Publications of Etienne Burdet

Manuscripts of special interest are with a short comment (in **bold**) explaining the contribution.

Books

2. E Burdet, DW Franklin and TE Milner (2013), Human Robotics: neuromechanics and motor control. MIT Press. [**Synthesis of biomechanics and neural control based on comprehensive experimental results and computational modelling. This book has been translated into Japanese (Maruzen) and Chinese (Tsinghua University Press)**]

Journal papers

11. E Burdet, R Osu, DW Franklin, T Yoshioka, TE Milner and M Kawato (2000), A method for measuring hand stiffness during multi-joint arm movements. Journal of Biomechanics 33: 1705-09. [**This algorithm to estimate stiffness during movement has been in use for over 10 years**]
16. R Osu, E Burdet, DW Franklin, TE Milner, M Kawato (2003), Different mechanisms in adaptation to stable and unstable dynamics. Journal of Neurophysiology 90(5): 3255-69. [**First study to describe motor adaptation both in stable and unstable novel dynamics**]
27. DW Franklin, G Liaw, TE Milner, R Osu, E Burdet and M Kawato (2007), The end-point stiffness of the arm is directionally tuned to instability in the environment. Journal of Neuroscience 27(29): 7705-16. [The CNS learns to compensate for environment instability by using muscle impedance properties and reflexes]
34. H Zhang, E Burdet, AN Poo and DW Hutmacher (2008), Microassembly fabrication of tissue engineering scaffolds with customized design. IEEE Transactions on Automation Science and Engineering 5(3): 446-56. [Novel Tissue Engineering concept enabling spatial control of nutrients and cells]
36. DW Franklin, E Burdet, KP Tee, T Milner, R Osu and M Kawato (2008), CNS learns stable, accurate and efficient movements using a simple algorithm, Journal of Neuroscience 28(44): 11165-73. [First computational model to describe the evolution of the motor command to muscle during the adaptation to stable and unstable interactions]
39. Q Zeng, E Burdet and CL Teo (2009), Evaluation of a collaborative wheelchair system in cerebral palsy and traumatic brain injury users, Neurorehabilitation and Neural Repair 23(5): 494-504. [First study of robotic wheelchair including a systematic trial with neurologically impaired end-users]

42. S Haller, D Chapuis, R Gassert, E Burdet, M Klarhoefer (2009), Supplementary motor area and anterior intraparietal area integrate fine-graded timing and force control during precision grip. European Journal of Neuroscience 30(12): 2401-06.

43. KP Tee, DW Franklin, T Milner, M Kawato and E Burdet (2010), Concurrent adaptation of force and impedance in the redundant muscle system. Biological Cybernetics 102: 31-44. [Presents an algorithm for the model of [36] and tests it in simulations on all known types of force fields]

49. B Rebsamen, C Guan, H Zhang, C Wang, CL Teo, M Ang and E Burdet (2010), A brain controlled wheelchair to navigate in familiar environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(6): 590-8. [Describes the first brain controlled wheelchair able to move in a typical building environment, see also [26]]

55. J Kodl, G Ganesh and E Burdet (2011), CNS stochastically selects motor plan from extrinsic and intrinsic constraints. PLoS ONE 6(9): e24229. [Evidence that to perform motion humans use a distinct planning stage in extrinsic coordinates]

59. O Lambercy, L Dovat, H Yun, SK Wee, C Kuah, K Chua, R Gassert, TE Milner, CL Teo and E Burdet (2011), Robot-assisted rehabilitation of grasp and pronation/supination. Journal of NeuroEngineering and Rehabilitation 8:63. [One of the very few trials of robot-aided neurorehabilitation of the hand function]

60. M Haruno, G Ganesh, E Burdet and M Kawato (2012), Distinct neural correlates of reciprocal and co-
activation of muscles in dorsal and ventral premotor cortices. Journal of Neurophysiology 107: 126-33. [Evidence of distinct fMRI correlates for force and impedance control]

64. A Kadiallah, DW Franklin and E Burdet (2012), Generalization in adaptation to stable and unstable dynamics. PLoS ONE 7(10): e45075. [State space formulation of the computational model of motor adaptation [36,43]]

68. N Jarrassé, T Charalambous and E Burdet (2012), A Framework to describe, analyze and generate interactive motor behaviors. PLoS ONE 7(11): e49945. [First framework to specify roles in motor interaction between humans and/or robots]

76. G Ganesh, A Takagi, R Osu, T Yoshioka, M Kawato and E Burdet (2014), Two is better than one: Physical interactions improve motor performance in humans. Nature Scientific Reports 4: 3824. [A pioneering study revealing that sensorimotor interaction makes us involuntarily improve performance, even when connected to a worse partner]

79. P Tommasino, A Melendez-Calderon, E Burdet and D Campolo (2014), Motor adaptation with passive ma-

93. E Abdi, E Burdet, M Bouri, S Himidan and H Bleuler (2016), In a demanding task, three-handed manipulation is preferred to two-handed manipulation. Scientific Reports 6: 21758 [First investigation of three-hands control in humans]

96. C Wang, Y Xiao, E Burdet, J Gordon and N Schweighofer (2016), The duration of reaching movement is longer than predicted by minimum variance. Journal of Neurophysiology 00148. [First experimental evidence that the duration of reaching arm movements depends on error and effort]

104. A Takagi, G Ganesh, T Yoshioka, M Kawato and E Burdet (2017), Physically interacting individuals estimate the partners goal to enhance their movements. Nature Human Behaviour 1: 54. [The first computational model of interpersonal sensorimotor integration, showing that one uses haptic information to infer an interacting partner’s motion planning and improve one own motor performance].

112. I Farkhatdinov, N Roehrl and E Burdet (2017), Anticipatory detection of turning in humans during locomotion for intuitive control of robotic mobility assistance. Bioinspiration and Biomimetics 12: 055004. [How the anticipatory head and upper body movement can be used to trigger turning in full-body exoskeletons].

113. M Mace, N Kinany, P Rinne, A Rayner, P Bentley and E Burdet (2017), Balancing the playing field: Collaborative gaming for training. Journal of NeuroEngineering and Rehabilitation 14: 116 [First interpersonal rehabilitative game automatically matching the respective difficulty level to the skill of each partner].

115. A Takagi, F Usai, G Ganesh, V Sanguineti and E Burdet (2018), Haptic communication between humans is tuned by the hard or soft mechanics of interaction. PLoS Computational Biology 14(3): e1005971 (This paper has been highlighted by PLoS Computational Biology). [Describes how the interaction mechanics influences haptic communication].

117. S Dall’Orso, A Allievi, J Steinweg, D Edwards, E Burdet, T Arichi (2018), Somatotopic mapping of the

122. Y Li, G Carboni, F Gonzalez, D Campolo and E Burdet (2019), How a robot can understand and adapt to human action - differential game theory for versatile physical interaction. Nature Machine Intelligence 1(1): 36 (This paper has been highlighted in Nature). [First systematic analysis and design of simultaneous partner’s identification and interactive control; the key to optimal human-robot performance according to any desired control strategy]

123. A Takagi, M Hirashima, D Nozaki and E Burdet (2019), Individuals physically interacting in a group rapidly coordinate their movement by estimating the collective goal. eLife 8: e41328. [The counter-intuitive finding that motor performance improves with the number of interacting partners and is not disturbed by clumsy partners, which can be explained through each individual identifying and integrating the collective motion plan]

130. Y Huang, E Burdet, L Cao, PT Phan, AMH Tiong and SJ Phee (2020), A subject-specific four-degree-of-freedom foot interface to control a surgical robot. IEEE/ASME Transactions on Mechatronics 25(2): 951-63. [A simple passive foot interface that can provide haptic feedback over the visual loop]

133. E Ivanova, G Carboni, J Eden, Jörg Krüger and E Burdet (2020), For motion assistance humans prefer to rely on a robot rather than on an unpredictable human. IEEE Open Journal of Engineering in Medicine and Biology 16(1): 133-9. [This comparison of control strategies for physical human-robot interaction shows that reactivity to the user’s movements is essential to inducing and feeling human-like assistance]

134. A Takagi, A Melendez-Calderon and E Burdet (2020), The dominant limb preferentially stabilizes posture in a bimanual task with physical coupling. Journal of Neurophysiology 123: 2154-60. [Humans prefer to stabilize a bimanually held object by cocontracting their dominant limb, contradicting the established view that the non-dominant limb is specialized towards stabilization.]

146. M Broderick, P Bentley, J Burridge and E Burdet (2020), Self-administered gaming exercises for stroke arm disability increase exercise duration by more than two-fold and repetitions more than ten-fold compared to standard care. International Journal of Stroke 15(1): 255. [Simple but critical result]

153. B Berret, A Conessa, N Schweighofer and E Burdet (2021), Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision. PLoS Computational Biology 17(6): e1009047. [First nonlinear stochastic optimal feedforward control model minimising error and effort in the presence of signal dependent and constant noise]

154. A Budhota, KS Chua, A Hussain, S Kager, A Cherpin, S Contu, D Vishwanath, CW Kuah, CY Ng, L Yam

158. R Li, Y Li, SE Li, C Zhang, E Burdet and B Cheng (2021), Indirect shared control for cooperative driving between driver and automation in steer-by-wire vehicles. IEEE Transactions on Intelligent Transportation Systems 22(12): 7826-36.

159. M Broderick, I Almedom, E Burdet, J Burridge and P Bentley (2021), Self-directed exergaming for stroke upper limb impairments increases exercise dose compared to standard care. Neurorehabilitation and Neural Repair 35(11): 974–85. [Accessibility and motivation of rehabilitation are keys to increasing the time stroke survivors train the hand function]

Patents

171. CL Teo, L Tong, J Klein, E Burdet (2013), Therapy device for training fine motor skills. US Provisional Application No 61/891,959.

Videos (peer-reviewed)

174. H Zhang, E Burdet, A N Poo and DW Hutmacher (2003), Robotic microassembly of scaffolds for tissue
175. L Dovat, O Lambercy, R Gassert, TE Milner, CL Teo and E Burdet (2009), A system for robot-assisted

176. G Zhao, CL Teo, DW Hutmacher and E Burdet (2010), Automated microassembly of tissue engineering
scaffold, Video Proc IEEE Int Conf on Robotics and Automation (ICRA). [Amazing automation of micro-
level 3D assembly (to fabricate a Tissue Engineering bone scaffold)]

177. B Vanderborght, A Albu-Schäffer, A Bicchi, E Burdet et al. (2012), Variable impedance actuators: moving
the robots of tomorrow. Video Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems (IROS) [Best
IROS Jubilee Video Award].

Other peer-reviewed papers

Proc Workshop on Industrial Applications on Neural Networks, Ascona.

179. E Burdet, P Merz and C Albani (1993), Coordination of arm movements in a complex visual environment.
Proc Congress of the Int Society of Biomechanics.

Action 372-5.

and Automation (ICRA) 2656-61.

Proc Int Federation of Automatic Control (IFAC) Symposium on Robot Control.

Conf on Robotics and Automation (ICRA) 1: 537-42.

186. A Codourey and E Burdet (1997), A Body-oriented method for finding a linear form of the dynamic equation
algorithm to derive the dynamics of mechanisms with closed and open mechanical chains, exemplified
on a 6 DOF mechanism in the following paper]

187. M Honegger, A Codourey and E Burdet (1997), Adaptive control of the Hexaglide, a 6 dof parallel manipu-

188. E Burdet, R Osu, DW Franklin, TE Milner and M Kawato (1999), Measuring stiffness during arm move-
ments in various dynamic environments. Proc ASME Int Mechanical Engineering Congress and Exposition
(IMECE), 421-8.

189. E Burdet, M Honegger and A Codourey (2000), Controllers with desired dynamics and their implementation
on a 6 DOF parallel manipulator. Proc IEEE/RSJ Int Conf on Robotics and Intelligent Systems (IROS) 1:
39-45. [The first implementation of a nonlinear adaptive controller on a 6DOF parallel mechanisms
(with 24 dynamic parameters)]

190. E Burdet, KP Tee, CM Chew, J Peters and V Loo BT (2001), Hybrid IDM/impedance learning in human

191. E Burdet, KP Tee, CM Chew, DW Franklin, R Osu, M Kawato and T Milner (2001), Stability and learning
in human arm movements. Proc Int Conf on Computational Intelligence, Robotics and Autonomous Systems
(CIRAS).

192. R Osu, E Burdet, DW Franklin, TE Milner, M Kawato (2001), The CNS skillfully stabilizes unstable dy-
Society.

microgripper for 3-D assembly of tissue engineering scaffolds. Proc SPIE, Intelligent Systems and Advanced
Manufacturing 4568: 50-60.

194. E Burdet, O Sosodoro and MH Ang (2001), Reactive, fast, smooth and accurate motion planning for sensor-
based robotics. Proc Int Conf on Computational Intelligence, Robotics and Autonomous Systems (CIRAS).

195. H Zhang, E Burdet, AN Poo and DW Hutmacher (2002), Robotic micro-assembly of scaffold/cell constructs

218. F Wang, E Burdet, R Vuillemin, H. Bleuler (2005), Knot-tying with visual and force feedback for VR laparo-

220. T Poston, A Dhanik, E Burdet, and CL Teo (2005), Haptics of buckling. Proc Haptic Symposium 299-307. [A unique method for real-time haptic interaction with a mechanical chain, using bifurcation theory to yield computation growing only linearly with the number of chain elements]

A cable driven robotic system to train finger function after stroke. Proc IEEE Int Conf on Rehabilitation Robotics (ICORR) 222-7

257. O Lambercy, L Dovat, H Yun, SK Wee, CW Kuah, KS Chua, R Gassert, TE Milner, CL Teo and E Burdet (2009), Rehabilitation of grasping and forearm pronation/supination with the Haptic Knob. Proc IEEE Int Conf on Rehabilitation Robotics (ICORR) 22-7 [best presentation paper award].

260. ELM Su , TL Win , WT Ang , TC Lim, CL Teo and E Burdet (2009), Micromanipulation accuracy in pointing
and tracing investigated with a contact-free measurement system. Proc IEEE Engineering in Medicine and Biology Society Conf (EMBC) 1: 3960-3.

262. A Melendez-Calderon, L Masia, M Casadio and E Burdet (2009), Force field compensation can be learned without proprioceptive error. Proc Medical Physics and Biomedical Engineering World Congress 381-4.

269. ELM Su, G Ganesh, CF Yeong and E Burdet (2010), Accurate micromanipulation induced by performing in unstable dynamics. Proc IEEE Int Symposium in Robot and Human Interactive Communication (Ro-Man) 762-6.

Book chapters

329. GA Liaw, DW Franklin, E Burdet, H Kadi-Allah and M Kawato (2008), Reflex contributions to the directional tuning of arm stiffness. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4984(1): 913-22.

Non-refereed contributions

co-activation of muscle pairs for different unstable environments. Society for Neuroscience abstracts 492.10.

346. DW Franklin, U So, E Burdet and M Kawato (2005), Internal model formation and impedance control do not require online visual feedback. Society for Neuroscience abstracts 181.14.

351. G Liaw, A Kadi-Allah, E Burdet, M Kawato and DW Franklin (2008), The impedance controller tunes the muscle reflex gain to instability in the environment. Society for Neuroscience abstracts.

357. RM Gordon-Williams, A Allievi, T Hayat, T Arichi, E Burdet, AM Groves, AD Edwards (2012), A computer-controlled stimulator for fMRI of the neonatal olfactory system. Poster at the Pediatric Academic Meeting, USA.

359. H Cullen, A Allievi, T Arichi, SJ Counsell, E Burdet, JD Tournier and AD Edwards (2014), Probing the developing homunculus: high definition somatosensory tracts using high angular resolution diffusion-weighted imaging and fMRI. Pediatric Academic Society meeting (PAS).

Selected Media Coverage

18
• Tireless, reliable physio-robots take on stroke paralysis, New Scientist, 7 April 2007: 24-5.
• News’ comments at BBC on 13th June 2014 (http://m.bbc.co.uk/news/health-27828553).