered by specification</td>
<td>2022-23 entry</td>
</tr>
<tr>
<td>Date of introduction of programme</td>
<td>October 11</td>
</tr>
<tr>
<td>Date of programme specification/revision</td>
<td>September 22</td>
</tr>
</tbody>
</table>

Programme Overview

The aim of the MSc in Advanced Materials Science and Engineering is to provide a comprehensive understanding of all aspects related to the applications and development in Materials Science and Engineering today. We motivate you to develop your ability to research, design, assess, implement, and review solutions to real-life engineering problems across a wide range of materials. This degree programme prepares you to become independent, ethical, and responsible Materials Science and Engineering professionals with a global appeal. Our modules are taught by expert academics, through formal lecturing and student-led course works. You will have access to world-leading knowledge and infrastructure by working on currently active research projects as part of established research groups.

You will be given the option to specialise in materials for the energy transition, and if you meet the additional criteria will be eligible for the following extra annotation on your degree certificate: Specialising in Materials for the Energy Transition.

This broad and flexible degree allows engineers and scientists from a variety of backgrounds (notably Materials, Mechanical Engineering, Civil Engineering, Chemical Engineering, Physics or Chemistry) to build on their experience and expertise. It supplements strong bases in engineering and sciences with transferable skills training to take you to the next stage of their career in academia or industry, and is accredited by the Institute of Materials, Mineral and Mining (IOM3).

Learning Outcomes

On completing the PG Certificate in Advanced Materials Science and Engineering you will be able to:

1. Apply knowledge of the properties of a variety of materials to engineering or scientific problems.
2. Use tools (experimental or computational) to determine the properties of materials.
3. Employ critical thinking to interpret new information about materials.

In addition, for the PG Diploma you will be able to:

4. Employ specialised knowledge of specific materials types or range of applications to engineering or scientific problems.
5. Plan and conduct a programme of original research.
6. Produce a written report which presents in the manner of a scientific publication a literature review, research methodology, research results, discussion and conclusions.
7. Create and deliver a clear presentation to an expert audience summarising the background, results and conclusions of a research project.

In addition, for the MSc you will be able to:

8. Synthesise and evaluate information from a variety of sources to arrive at a coherent conclusion.
9. Create a systematic plan for using characterisation techniques to discover specific properties of a material.
10. Employ a range of modelling tools applicable to a broad spectrum of materials types at different length and time scales.

The Imperial Graduate Attributes are a set of core competencies which we expect students to achieve through completion of any Imperial College degree programme. The Graduate Attributes are available at: www.imperial.ac.uk/students/academic-support/graduate-attributes
Entry Requirements

Academic Requirement
Normally a first or 2:1 UK Bachelor's Degree with Honours in an engineering or science discipline (Materials, Mechanical Engineering, Civil Engineering, Chemical Engineering or Physics or Chemistry).

For further information on entry requirements, please go to PG: www.imperial.ac.uk/study/pg/apply/requirements/pgacademic

Non-academic Requirements
N/A

English Language Requirement
Standard requirement (PG)

Please check for other [Accepted English Qualifications](http://www.imperial.ac.uk/study/pg/apply/requirements/)

Admissions Test/Interview
Interviews are not currently used but are being considered.

The programme’s competency standards documents can be found at: https://www.imperial.ac.uk/materials/study/pgt/msc-materials/

Learning & Teaching Approach

Learning and Teaching Delivery Methods
The teaching in this programme is designed to deliver the following: learning of information about materials; development of research skills; the ability to think critically about new information; problem solving skills; the ability to communicate technical information clearly. We use lectures to communicate information, workshops to develop problem solving skills, lab and computer activities to develop research skills, literature review writing to develop critical thinking, and report writing and presentations to develop communication skills. Lecture class sizes vary with module, but range between about 100 to around 30. Workshops contain about 30 people, and study groups for independent learning have about 10 people.

Please refer to the Student Success Guide for advice on learning: https://www.imperial.ac.uk/students/success-guide/

Overall Workload
Your overall workload consists of face-to-face sessions and independent learning. While your actual contact hours may vary according to the optional modules you choose to study, the following gives an indication of how much time you will need to allocate to different activities at each level of the programme. At Imperial, each ECTS credit taken equates to an expected total study time of 25 hours. Therefore, the expected total study time is 2,250 hours per year.

You will spend about 7% of your time (around 160 hours) attending lectures, about 2% of your time in workshops, and about 91% of your time in independent study, which includes the research project.

Assessment Strategy

Assessment Methods

There are two types of assessment: formative and summative. Formative assessment is provided as a way for you to determine how well you understand the material but does not contribute to the final mark. Summative assessment is used to determine your final mark. Most modules include an exam, which will always be summative assessment, that assesses the full taught content of the course: this assesses both recall of information, and the ability to apply the information to solve problems. There are problem sheets for some modules that assess the ability to use material learned, but in a way that reinforces the learning through practice; these can be either formative or summative assessments. There are reports, primarily associated with the research project, that assess the ability to carry out independent learning, communicate information clearly, exercise critical thinking, organise complex information, and reach conclusions based on that information; this is summative assessment. There are presentations that assess your ability to communicate information clearly. Workshops provide opportunities for formative self-assessment of understanding. A few modules employ other forms of assessment such as poster presentations and infographic summaries of information.

The exact balance of the summative assessment through the programme depends upon which elective modules are taken, but an indicative breakdown is:
Coursework 70%
Exam 30%

Academic Feedback Policy

Academic feedback to students on coursework is primarily delivered through Blackboard Learn and is normally returned to students within 2 academic weeks of submission.

Feedback is provided in several formats, including:

- Oral (during/after lectures, workshops, labs). This is likely to be formative.
- Personal (during academic discussions e.g. office hours, project supervision sessions). This is likely to be formative.
- Interactive (during workshops with academic staff/GTAs). This is likely to be formative.
- Written (solutions to coursework, comments on reports). This is likely to be summative.

Feedback on written examinations is provided in the form of written commentaries which comment on the performance of the entire cohort on each individual question.

During the academic year indicative results will be provided to students, the results are ratified at the Board of Examiners.

The College’s Policy on Academic Feedback and guidance on issuing provisional marks to students is available at: www.imperial.ac.uk/about/governance/academic-governance/academic-policy/exams-and-assessment/

Re-sit Policy

The College’s Policy on Re-sits is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/

Mitigating Circumstances Policy

The College’s Policy on Mitigating Circumstances is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/

Additional Programme Costs

This section should outline any additional costs relevant to this programme which are not included in students’ tuition fees.

<table>
<thead>
<tr>
<th>Description</th>
<th>Mandatory/Optional</th>
<th>Approximate cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal Protective Equipment</td>
<td>Mandatory</td>
<td>Provided</td>
</tr>
</tbody>
</table>

Important notice: The Programme Specifications are the result of a large curriculum and pedagogy reform implemented by the Department and supported by the Learning and Teaching Strategy of Imperial College London. The modules, structure and assessments presented in this Programme Specification are correct at time of publication but might change as a result of student and staff feedback and the introduction of new or innovative approaches to teaching and learning. You will be consulted and notified in a timely manner of any changes to this document.
Programme Structure

Year 1 – FHEQ Level 7

Compulsory Modules

You will study all compulsory modules, normally from Group C. However, if you have previously taken a Characterization of the Structure of Materials and/or Theory and Simulation of Materials as part of an undergraduate Materials degree at Imperial, then you must take the “alternative form” from Group D.

The alternative modules to Characterization of the Structure of Materials and Theory of Simulation of Materials employ the content of the undergraduate modules in a small project that takes the learning outcomes to level 7.

Elective Modules

You will select 5 electives from groups A, B and E, of which 4 are assessed.

If you studied Materials Science and Engineering at Imperial you must discuss your elective choices with the programme Director at the start of the programme to ensure you do not take modules twice (once as an UG student and once as a PGT student).

Materials for the Energy Transition

To be eligible for the extra annotation “Specialising in Materials for the Energy Transition” on your degree certificate you will need to pass all 90 ECTS (this includes compensated passes). In addition, your five electives (four of which will be assessed) will need to be from group E, you will need to write your seminar reports on research focusing on materials for the energy transition, and your research project will have to be on an energy related topic.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Elective/ Compulsory</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE70001</td>
<td>Characterization of the Structure of Materials</td>
<td>Compulsory</td>
<td>C</td>
<td>1</td>
<td>7.5</td>
</tr>
<tr>
<td>MATE70002</td>
<td>Theory and Simulation of Materials</td>
<td>Compulsory</td>
<td>C</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>MATE70003</td>
<td>The Art of Research</td>
<td>Compulsory</td>
<td>C</td>
<td>1 & 2</td>
<td>15</td>
</tr>
<tr>
<td>MATE70004</td>
<td>Research Project</td>
<td>Compulsory</td>
<td>C</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>MATE70023</td>
<td>Characterization of the Structure of Materials (alternative form)</td>
<td>Compulsory</td>
<td>D</td>
<td>1</td>
<td>7.5</td>
</tr>
<tr>
<td>MATE70024</td>
<td>Theory and Simulation of Materials (alternative form)</td>
<td>Compulsory</td>
<td>D</td>
<td>1</td>
<td>7.5</td>
</tr>
<tr>
<td>MATE70006</td>
<td>Biomaterials</td>
<td>Elective</td>
<td>B</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MATE70007</td>
<td>Engineering Alloys</td>
<td>Elective</td>
<td>B</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MATE70008</td>
<td>Ceramic and Glasses</td>
<td>Elective</td>
<td>B</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MATE70010</td>
<td>Optoelectronic Materials</td>
<td>Elective</td>
<td>E</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MATE70011</td>
<td>Surfaces and Interfaces</td>
<td>Elective</td>
<td>E</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MATE70012</td>
<td>Nanomaterials</td>
<td>Elective</td>
<td>B</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MATE70013</td>
<td>Advanced Engineering Alloys</td>
<td>Elective</td>
<td>A</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Core modules are those which serve a fundamental role within the curriculum, and for which achievement of the credits for that module is essential for the achievement of the target award. Core modules must therefore be taken and passed in order to achieve that named award. Compulsory modules are those which are designated as necessary to be taken as part of the programme syllabus. Compulsory modules can be compensated. Elective modules are those which are in the same subject area as the field of study and are offered to students in order to offer an element of choice in the curriculum and from which students are able to select. Elective modules can be compensated.
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Code</th>
<th>Year</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE70014</td>
<td>Advanced Nanomaterials</td>
<td>Elective</td>
<td>A</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MATE70015</td>
<td>Advanced Structural Ceramics</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MATE70016</td>
<td>Advanced Tissue Engineering</td>
<td>Elective</td>
<td>A</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MATE70017</td>
<td>Electroceramics</td>
<td>Elective</td>
<td>E</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MATE70018</td>
<td>Advanced Biomaterials</td>
<td>Elective</td>
<td>A</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MATE70019</td>
<td>Nuclear Materials for Reactor Systems</td>
<td>Elective</td>
<td>E</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MATE70020</td>
<td>An introduction to Density Functional Theory</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CENG60013</td>
<td>Nuclear Chemical Engineering</td>
<td>Elective</td>
<td>E</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MECH7002</td>
<td>Nuclear Reactor Physics</td>
<td>Elective</td>
<td>E</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MECH70001</td>
<td>Nuclear Thermal Hydraulics</td>
<td>Elective</td>
<td>E</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Credit Total 90
Progression and Classification

Award and Classification for Postgraduate Students

Award of a Postgraduate Certificate (PG Cert)
To qualify for the award of a postgraduate certificate a student must have a minimum of 30 credits at Level 7 (this may include a maximum of 10 credits from Level 6 where this is approved as part of the award).

Award of a Postgraduate Diploma (PG Dip)
To qualify for the award of a postgraduate diploma a student must have:
1. passed modules to the value of no fewer than 60 credits at Level 7 (this may include a maximum of 15 credits from Level 6 where this is approved as part of the award).
2. and no more than 10 credits as a Compensated Pass;

Award of a Postgraduate Degree
To qualify for the award of a postgraduate degree a student must have:
1. accumulated credit to the value of no fewer than 90 credits at level 7 or above of which no more than 15 credits may be from credit level 6;
2. and no more than 15 credits as a Compensated Pass;
3. met any specific requirements for an award as outlined in the approved programme specification for that award.

Classification of Postgraduate Taught Awards

The College sets the class of Degree that may be awarded as follows:
1. Distinction: The student has achieved an overall weighted average of 70.00% or above across the programme.
2. Merit: The student has achieved an overall weighted average of above 60.00% but less than 70.00%.
3. Pass: The student has achieved an overall weighted average of 50.00% but less than 60.00%.

a. For a Masters, students must normally achieve a distinction (70.00%) mark in the dissertation or designated final major project (as designated in the programme specification) in order to be awarded a distinction.
b. For a Masters, students must normally achieve a minimum of a merit (60.00%) mark in the dissertation or designated final major project (as designated in the programme specification) in order to be awarded a merit
c. Modules taken at level 6 as part of the programme specification for a named postgraduate award will contribute to the determination of pass, merit or distinction for any taught postgraduate award and are included in the calculation of the overall weighted average.

Programme Specific Regulations

N/A
Supporting Information

The Programme Handbook is available at: https://www.imperial.ac.uk/materials/study/pgt/msc-materials/

The Module Handbook is available at: https://www.imperial.ac.uk/materials/study/pgt/msc-materials/

The College’s entry requirements for postgraduate programmes can be found at: www.imperial.ac.uk/study/pg/apply/requirements

The College’s Quality & Enhancement Framework is available at: www.imperial.ac.uk/registry/proceduresandregulations/qualityassurance

The College’s Academic and Examination Regulations can be found at: www.imperial.ac.uk/about/governance/academic-governance/regulations

Imperial College is an independent corporation whose legal status derives from a Royal Charter granted under Letters Patent in 1907. In 2007 a Supplemental Charter and Statutes was granted by HM Queen Elizabeth II. This Supplemental Charter, which came into force on the date of the College's Centenary, 8th July 2007, established the College as a University with the name and style of “The Imperial College of Science, Technology and Medicine”.

www.imperial.ac.uk/admin-services/secretariat/college-governance/charters/

Imperial College London is regulated by the Office for Students (OfS)

www.officeforstudents.org.uk/advice-and-guidance/the-register/

This document provides a definitive record of the main features of the programme and the learning outcomes that a typical student may reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities provided. This programme specification is primarily intended as a reference point for prospective and current students, academic and support staff involved in delivering the programme and enabling student development and achievement, for its assessment by internal and external examiners, and in subsequent monitoring and review.

Modifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Approved</th>
<th>Date</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>