Imperial College London


Faculty of MedicineDepartment of Infectious Disease

Honorary Research Fellow







Flowers buildingSouth Kensington Campus





Publication Type

15 results found

Abdolrasouli A, Gibani MM, de Groot T, Borman AM, Hoffman P, Azadian BS, Mughal N, Moore LSP, Johnson EM, Meis JFet al., 2021, A pseudo-outbreak of Rhinocladiella similis in a bronchoscopy unit of a tertiary care teaching hospital in London, United Kingdom., Mycoses: diagnosis, therapy and prophylaxis of fungal diseases, Vol: 64, Pages: 394-404, ISSN: 0933-7407

Outbreaks of fungal infections due to emerging and rare species are increasingly reported in healthcare settings. We investigated a pseudo-outbreak of Rhinocladiella similis in a bronchoscopy unit of a tertiary care teaching hospital in London, UK. We aimed to determine route of healthcare-associated transmission and prevent additional infections. From July 2018 through February 2019, we detected a pseudo-outbreak of R. similis isolated from bronchoalveolar lavage (BAL) fluid samples collected from nine patients who had undergone bronchoscopy in a multispecialty teaching hospital, during a period of 8 months. Isolates were identified by MALDI-TOF mass spectrometry. Antifungal susceptibility testing was performed by EUCAST broth microdilution. To determine genetic relatedness among R. similis isolates, we undertook amplified fragment length polymorphism analysis. To determine the potential source of contamination, an epidemiological investigation was carried out. We reviewed patient records retrospectively and audited steps taken during bronchoscopy as well as the subsequent cleaning and decontamination procedures. Fungal cultures were performed on samples collected from bronchoscopes and automated endoscope washer-disinfector systems. No patient was found to have an infection due to R. similis either before or after bronchoscopy. One bronchoscope was identified to be used among all affected patients with positive fungal cultures. Physical damage was found in the index bronchoscope; however, no fungus was recovered after sampling of the affected scope or the rinse water of automated endoscope washer-disinfectors. Use of the scope was halted, and, during the following 12-month period, Rhinocladiella species were not isolated from any BAL specimen. All pseudo-outbreak isolates were identified as R. similis with high genetic relatedness (>90% similarity) on ALFP analysis. The study emphasises the emergence of a rare and uncommon black yeast R

Journal article

Armstrong-James D, Youngs J, Bicanic T, Abdolrasouli A, Denning DW, Johnson E, Mehra V, Pagliuca T, Patel B, Rhodes J, Schelenz S, Shah A, van de Veerdonk FL, Verweij PE, White PL, Fisher MCet al., 2020, Confronting and mitigating the risk of COVID-19 Associated Pulmonary Aspergillosis (CAPA), European Respiratory Journal, Vol: 56, Pages: 1-10, ISSN: 0903-1936

Cases of COVID-19 associated pulmonary aspergillosis (CAPA) are being increasingly reported and physicians treating patients with COVID-19-related lung disease need to actively consider these fungal co-infections.The SARS-CoV-2 (COVID-19) virus causes a wide spectrum of disease in healthy individuals as well as those with common comorbidities [1]. Severe COVID-19 is characterised acute respiratory distress syndrome (ARDS) secondary to viral pneumonitis, treatment of which may require mechanical ventilation or extracorporeal membrane oxygenation (ECMO) [2]. Clinicians are alert to the possibility of bacterial co-infection as a complication of lower respiratory tract viral infection; for example a recent review found that 72% of patients with COVID-19 received antimicrobial therapy [3]. However, the risk of fungal co-infection, in particular COVID-19 associated pulmonary aspergillosis (CAPA), remains underappreciated.Fungal disease consistent with invasive aspergillosis (IA) has been observed with other severe Coronaviruses such as Severe Acute Respiratory Syndrome (SARS-CoV-2003) [4, 5] and Middle East Respiratory Syndrome (MERS-CoV) [6]. From the outset of the COVID-19 pandemic, there were warning signs of secondary invasive fungal infection; Aspergillus flavus was isolated from the respiratory tract from one of 99 patients in the first COVID-19 cohort from Wuhan to be reported in any detail [2] and Aspergillus spp. were isolated from 2/52 (3.8%) of a subsequent cohort of critically unwell patients from this region [7]. More recently, retrospective case series from Belgium [8], France [9], The Netherlands [10] and Germany [11] have reported evidence of CAPA in an alarming 20–35% of mechanically ventilated patients.

Journal article

Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, Thursz M, Manousou P, Corbett R, Goldin R, Al-Sarraj S, Abdolrasouli A, Swann OC, Baillon L, Penn R, Barclay WS, Viola P, Osborn Met al., 2020, Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study, The Lancet Microbe, Vol: 1, Pages: e245-e253, ISSN: 2666-5247

BackgroundSevere COVID-19 has a high mortality rate. Comprehensive pathological descriptions of COVID-19 are scarce and limited in scope. We aimed to describe the histopathological findings and viral tropism in patients who died of severe COVID-19.MethodsIn this case series, patients were considered eligible if they were older than 18 years, with premortem diagnosis of severe acute respiratory syndrome coronavirus 2 infection and COVID-19 listed clinically as the direct cause of death. Between March 1 and April 30, 2020, full post-mortem examinations were done on nine patients with confirmed COVID-19, including sampling of all major organs. A limited autopsy was done on one additional patient. Histochemical and immunohistochemical analyses were done, and histopathological findings were reported by subspecialist pathologists. Viral quantitative RT-PCR analysis was done on tissue samples from a subset of patients.FindingsThe median age at death of our cohort of ten patients was 73 years (IQR 52–79). Thrombotic features were observed in at least one major organ in all full autopsies, predominantly in the lung (eight [89%] of nine patients), heart (five [56%]), and kidney (four [44%]). Diffuse alveolar damage was the most consistent lung finding (all ten patients); however, organisation was noted in patients with a longer clinical course. We documented lymphocyte depletion (particularly CD8-positive T cells) in haematological organs and haemophagocytosis. Evidence of acute tubular injury was noted in all nine patients examined. Major unexpected findings were acute pancreatitis (two [22%] of nine patients), adrenal micro-infarction (three [33%]), pericarditis (two [22%]), disseminated mucormycosis (one [10%] of ten patients), aortic dissection (one [11%] of nine patients), and marantic endocarditis (one [11%]). Viral genomes were detected outside of the respiratory tract in four of five patients. The presence of subgenomic viral RNA transcripts provided evidence of

Journal article

Brackin AP, Shelton JMG, Abdolrasouli A, Fisher MC, Sewell TRet al., 2020, A low-cost tebuconazole-based screening test for azole-resistant aspergillus fumigatus., Current protocols in microbiology, Vol: 58, Pages: 1-12, ISSN: 1934-8525

The global emergence of azole resistance in Aspergillus fumigatus is resulting in health and food security concerns. Rapid diagnostics and environmental surveillance methods are key to understanding the distribution and prevalence of azole resistance. However, such methods are often associated with high costs and are not always applicable to laboratories based in the least-developed countries. Here, we present and validate a low-cost screening protocol that can be used to differentiate between azole-susceptible "wild-type" and azole-resistant A. fumigatus isolates. © 2020 The Authors. Basic Protocol 1: Preparation of Tebucheck multi-well plates Basic Protocol 2: Inoculation of Tebucheck multi-well plates.

Journal article

Rodriguez Manzano J, Moser N, Malpartida Cardenas K, Moniri A, Fisarova L, Pennisi I, Boonyasiri A, Jauneikaite E, Abdolrasouli A, Otter J, Bolt F, Davies F, Didelot X, Holmes A, Georgiou Pet al., 2020, Rapid detection of mobilized colistin resistance using a nucleic acid based lab-on-a-chip diagnostic system, Scientific Reports, Vol: 10, ISSN: 2045-2322

The increasing prevalence of antimicrobial resistance is a serious threat to global public health. One of the most concerning trends is the rapid spread of Carbapenemase-Producing Organisms (CPO), where colistin has become the last-resort antibiotic treatment. The emergence of colistin resistance, including the spread of mobilized colistin resistance (mcr) genes, raises the possibility of untreatable bacterial infections and motivates the development of improved diagnostics for the detection of colistin-resistant organisms. This work demonstrates a rapid response for detecting the most recently reported mcr gene, mcr−9, using a portable and affordable lab-on-a-chip (LoC) platform, offering a promising alternative to conventional laboratory-based instruments such as real-time PCR (qPCR). The platform combines semiconductor technology, for non-optical real-time DNA sensing, with a smartphone application for data acquisition, visualization and cloud connectivity. This technology is enabled by using loop-mediated isothermal amplification (LAMP) as the chemistry for targeted DNA detection, by virtue of its high sensitivity, specificity, yield, and manageable temperature requirements. Here, we have developed the first LAMP assay for mcr−9 - showing high sensitivity (down to 100 genomic copies/reaction) and high specificity (no cross-reactivity with other mcr variants). This assay is demonstrated through supporting a hospital investigation where we analyzed nucleic acids extracted from 128 carbapenemase-producing bacteria isolated from clinical and screening samples and found that 41 carried mcr−9 (validated using whole genome sequencing). Average positive detection times were 6.58 ± 0.42 min when performing the experiments on a conventional qPCR instrument (n = 41). For validating the translation of the LAMP assay onto a LoC platform, a subset of the samples were tested (n = 20), showing average detection times o

Journal article

Noy ML, Abdolrasouli A, Borman AM, Fraser M, Francis N, Moore LSP, Merika EEet al., 2020, Cutaneotrichosporon (Trichosporon) debeurmannianum associated with a subcutaneous mycotic cyst successfully treated with voriconazole, Clinical and Experimental Dermatology, Vol: 45, Pages: 250-253, ISSN: 0307-6938

A 38-year-old Nigerian man with no significant past medical history presented with a discharging lesion on the plantar aspect of his left foot, with a provisional diagnosis of a viral wart. Cutaneotrichosporon debeurmannianum was isolated from deep tissue and identified by sequencing the internal transcribed spacer region ITS-1 and the D1-2 fragment of the 28S rDNA gene. Histopathological examination showed psoriasiform hyperplasia with dermal scarring and scanty inflammation. The patient was successfully treated with a course of voriconazole. C. debeurmannianum exhibited high MIC values for echinocandin antifungals in vitro, however MICs to triazoles and amphotericin B remained low. To our knowledge, this is the first report of a subcutaneous mycotic cyst associated with this newly described yeast in an immunocompetent man.

Journal article

Rudramurthy SM, Colley T, Abdolrasouli A, Ashman J, Dhaliwal M, Kaur H, Armstrong-James D, Strong P, Rapeport G, Schelenz S, Ito K, Chakrabarti Aet al., 2019, In vitro antifungal activity of a novel topical triazole PC945 against emerging yeast Candida auris, Journal of Antimicrobial Chemotherapy, Vol: 74, Pages: 2943-2949, ISSN: 0305-7453

ObjectivesManagement of Candida auris infection is difficult as this yeast exhibits resistance to different classes of antifungals, necessitating the development of new antifungals. The aim of this study was to investigate the susceptibility of C. auris to a novel antifungal triazole, PC945, optimized for topical delivery.MethodsA collection of 50 clinical isolates was obtained from a tertiary care hospital in North India. Nine isolates from the UK, 10 from a CDC panel (USA) and 3 from the CBS-KNAW culture collection (Japanese and South Korean isolates) were also obtained. MICs (azole endpoint) of PC945 and other triazoles were determined in accordance with CLSI M27 (third edition). Quality control strains were included [Candida parapsilosis (ATCC 22019) and Candida krusei (ATCC 6258)].ResultsSeventy-four percent of isolates tested showed reduced susceptibility to fluconazole (≥64 mg/L). PC945 (geometric mean MIC = 0.058 mg/L) was 7.4-fold and 1.5-fold more potent than voriconazole and posaconazole, respectively (both P < 0.01). PC945 MIC values correlated with those of voriconazole or posaconazole, and only three isolates were found to be cross-resistant between PC945 and other azoles. ERG11 sequence analysis revealed several mutations, but no correlation could be established with the MIC of PC945. Tentative epidemiological cut-off values (ECOFFs) evaluated by CLSI’s ECOFF Finder (at 99%) with 24 h reading of MICs were 1, 4 and 1 mg/L for PC945, voriconazole and posaconazole, respectively. MIC values for quality control strains of all triazoles were in the normal ranges.ConclusionsPC945 was found to be a more potent inhibitor than posaconazole, voriconazole and fluconazole of C. auris isolates collected globally, warranting further laboratory and clinical evaluations.

Journal article

Abdolrasouli A, Scourfield A, Rhodes J, Shah A, Elborn JS, Fisher MC, Schelenz S, Armstrong-James Det al., 2018, High prevalence of triazole resistance in clinical Aspergillus fumigatus isolates in a specialist cardiothoracic centre, International Journal of Antimicrobial Agents, Vol: 52, Pages: 637-642, ISSN: 0924-8579

OBJECTIVES: To evaluate the prevalence of triazole-resistant Aspergillus fumigatus and common molecular cyp51A polymorphisms amongst clinical isolates in a specialised cardiothoracic centre in London, UK. METHODS: All A. fumigatus isolates were prospectively analysed from April 2014 to March 2016. Isolates were screened with a four-well VIPcheck™ plate to assess triazole susceptibility. Resistance was confirmed with a standard microbroth dilution method according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Triazole-resistant A. fumigatus isolates were subjected to a mixed-format real time polymerase chain reaction (RT-PCR) assay (AsperGenius®) to detect common cyp51A alterations. RESULTS: We identified 167 clinical A. fumigatus isolates from 135 patients. Resistance to at least one azole antifungal drug was confirmed in 22/167 (13.2%) of isolates from 18/135 (13.3%) patients, including 12/74 (16.2%) patients with cystic fibrosis (CF). The highest detection rate of azole-resistant A. fumigatus was among the 11- to 20-y age group. All triazole-resistant isolates (n = 22) were resistant to itraconazole, 18 showed cross-resistance to posaconazole and 10 displayed reduced susceptibility to voriconazole. No pan-azole-resistant A. fumigatus was identified. TR34/L98H was identified in 6/22 (27.3%) of azole-resistant isolates and detectable in 5/12 (42%) patients with CF. CONCLUSIONS: In our specialist cardiothoracic centre, the prevalence of triazole-resistant A. fumigatus is alarmingly high (13.2%). The majority of azole-resistant isolates were from patients with CF. We found a higher prevalence of the environmentally driven mutation TR34/L98H in our A. fumigatus isolates than in published UK data from other specialist respiratory centres, which may reflect differing patient populations managed at these institutions.

Journal article

Abdolrasouli A, Petrou MA, Park H, Rhodes J, Rawson T, Moore L, Donaldson H, Holmes A, Fisher M, Armstrong-James Det al., 2018, Surveillance for azole-resistant Aspergillus fumigatus in a centralized diagnostic mycology service, London, United Kingdom, 1998-2017, Frontiers in Microbiology, Vol: 9, ISSN: 1664-302X

Background/Objectives: Aspergillus fumigatus is the leading cause of invasive aspergillosis. Treatment is hindered by the emergence of resistance to triazole antimycotic agents. Here, we present the prevalence of triazole resistance among clinical isolates at a major centralized medical mycology laboratory in London, United Kingdom, in the period 1998–2017.Methods: A large number (n = 1469) of clinical A. fumigatus isolates from unselected clinical specimens were identified and their susceptibility against three triazoles, amphotericin B and three echinocandin agents was carried out. All isolates were identified phenotypically and antifungal susceptibility testing was carried out by using a standard broth microdilution method.Results: Retrospective surveillance (1998–2011) shows 5/1151 (0.43%) isolates were resistant to at least one of the clinically used triazole antifungal agents. Prospective surveillance (2015–2017) shows 7/356 (2.2%) isolates were resistant to at least one triazole antifungals demonstrating an increase in incidence of triazole-resistant A. fumigatus in our laboratory. Among five isolates collected from 2015 to 2017 and available for molecular testing, three harbored TR34/L98H alteration in the cyp51A gene that are associated with the acquisition of resistance in the non-patient environment.Conclusion: These data show that historically low prevalence of azole resistance may be increasing, warranting further surveillance of susceptible patients.

Journal article

Rhodes J, Abdolrasouli A, Farrer RA, Cuomo CA, Aanensen DM, Armstrong-James D, Fisher MC, Schelenz Set al., 2018, Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris (vol 7, pg 43, 2018), EMERGING MICROBES & INFECTIONS, Vol: 7, ISSN: 2222-1751

Journal article

Rhodes JL, Abdolrasouli A, Farrer R, Cuomo C, Aanensen D, Armstrong-James D, Fisher M, Schelenz Set al., 2018, Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris, Emerging Microbes and Infections, Vol: 7, ISSN: 2222-1751

Candida auris was first described in 2009, and has since caused nosocomial outbreaks, invasive infections and fungaemia across at least 19 countries in five continents. An outbreak of C. auris occurred in a specialised cardiothoracic London hospital between April 2015 and November 2016, which to date has been the largest outbreak within the UK, involving a total of 72 patients. To understand the genetic epidemiology of C. auris infection, both within this hospital and within a global context, we sequenced the outbreak isolate genomes using Oxford Nanopore Technologies and Illumina to detect antifungal resistance alleles and to reannotate the C. auris genome. Phylogenomic analysis placed the UK outbreak in the India/Pakistan clade, demonstrating an Asian origin: the outbreak showed similar genetic diversity to that of the entire clade and limited local spatiotemporal clustering was observed. One isolate displayed resistance to both echinocandins and 5-flucytosine; the former was associated with a serine to tyrosine amino acid substitution in the gene FKS1, and the latter was associated with a phenylalanine to isoleucine substitution in the gene FUR1. These mutations add to a growing body of research on multiple antifungal drug targets in this organism. Multiple differential episodic selection of antifungal resistant genotypes has occurred within a genetically heterogenous population across this outbreak, creating a resilient pathogen and making it difficult to define local-scale patterns of transmission as well as implementing outbreak control measures.

Journal article

Abdolrasouli A, Armstrong-James D, Ryan L, Schelenz Set al., 2017, In vitro efficacy of disinfectants utilised for skin decolonisation and environmental decontamination during a hospital outbreak with Candida auris, Mycoses, Vol: 60, Pages: 758-763, ISSN: 0933-7407

Candida auris has caused nosocomial infections and transmissions within hospital settings. As little is known about the efficacy of skin and environmental decontamination products to kill C. auris, this study investigated the in vitro activity of chlorine, chlorhexidine, iodine povidone and vaporised hydrogen peroxide products against C. auris. H2O2 vapour showed 96.6%-100% effective killing of C. auris. All isolates were inhibited by chlorhexidine gluconate concentrations at 0.125%-1.5% and for iodinated povidone at 0.07%-1.25%. Other species of Candida were also killed at 1000 ppm chlorine except C. parapsilosis which failed to be killed at 3 minutes contact time. We conclude that chlorhexidine gluconate, iodinated povidone, chlorine and H2O2 vapour demonstrate effective killing activity against C. auris at concentrations used in clinical practice.

Journal article

Abdolrasouli A, Gonzalo X, Jatan A, McArthur GJ, Francis N, Azadian BS, Borman AM, Johnson EMet al., 2016, Subcutaneous Phaeohyphomycosis Cyst Associated with Medicopsis romeroi in an Immunocompromised Host, Mycopathologia, Vol: 181, Pages: 717-721, ISSN: 1573-0832

An 88-year-old man, receiving prednisolone for sarcoidosis, presented with a discrete keratotic lesion on the dorsum of his right hand following the placement of an intravenous cannula a month prior to its appearance. Medicopsis romeroi was isolated from the tissue and identified by sequencing the internal transcribed spacer region ITS-1 and the D1-2 fragment of the 28S rDNA gene. Histopathological examination showed fungal hyphae in the internal inflammatory cells layer and within the histocyte-macrophage layer, highly suggestive of deep mycosis. The patient was successfully treated with surgical excision of the cyst. M. romeroi exhibited high MIC values for echinocandin drugs in vitro, but appeared susceptible to newer triazole agents, amphotericin B and terbinafine. This is the first report of a subcutaneous phaeohyphomycotic cyst occurring following the placement of an intravenous cannula. This report highlights the potential role of M. romeroi as an emerging cause of deep, non-mycetomatous infection in immunocompromised patients.

Journal article

Abdolrasouli A, Rhodes J, Beale M, Hagen F, Rogers TR, Chowdhary A, Meis JF, Armstrong-James, Fisher MCet al., 2015, Genomic context of Azole-resistance mutations in Aspergillus fumigatus using whole-genome sequencing, mBio, Vol: 6, ISSN: 2161-2129

A rapid and global emergence of azole resistance has been observed in the pathogenic fungus Aspergillus fumigatus over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves mutations in the cyp51A gene, which encodes a protein targeted by triazole antifungal drugs. Whole-genome sequencing (WGS) was performed for high-resolution single-nucleotide polymorphism (SNP) analysis of 24 A. fumigatus isolates, including azole-resistant and susceptible clinical and environmental strains obtained from India, the Netherlands, and the United Kingdom, in order to assess the utility of WGS for characterizing the alleles causing resistance. WGS analysis confirmed that TR34/L98H (a mutation comprising a tandem repeat [TR] of 34 bases in the promoter of the cyp51A gene and a leucine-to-histidine change at codon 98) is the sole mechanism of azole resistance among the isolates tested in this panel of isolates. We used population genomic analysis and showed that A. fumigatus was panmictic, with as much genetic diversity found within a country as is found between continents. A striking exception to this was shown in India, where isolates are highly related despite being isolated from both clinical and environmental sources across >1,000 km; this broad occurrence suggests a recent selective sweep of a highly fit genotype that is associated with the TR34/L98H allele. We found that these sequenced isolates are all recombining, showing that azole-resistant alleles are segregating into diverse genetic backgrounds. Our analysis delineates the fundamental population genetic parameters that are needed to enable the use of genome-wide association studies to identify the contribution of SNP diversity to the generation and spread of azole resistance in this medically important fungus.

Journal article

Abdolrasouli A, Croucher A, Roushan A, Gaydos CAet al., 2013, Bilateral Conjunctivitis Due to Trichomonas vaginalis without Genital Infection: an Unusual Presentation in an Adult Man, JOURNAL OF CLINICAL MICROBIOLOGY, Vol: 51, Pages: 3157-3159, ISSN: 0095-1137

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00663216&limit=30&person=true