Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Britzman D, Igah I, Eftaxiopoulou T, Macdonald W, Bull AMJet al., 2018,

    Tibial osteotomy as a mechanical model of primary osteoarthritis in rats

    , Scientific Reports, Vol: 8, ISSN: 2045-2322

    This study has presented the first purely biomechanical surgical model of osteoarthritis (OA) in rats, which could be more representative of the human primary disease than intra-articular techniques published previously. A surgical tibial osteotomy (TO) was used to induce degenerative cartilage changes in the medial knee of Sprague-Dawley rats. The presence of osteoarthritic changes in the medial knee compartment of the operated animals was evaluated histologically and through analysis of serum carboxy-terminal telepeptides of type II collagen (CTX-II). In-vivo biomechanical analyses were carried out using a musculoskeletal model of the rat hindlimb to evaluate the loading conditions in the knee pre and post-surgically. Qualitative and quantitative medial cartilage degeneration consistent with OA was found in the knees of the operated animals alongside elevated CTX-II levels and increased tibial compressive loading. The potential avoidance of joint inflammation post-surgically, the maintenance of internal joint biomechanics and the ability to quantify the alterations in joint loading should make this model of OA a better candidate for modeling primary forms of the disease in humans.

  • Journal article
    Klemt C, Prinold J, Morgans S, Smith SHL, Nolte D, Reilly P, Bull AMJet al., 2018,

    Analysis of shoulder compressive and shear forces during functional activities of daily life

    , Clinical Biomechanics, Vol: 54, Pages: 34-41, ISSN: 0268-0033

    Background:Knowledge of forces acting through the glenohumeral joint during activities of daily living is a prerequisite for improving implant design and aiding rehabilitation planning. Existing data are limited by the number of activities performed and, in some cases, the lack of representation of the glenohumeral loading direction, although high shear force components may cause joint dislocation or implant loosening. This study aims to analyse shoulder compression and shear force components during essential functional activities of daily living.Methods:This is a combined modelling and experimental study. Motion data and external forces measured from 25 participants for 26 activities of daily living serve as input into an upper limb musculoskeletal model that quantifies glenohumeral loading.Findings:The shoulder contact force exceeds 50% of the body weight in 10/26 activities of daily living with a maximum contact force of 164% of the body weight (SD 69%) for a sit to stand task. The ratio of glenohumeral shear force component to compression force component exceeds 0.5 in 8/26 functional activities, with maximum ratios for reaching across the body (1.09; SD 0.41) and pick and place an everyday object (0.88; SD 0.36).Interpretation:This study demonstrates substantial loads through the glenohumeral joint during activities of daily living. The ratios of glenohumeral shear force component to compression force component are considerable when high loads act at long lever arms and at high angles of arm elevation. These glenohumeral ratios represent a key component of loading that should be considered when designing implants, surgical procedures, or rehabilitation protocols.

  • Journal article
    Karunaratne A, Li S, Bull A, 2018,

    Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate

    , Scientific Reports, Vol: 8, ISSN: 2045-2322

    Ligament failure is a major societal burden causing disability and pain. Failure is caused by trauma at high loading rates. At the macroscopic level increasing strain rates cause an increase in failure stress and modulus, but the mechanism for this strain rate dependency is not known. Here we investigate the nano scale mechanical property changes of human ligament using mechanical testing combined with synchrotron X-ray diffraction. With increasing strain rate, we observe a significant increase in fibril modulus and a reduction of fibril to tissue strain ratio, revealing that tissue-level stiffening is mainly due to the stiffening of collagen fibrils. Further, we show that the reduction in fibril deformation at higher strain rates is due to reduced molecular strain and fibrillar gaps, and is associated with rapid disruption of matrix-fibril bonding. This reduction in number of interfibrillar cross-links explains the changes in fibril strain; this is verified through computational modelling.

  • Journal article
    Rosenberg N, Bull AMJ, 2018,

    Simulating localised cellular inflammation and substrate properties in a strain energy density based bone remodelling algorithm for use in modelling trauma

    , Computer Methods in Biomechanics and Biomedical Engineering, Vol: 21, Pages: 208-218, ISSN: 1025-5842

    Bone responds to mechanical stimulus and a range of pre-existing finite element models have been suggested to reproduce the internal physiological structure of bone. Inflammation effects are not included in these models, yet inflammation is a key component of bone repair in trauma. Therefore, a model is proposed and tested here that extends these methods to include parameters that could be considered to represent the behaviour of bone remodelling when influenced by inflammation. The proposed model regulates remodelling based on findings from recent studies into the nature of heterotopic ossification, the formation of heterotopic bone, which have revealed information about the nature of bone after high levels of trauma. These parameters include consideration of the distance from the zone of trauma, the density of mesenchymal stem cells, and substrate stiffness as a trigger for cells becoming osteogenic. The method is tested on a two-dimensional plate model and shows that the new extended algorithm can produce a range of structures depending on inputs that could be used in the future to replicate physiological scenarios.

  • Journal article
    Czasche MB, Goodwin JE, Bull AMJ, Cleather DJet al., 2018,

    Effects of an 8-week strength training intervention on tibiofemoral joint loading during landing: a cohort study.

    , BMJ Open Sport and Exercise Medicine, Vol: 4, ISSN: 2055-7647

    Objectives: To use a musculoskeletal model of the lower limb to evaluate the effect of a strength training intervention on the muscle and joint contact forces experienced by untrained women during landing. Methods: Sixteen untrained women between 18 and 28 years participated in this cohort study, split equally between intervention and control groups. The intervention group trained for 8 weeks targeting improvements in posterior leg strength. The mechanics of bilateral and unilateral drop landings from a 30 cm platform were recorded preintervention and postintervention, as was the isometric strength of the lower limb during a hip extension test. The internal muscle and joint contact forces were calculated using FreeBody, a musculoskeletal model. Results: The strength of the intervention group increased by an average of 35% (P<0.05; pre: 133±36 n, post: 180±39 n), whereas the control group showed no change (pre: 152±36 n, post: 157±46 n). There were only small changes from pre-test to post-test in the kinematics and ground reaction forces during landing that were not statistically significant. Both groups exhibited a post-test increase in gluteal muscle force during landing and a lateral to medial shift in tibiofemoral joint loading in both landings. However, the magnitude of the increase in gluteal force and lateral to medial shift was significantly greater in the intervention group. Conclusion: Strength training can promote a lateral to medial shift in tibiofemoral force (mediated by an increase in gluteal force) that is consistent with a reduction in valgus loading. This in turn could help prevent injuries that are due to abnormal knee loading such as anterior cruciate ligament ruptures, patellar dislocation and patellofemoral pain.

  • Journal article
    Azmi NL, Ding Z, Xu R, Bull AMJet al., 2018,

    Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects

    , PLoS ONE, Vol: 13, ISSN: 1932-6203

    The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases.

  • Journal article
    Klemt C, Nolte D, Grigoriadis G, Di Federico E, Reilly P, Bull AMJet al., 2017,

    The contribution of the glenoid labrum to glenohumeral stability under physiological joint loading using finite element analysis

    , Computer Methods in Biomechanics and Biomedical Engineering, Vol: 20, Pages: 1613-1622, ISSN: 1025-5842
  • Journal article
    Pearce AP, Bull AMJ, Clasper JC, 2017,

    Re: Mediastinal injury is the strongest predictor of mortality in mounted blast amongst UK deployed forces: Methodological issues

    , Injury: International Journal of the Care of the Injured, Vol: 48, Pages: 2610-2610, ISSN: 0020-1383
  • Journal article
    Bull AMJ, Pandis P, 2017,

    A low cost 3D laser surface scanning approach for defining body segment parameters

    , Proceedings of the Institution of Mechanical Engineers Part H - Journal of Engineering in Medicine, Vol: 231, Pages: 1064-1068, ISSN: 0954-4119

    Body segment parameters are used in many different applications in ergonomics as well as in dynamic modelling of the musculoskeletal system. Body segment parameters can be defined using different methods, including techniques that involve time-consuming manual measurements of the human body, used in conjunction with models or equations. In this study, a scanning technique for measuring subject-specific body segment parameters in an easy, fast, accurate and low-cost way was developed and validated. The scanner can obtain the body segment parameters in a single scanning operation, which takes between 8 and 10 s. The results obtained with the system show a standard deviation of 2.5% in volumetric measurements of the upper limb of a mannequin and 3.1% difference between scanning volume and actual volume. Finally, the maximum mean error for the moment of inertia by scanning a standard-sized homogeneous object was 2.2%. This study shows that a low-cost system can provide quick and accurate subject-specific body segment parameter estimates.

  • Journal article
    Junaid S, Sanghavi S, Anglin C, Bull A, Emery R, Amis AA, Hansen Uet al., 2017,

    Treatment of the Fixation Surface Improves Glenoid Prosthesis Longevity in vitro.

    , Journal of Biomechanics, Vol: 61, Pages: 81-87, ISSN: 0021-9290

    Many commercial cemented glenoid components claim superior fixation designs and increased survivability. However, both research and clinical studies have shown conflicting results and it is unclear whether these design variations do improve loosening rates. Part of the difficulty in investigating fixation failure is the inability to directly observe the fixation interface, a problem addressed in this study by using a novel experimental set-up. Cyclic loading-displacement tests were carried out on 60 custom-made glenoid prostheses implanted into a bone substitute. Design parameters investigated included treatment of the fixation surface of the component resulting in different levels of back-surface roughness, flat-back versus curved-back, keel versus peg and more versus less conforming implants. Visually-observed failure and ASTM-recommended rim-displacements were recorded throughout testing to investigate fixation failure and if rim displacement is an appropriate measure of loosening. Roughening the implant back (Ra>3µm) improved resistance to failure (P<0.005) by an order of magnitude with the rough and smooth groups failing at 8712±5584 cycles (mean±SD) and 1080±1197 cycles, respectively. All other design parameters had no statistically significant effect on the number of cycles to failure. All implants failed inferiorly and 95% (57/60) at the implant/cement interface. Rim-displacement correlated with visually observed failure. The most important effect was that of roughening the implant, which strengthened the polyethylene-cement interface. Rim-displacement can be used as an indicator of fixation failure, but the sensitivity was insufficient to capture subtle effects. LEVEL OF EVIDENCE: Basic Science Study, Biomechanical Analysis.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=480&limit=10&page=4&respub-action=search.html Current Millis: 1618572869143 Current Time: Fri Apr 16 12:34:29 BST 2021