Imperial College London

DrAndrewBlagborough

Faculty of Natural SciencesDepartment of Life Sciences

Honorary Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 5350a.blagborough

 
 
//

Location

 

603Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

66 results found

Sirignano C, Hammami S, El Mokni R, Blagborough AM, Luciano P, Rigano D, Scafati OTet al., 2021, Polyoxygenated germacranes from Daucus carota and their antimalarial transmission blocking activity, Phytochemistry: the international journal of plant chemistry, plant biochemistry and molecular biology, Vol: 183, ISSN: 0031-9422

Chemical analysis of the aerial parts obtained from a Tunisian specimen of Daucus carota yielded to the isolation of six undescribed polyoxygenated germacranes and one elemanolide, along with one known metabolite. The stereostructures of the undescribed compounds were determined by extensive spectroscopic analysis including 1D and 2D NMR and HR-ESI-MS analysis. Due to their structural similarity with the Plasmodium transmission-blocking agent daucovirgolide G, the isolated metabolites were evaluated for their inhibitory activity on the development of Plasmodium early sporogonic stages. Three compounds proved to inhibit ookinete formation showing a good transmission blocking efficacy, but the low potency exhibited by these compounds when compared to daucovirgolide G further supports the observation that strict structural requirements do exist for the antimalarial activity of germacranolides.

Journal article

Miguel-Blanco C, Murithi JM, Benavente ED, Angrisano F, Sala KA, van Schalkwyk DA, Vanaerschot M, Schwach F, Fuchter MJ, Billker O, Sutherland CJ, Campino SG, Clark TG, Blagborough AM, Fidock DA, Herreros E, Gamo FJ, Baum J, Delves MJet al., 2021, The antimalarial efficacy and mechanism of resistance of the novel chemotype DDD01034957, Scientific Reports, Vol: 11, ISSN: 2045-2322

New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible. Intense phenotypic drug screening efforts have identified a number of promising new antimalarial molecules. Particularly important is the identification of compounds with new modes of action within the parasite to combat existing drug resistance and suitable for formulation of efficacious combination therapies. Here we detail the antimalarial properties of DDD01034957-a novel antimalarial molecule which is fast-acting and potent against drug resistant strains in vitro, shows activity in vivo, and possesses a resistance mechanism linked to the membrane transporter PfABCI3. These data support further medicinal chemistry lead-optimization of DDD01034957 as a novel antimalarial chemical class and provide new insights to further reduce in vivo metabolic clearance.

Journal article

Haltalli MLR, Watcham S, Wilson NK, Eilers K, Lipien A, Ang H, Birch F, Anton SG, Pirillo C, Ruivo N, Vainieri ML, Pospori C, Sinden RE, Luis TC, Langhorne J, Duffy KR, Gottgens B, Blagborough AM, Lo Celso Cet al., 2020, Manipulating niche composition limits damage to haematopoietic stem cells during Plasmodium infection, Nature Cell Biology, Vol: 22, Pages: 1399-1410, ISSN: 1465-7392

Severe infections are a major stress on haematopoiesis, where the consequences for haematopoietic stem cells (HSCs) have only recently started to emerge. HSC function critically depends on the integrity of complex bone marrow (BM) niches; however, what role the BM microenvironment plays in mediating the effects of infection on HSCs remains an open question. Here, using a murine model of malaria and combining single-cell RNA sequencing, mathematical modelling, transplantation assays and intravital microscopy, we show that haematopoiesis is reprogrammed upon infection, whereby the HSC compartment turns over substantially faster than at steady-state and HSC function is drastically affected. Interferon is found to affect both haematopoietic and mesenchymal BM cells and we specifically identify a dramatic loss of osteoblasts and alterations in endothelial cell function. Osteo-active parathyroid hormone treatment abolishes infection-triggered HSC proliferation and—coupled with reactive oxygen species quenching—enables partial rescuing of HSC function.

Journal article

Ukegbu CV, Giorgalli M, Tapanelli S, Rona LDP, Jaye A, Wyer C, Angrisano F, Christophides G, Vlachou Det al., 2020, PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector, Proceedings of the National Academy of Sciences of USA, Vol: 117, Pages: 7363-7373, ISSN: 0027-8424

After being ingested by a female Anopheles mosquito during a bloodmeal on an infected host, and before they can reach the mosquito salivary glands to be transmitted to a new host, Plasmodium parasites must establish an infection of the mosquito midgut in the form of oocysts. To achieve this, they must first survive a series of robust innate immune responses that take place prior to, during, and immediately after ookinete traversal of the midgut epithelium. Understanding how parasites may evade these responses could highlight new ways to block malaria transmission. We show that an ookinete and sporozoite surface protein designated as PIMMS43 (Plasmodium Infection of the Mosquito Midgut Screen 43) is required for parasite evasion of the Anopheles coluzzii complement-like response. Disruption of PIMMS43 in the rodent malaria parasite Plasmodium berghei triggers robust complement activation and ookinete elimination upon mosquito midgut traversal. Silencing components of the complement-like system through RNAi largely restores ookinete-to-oocyst transition but oocysts remain small in size and produce a very small number of sporozoites that additionally are not infectious, indicating that PIMMS43 is also essential for sporogonic development in the oocyst. Antibodies that bind PIMMS43 interfere with parasite immune evasion when ingested with the infectious blood meal and significantly reduce the prevalence and intensity of infection. PIMMS43 genetic structure across African Plasmodium falciparum populations indicates allelic adaptation to sympatric vector populations. These data add to our understanding of mosquito–parasite interactions and identify PIMMS43 as a target of malaria transmission blocking.

Journal article

Muthui MK, Kamau A, Bousema T, Blagborough AM, Bejon P, Kapulu MCet al., 2020, Corrigendum: immune responses to gametocyte antigens in a malaria endemic population-The African falciparum context: a systematic review and meta-analysis (vol 10, 2480, 2019), Frontiers in Immunology, Vol: 11, Pages: 1-4, ISSN: 1664-3224

Journal article

Angrisano F, Sala K, Tapanelli S, Christophides G, Blagborough Aet al., 2019, Male-specific protein disulphide isomerase function is essential for plasmodium transmission and a vulnerable target for intervention, Scientific Reports, Vol: 9, ISSN: 2045-2322

Inhibiting transmission of Plasmodium is an essential strategy in malaria eradication, and the biological process of gamete fusion during fertilization is a proven target for this approach. Lack of knowledge of the mechanisms underlying fertilization have been a hindrance in the development of transmission-blocking interventions. Here we describe a protein disulphide isomerase essential for malarial transmission (PDI-Trans/PBANKA_0820300) to the mosquito. We show that PDI-Trans activity is male-specific, surface-expressed, essential for fertilization/transmission, and exhibits disulphide isomerase activity which is up-regulated post-gamete activation. We demonstrate that PDI-Trans is a viable anti-malarial drug and vaccine target blocking malarial transmission with the use of PDI inhibitor bacitracin (98.21%/92.48% reduction in intensity/prevalence), and anti-PDI-Trans antibodies (66.22%/33.16% reduction in intensity/prevalence). To our knowledge, these results provide the first evidence that PDI function is essential for malarial transmission, and emphasize the potential of anti-PDI agents to act as anti-malarials, facilitating the future development of novel transmission-blocking interventions.

Journal article

Koch M, Cegla J, Jones B, Lu Y, Mallar Z, Blagborough A, Angrisano F, Baum Jet al., 2019, The effects of dyslipidaemia and cholesterol modulation on erythrocyte susceptibility to malaria parasite infection, Malaria Journal, Vol: 18, ISSN: 1475-2875

BackgroundMalaria disease commences when blood-stage parasites, called merozoites, invade human erythrocytes. Whilst the process of invasion is traditionally seen as being entirely merozoite-driven, emerging data suggests erythrocyte biophysical properties markedly influence invasion. Cholesterol is a major determinant of cell membrane biophysical properties demanding its interrogation as a potential mediator of resistance to merozoite invasion of the erythrocyte. MethodsBiophysical measurements of erythrocyte deformability by flicker spectroscopy were used to assess changes in erythrocyte bending modulus on forced integration of cholesterol and how these artificial changes affect invasion by human Plasmodium falciparum merozoites. To validate these observations in a natural context, either murine Plasmodium berghei or human Plasmodium falciparum merozoites were tested for their ability to invade erythrocytes from a hypercholesterolaemic mouse model or human clinical erythrocyte samples deriving from patients with a range of serum cholesterol concentrations, respectively. ResultsErythrocyte bending modulus (a measure of deformability) was shown to be markedly affected by artificial modulation of cholesterol content and negatively correlated with merozoite invasion efficiency. In an in vitro infection context, however, erythrocytes taken from hypercholesterolaemic mice or from human clinical samples with varying serum cholesterol levels showed little difference in their susceptibility to merozoite invasion. Explaining this, membrane cholesterol levels in both mouse and human hypercholesterolaemia erythrocytes were subsequently found to be no different from matched normal serum controls.ConclusionsBased on these observations, serum cholesterol does not appear to impact on erythrocyte susceptibility to merozoite entry. Indeed, no relationship between serum cholesterol and cholesterol content of the erythrocyte is apparent. This work, nonetheless, suggests that native p

Journal article

Muthui MK, Kamau A, Bousema T, Blagborough AM, Bejon P, Kapulu MCet al., 2019, Immune responses to gametocyte antigens in a malaria endemic population-the African falciparum context: a systematic review and meta-analysis, Frontiers in Immunology, Vol: 10, Pages: 1-14, ISSN: 1664-3224

Background: Malaria elimination remains a priority research agenda with the need for interventions that reduce and/or block malaria transmission from humans to mosquitoes. Transmission-blocking vaccines (TBVs) are in development, most of which target the transmission stage (i.e., gametocyte) antigens Pfs230 and Pfs48/45. For these interventions to be implemented, there is a need to understand the naturally acquired immunity to gametocytes. Several studies have measured the prevalence of immune responses to Pfs230 and Pfs48/45 in populations in malaria-endemic areas.Methods: We conducted a systematic review of studies carried out in African populations that measured the prevalence of immune responses to the gametocyte antigens Pfs230 and Pfs48/45. We assessed seroprevalence of antibody responses to the two antigens and investigated the effects of covariates such as age, transmission intensity/endemicity, season, and parasite prevalence on the prevalence of these antibody responses by meta-regression.Results: We identified 12 studies covering 23 sites for inclusion in the analysis. We found that the range of reported seroprevalence to Pfs230 and Pfs48/45 varied widely across studies, from 0 to 64% for Pfs48/45 and from 6 to 72% for Pfs230. We also found a modest association between increased age and increased seroprevalence to Pfs230: adults were associated with higher seroprevalence estimates in comparison to children (β coefficient 0.21, 95% CI: 0.05–0.38, p = 0.042). Methodological factors were the most significant contributors to heterogeneity between studies which prevented calculation of pooled prevalence estimates.Conclusions: Naturally acquired sexual stage immunity, as detected by antibodies to Pfs230 and Pfs48/45, was present in most studies analyzed. Significant between-study heterogeneity was seen, and methodological factors were a major contributor to this, and prevented further analysis of epidemiological and biological factors. This demonstra

Journal article

Minassian AM, Themistocleous Y, Silk SE, Barrett JR, Nielsen CM, Quinkert D, Poulton ID, Lopez FR, Mitton CH, Rawlinson TA, Baker M, Ramon RL, Edwards NJ, Ellis KJ, Cho J-S, Bach F, Nahrendorf W, Kemp AC, Spence P, Blagborough AM, Taylor IJ, Nugent FN, Johnson KJ, Lawrie AM, Rayner JC, Roobsoong W, Sattabongkot J, Biswas S, Draper SJet al., 2019, DEMONSTRATION OF A BLOOD-STAGE CONTROLLED HUMAN MALARIA INFECTION MODEL FOR <i>PLASMODIUM VIVAX</i> VACCINE EFFICACY TESTING, 68th Annual Meeting of the American-Society-for-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 133-134, ISSN: 0002-9637

Conference paper

Kooistra RL, David R, Ruiz AC, Powers SW, Haselton KJ, Kiernan K, Blagborough AM, Solamen L, Olsen KW, Putonti C, Kanzok SMet al., 2018, Characterization of a protozoan Phosducin-like protein-3 (PhLP-3) reveals conserved redox activity, PLoS One, Vol: 13, Pages: 1-21, ISSN: 1932-6203

We recently identified three novel thioredoxin-like genes in the genome of the protozoan parasite Plasmodium that belong to the Phosducin-like family of proteins (PhLP). PhLPs are small cytosolic proteins hypothesized to function in G-protein signaling and protein folding. Although PhLPs are highly conserved in eukaryotes from yeast to mammals, only a few representatives have been experimentally characterized to date. In addition, while PhLPs contain a thioredoxin domain, they lack a CXXC motif, a strong indicator for redox activity, and it is unclear whether members of the PhLP family are enzymatically active. Here, we describe PbPhLP-3 as the first phosducin-like protein of a protozoan organism, Plasmodium berghei. Initial transcription analysis revealed continuous low-level expression of pbphlp-3 throughout the complex Plasmodium life cycle. Attempts to knockout pbphlp-3 in P. berghei did not yield live parasites, suggesting an essential role for the gene in Plasmodium. We cloned, expressed and purified PbPhLP-3 and determined that the recombinant protein is redox active in vitro in a thioredoxin-coupled redox assay. It also has the capacity to reduce the organic compound tert-Butyl hydroperoxide (TBHP) in vitro, albeit at low efficiency. Sequence analysis, structural modeling, and site-directed mutagenesis revealed a conserved cysteine in the thioredoxin domain to be the redox active residue. Lastly, we provide evidence that recombinant human PhLP-3 exhibits redox activity similar to that of PbPhLP-3 and suggest that redox activity may be conserved in PhLP-3 homologs of other species. Our data provide new insight into the function of PhLP-3, which is hypothesized to act as co-chaperones in the folding and regulation of cytoskeletal proteins. We discuss the potential implications of PhLP-3 as a thioredoxin-target protein and possible links between the cellular redox network and the eukaryotic protein folding machinery.

Journal article

Delves MJ, Angrisano F, Blagborough M, 2018, Antimalarial Transmission-Blocking Interventions: Past, Present, and Future, TRENDS IN PARASITOLOGY, Vol: 34, Pages: 735-746, ISSN: 1471-4922

Journal article

Esperanca PM, Blagborough AM, Da DF, Dowell FE, Churcher TSet al., 2018, Detection of Plasmodium berghei infected Anopheles stephensi using near-infrared spectroscopy, Parasites and Vectors, Vol: 11, ISSN: 1756-3305

BackgroundThe proportion of mosquitoes infected with malaria is an important entomological metric used to assess the intensity of transmission and the impact of vector control interventions. Currently, the prevalence of mosquitoes with salivary gland sporozoites is estimated by dissecting mosquitoes under a microscope or using molecular methods. These techniques are laborious, subjective, and require either expensive equipment or training. This study evaluates the potential of near-infrared spectroscopy (NIRS) to identify laboratory reared mosquitoes infected with rodent malaria.MethodsAnopheles stephensi mosquitoes were reared in the laboratory and fed on Plasmodium berghei infected blood. After 12 and 21 days post-feeding mosquitoes were killed, scanned and analysed using NIRS and immediately dissected by microscopy to determine the number of oocysts on the midgut wall or sporozoites in the salivary glands. A predictive classification model was used to determine parasite prevalence and intensity status from spectra.ResultsThe predictive model correctly classifies infectious and uninfectious mosquitoes with an overall accuracy of 72%. The false negative and false positive rates were 30 and 26%, respectively. While NIRS was able to differentiate between uninfectious and highly infectious mosquitoes, differentiating between mid-range infectious groups was less accurate. Multiple scans of the same specimen, with repositioning the mosquito between scans, is shown to improve accuracy. On a smaller dataset NIRS was unable to predict whether mosquitoes harboured oocysts.ConclusionsTo our knowledge, we provide the first evidence that NIRS can differentiate between infectious and uninfectious mosquitoes. Currently, distinguishing between different intensities of infection is challenging. The classification model provides a flexible framework and allows for different error rates to be optimised, enabling the sensitivity and specificity of the technique to be varied according

Journal article

Sherrard-Smith E, Sala KA, Betancourt M, Upton LM, Angrisano F, Morin MJ, Ghani AC, Churcher TS, Blagborough AMet al., 2018, Synergy in anti-malarial pre-erythrocytic and transmission-blocking antibodies is achieved by reducing parasite density, eLife, Vol: 7, ISSN: 2050-084X

Anti-malarial pre-erythrocytic vaccines (PEV) target transmission by inhibiting human infection but are currently partially protective. It has been posited, but never demonstrated, that co-administering transmission-blocking vaccines (TBV) would enhance malaria control. We hypothesized a mechanism that TBV could reduce parasite density in the mosquito salivary glands, thereby enhancing PEV efficacy. This was tested using a multigenerational population assay, passaging Plasmodium berghei to Anopheles stephensi mosquitoes. A combined efficacy of 90.8% (86.7–94.2%) was observed in the PEV +TBV antibody group, higher than the estimated efficacy of 83.3% (95% CrI 79.1–87.0%) if the two antibodies acted independently. Higher PEV efficacy at lower mosquito parasite loads was observed, comprising the first direct evidence that co-administering anti-sporozoite and anti-transmission interventions act synergistically, enhancing PEV efficacy across a range of TBV doses and transmission intensities. Combining partially effective vaccines of differing anti-parasitic classes is a pragmatic, powerful way to accelerate malaria elimination efforts.

Journal article

Angrisano F, Blagborough AM, 2018, Understanding human-derived antibodies generated by polymorphic malaria vaccine against merozoite surface protein 2, Journal of Infectious Diseases, Vol: 218, Pages: 5-6, ISSN: 0022-1899

Journal article

Brugman VA, Kristan M, Gibbins MP, Angrisano F, Sala KA, Dessens JT, Blagborough AM, Walker Tet al., 2018, Detection of malaria sporozoites expelled during mosquito sugar feeding., Scientific Reports, Vol: 8, ISSN: 2045-2322

Malaria is a severe disease of global importance transmitted by mosquitoes of the genus Anopheles. The ability to rapidly detect the presence of infectious mosquitoes able to transmit malaria is of vital importance for surveillance, control and elimination efforts. Current methods principally rely on large-scale mosquito collections followed by labour-intensive salivary gland dissections or enzyme-linked immunosorbent (ELISA) methods to detect sporozoites. Using forced salivation, we demonstrate here that Anopheles mosquitoes infected with Plasmodium expel sporozoites during sugar feeding. Expelled sporozoites can be detected on two sugar-soaked substrates, cotton wool and Whatman FTA cards, and sporozoite DNA is detectable using real-time PCR. These results demonstrate a simple and rapid methodology for detecting the presence of infectious mosquitoes with sporozoites and highlight potential laboratory applications for investigating mosquito-malaria interactions. Our results indicate that FTA cards could be used as a simple, effective and economical tool in enhancing field surveillance activities for malaria.

Journal article

Yoshida K, Iyori M, Blagborough AM, Salman AM, Dulal P, Sala KA, Yamamoto DS, Khan SM, Janse CJ, Biswas S, Yoshii T, Yusuf Y, Tokoro M, Hill AVS, Yoshida Set al., 2018, Adenovirus-prime and baculovirus-boost heterologous immunization achieves sterile protection against malaria sporozoite challenge in a murine model, Scientific Reports, Vol: 8, ISSN: 2045-2322

With the increasing prevalence of artemisinin-resistant malaria parasites, a highly efficacious and durable vaccine for malaria is urgently required. We have developed an experimental virus-vectored vaccine platform based on an envelope-modified baculovirus dual-expression system (emBDES). Here, we show a conceptually new vaccine platform based on an adenovirus-prime/emBDES-boost heterologous immunization regimen expressing the Plasmodium falciparum circumsporozoite protein (PfCSP). A human adenovirus 5-prime/emBDES-boost heterologous immunization regimen consistently achieved higher sterile protection against transgenic P. berghei sporozoites expressing PfCSP after a mosquito-bite challenge than reverse-ordered or homologous immunization. This high protective efficacy was also achieved with a chimpanzee adenovirus 63-prime/emBDES-boost heterologous immunization regimen against an intravenous sporozoite challenge. Thus, we show that the adenovirus-prime/emBDES-boost heterologous immunization regimen confers sterile protection against sporozoite challenge by two individual routes, providing a promising new malaria vaccine platform for future clinical use.

Journal article

Sala K, Angrisano F, Da DF, Taylor IJ, Churcher T, Blagborough AMet al., 2018, Immunization with Transgenic Rodent Malaria Parasites Expressing Pfs25 Induces Potent Transmission-Blocking Activity, Scientific Reports, Vol: 8, ISSN: 2045-2322

An anti-malarial transmission blocking vaccine (TBV) would be an important tool for disease control or elimination, though current candidates have failed to induce high efficacy in clinical studies. The ookinete surface protein P25 is a primary target for TBV development, but heterologous expression of P25 with appropriate conformation is problematic and a pre-requisite for achieving functional titers. A potential alternative to recombinant/sub-unit vaccine is immunization with a non-pathogenic, whole-parasite vaccine. This study examines the ability of a purified transgenic rodent-malaria parasite (PbPfs25DR3), expressing Plasmodium falciparum P25 in native conformation on the P. berghei ookinete surface, to act as a TBV. Vaccination with purified PbPfs25DR3 ookinetes produces a potent anti-Pfs25 response and high transmission-blocking efficacy in the laboratory, findings that are then translated to experimentation on natural field isolates of P. falciparum from infected individuals in Burkina Faso. Efficacy is demonstrated in the lab and the field (up to 93.3%/97.1% reductions in transmission intensity respectively), with both a homologous strategy with one and two boosts, and as part of a prime-boost regime, providing support for the future development of a whole-parasite TBV.

Journal article

Angrisano A, Sala KA, Da DF, Yanjie L, Pei J, Grishin NV, Snell WJ, Blagborough AMet al., 2017, Targeting the Conserved Fusion Loop of HAP2 Inhibits the Transmission of Plasmodium berghei and falciparum, Cell Reports, Vol: 21, Pages: 2868-2878, ISSN: 2211-1247

Inhibiting transmission of Plasmodium is a central strategy in malarial eradication, and the biological process of gamete fusion during fertilization is a proven target for this approach. The lack of a structure or known molecular function of current anti-malarial vaccine targets has previously been a hindrance in the development of transmission-blocking vaccines. Structure/function studies have indicated that the conserved gamete membrane fusion protein HAP2 is a class II viral fusion protein. Here, we demonstrate that targeting a function-critical site of the fusion/cd loop with species-specific antibodies reduces Plasmodium berghei transmission in vivo by 58.9% and in vitro fertilization by up to 89.9%. A corresponding reduction in P. falciparum transmission (75.5%/36.4% reductions in intensity/prevalence) is observed in complimentary field studies. These results emphasize conserved mechanisms of fusion in Apicomplexa, while highlighting an approach to design future anti-malarial transmission-blocking vaccines.

Journal article

Angrisano F, Sala KA, Frederic DY, Liu Y, Grishin NV, Pei J, Snell WJ, Blagborough AMet al., 2017, Targeting the Conserved Fusion Loop of HAP2 Inhibits the Transmission of Plasmodium berghei and falciparum, Cell Reports, Vol: 21, Pages: 2868-2878, ISSN: 2211-1247

Inhibiting transmission of Plasmodium is a central strategy in malarial eradication, and the biological process of gamete fusion during fertilization is a proven target for this approach. The lack of a structure or known molecular function of current anti-malarial vaccine targets has previously been a hindrance in the development of transmission-blocking vaccines. Structure/function studies have indicated that the conserved gamete membrane fusion protein HAP2 is a class II viral fusion protein. Here, we demonstrate that targeting a function-critical site of the fusion/cd loop with species-specific antibodies reduces Plasmodium berghei transmission in vivo by 58.9% and in vitro fertilization by up to 89.9%. A corresponding reduction in P. falciparum transmission (75.5%/36.4% reductions in intensity/prevalence) is observed in complimentary field studies. These results emphasize conserved mechanisms of fusion in Apicomplexa, while highlighting an approach to design future anti-malarial transmission-blocking vaccines.

Journal article

Iyori M, Blagborough AM, Sala KA, Nishiura H, Takagi K, Yoshida Set al., 2017, Protective efficacy of an IL-12-expressing baculoviral malaria vaccine, Parasite Immunology, Vol: 39, ISSN: 0141-9838

Interleukin-12 (IL-12) plays an important role in antigen-specific adaptive immunity against Plasmodium sporozoites, and this requirement allows for a new approach to developing an effective malaria vaccine. In this study, we examined whether IL-12 could enhance protective efficacy of a baculovirus-based malaria vaccine. For this aim, a baculoviral vector expressing murine IL-12 (mIL-12) under the control of CMV promoter (BES-mIL-12-Spider) and a baculoviral vector expressing Plasmodium falciparum circumsporozoite protein (PfCSP) with post-transcriptional regulatory element of woodchuck hepatitis virus (BDES-sPfCSP2-WPRE-Spider) were generated. BES-mIL-12-Spider produced bioactive IL-12 which activates splenocytes, resulting in induction of IFN-γ. When co-immunized with BES-mIL-12-Spider and BDES-sPfCSP2-WPRE-Spider, the mouse number for high IgG2a/IgG1 ratios and the geometric mean in this group were both increased as compared with those of the other groups, indicating a shift towards a Th1-type response following immunization with BES-mIL-12-Spider. Finally, immunization with BDES-sPfCSP2-WPRE-Spider plus BES-mIL-12-Spider had a higher protective efficacy (73%) than immunization with BDES-sPfCSP2-WPRE-Spider alone (30%) against challenge with transgenic Plasmodium berghei sporozoites expressing PfCSP. These results suggest that co-administration of IL-12 expressing baculoviral vector, instead of IL-12 cDNA, with viral-vectored vaccines provides a new feasible vaccine platform to enhance Th1-type cellular immune responses against Plasmodium parasites.

Journal article

Venkatraman N, Bowyer G, Edwards NJ, Griffiths O, Powlson J, Silman D, Morter R, Folegatti PM, Minassian A, Poulton I, Collins K, Brod F, Angell-Manning P, Berrie E, Brendish N, Glenn G, Fries L, Baum J, Blagborough AM, Roberts R, Lawrie AM, Lewis DJ, Faust SN, Gilbert S, Ewer KJ, Hill AVet al., 2017, HIGH LEVEL EFFICACY IN HUMANS OF A NEXT-GENERATION PLASMODIUM FALCIPARUM ANTI-SPOROZOITE VACCINE: R21 IN MATRIX-M (TM) ADJUVANT, 66th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 594-594, ISSN: 0002-9637

Conference paper

Sherrard-Smith E, Churcher TS, Upton LM, Sala KA, Zakutansky SE, Ghani AC, Blagborough AM, Betancourt Met al., 2017, THE COMBINED IMPACT OF TRANSMISSION-BLOCKING INTERVENTIONS AND PRE-ERYTHROCYTIC VACCINES FOR MALARIA ELIMINATION, 65th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 90-91, ISSN: 0002-9637

Conference paper

Iyori M, Blagborough AM, Ogata S, Nishiura H, Sakaguchi M, Mizutani M, Tamura T, Genshi K, Shimada S, Yamamoto DS, Matsuoka H, Yoshida Set al., 2017, VECTORED PFCSP VACCINES BASED ON BACULOVIRUS DUAL EXPRESSION SYSTEM AND ADHU5 INDUCE STRONG PROTECTIVE EFFICACY AGAINST TRANSGENIC PLASMODIUM BERGHEI, 65th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 125-125, ISSN: 0002-9637

Conference paper

Paquet T, Le Manach C, Cabrera DG, Younis Y, Henrich PP, Abraham TS, Lee MCS, Basak R, Ghidelli-Disse S, Lafuente-Monasterio MJ, Bantscheff M, Ruecker A, Blagborough AM, Zakutansky SE, Zeeman A-M, White KL, Shackleford DM, Mannila J, Morizzi J, Scheurer C, Angulo-Barturen I, Martinez MS, Ferrer S, Sanz LM, Gamo FJ, Reader J, Botha M, Dechering KJ, Sauerwein RW, Tungtaeng A, Vanachayangkul P, Lim CS, Burrows J, Witty MJ, Marsh KC, Bodenreider C, Rochford R, Solapure SM, Jimenez-Diaz MB, Wittlin S, Charman SA, Donini C, Campo B, Birkholtz L-M, Hanson KK, Drewes G, Kocken CHM, Delves MJ, Leroy D, Fidock DA, Waterson D, Street LJ, Chibale Ket al., 2017, Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase, Science Translational Medicine, Vol: 9, ISSN: 1946-6234

As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.

Journal article

Sherrard-Smith E, Churcher TS, Upton LM, Sala KA, Zakutansky SE, Slater HC, Blagborough AM, Betancourt Met al., 2017, A novel model itted to multiple life stages of malaria for assessing eicacy of transmission-blocking interventions, Malaria Journal, Vol: 16, ISSN: 1475-2875

BackgroundTransmission-blocking interventions (TBIs) aim to eliminate malaria by reducing transmission of the parasite between the host and the invertebrate vector. TBIs include transmission-blocking drugs and vaccines that, when given to humans, are taken up by mosquitoes and inhibit parasitic development within the vector. Accurate methodologies are key to assess TBI efficacy to ensure that only the most potent candidates progress to expensive and time-consuming clinical trials. Measuring intervention efficacy can be problematic because there is substantial variation in the number of parasites in both the host and vector populations, which can impact transmission even in laboratory settings.MethodsA statistically robust empirical method is introduced for estimating intervention efficacy from standardised population assay experiments. This method will be more reliable than simple summary statistics as it captures changes in parasite density in different life-stages. It also allows efficacy estimates at a finer resolution than previous methods enabling the impact of the intervention over successive generations to be tracked. A major advantage of the new methodology is that it makes no assumptions on the population dynamics of infection. This enables both host-to-vector and vector-to-host transmission to be density-dependent (or other) processes and generates easy-to-understand estimates of intervention efficacy.ResultsThis method increases the precision of intervention efficacy estimates and demonstrates that relying on changes in infection prevalence (the proportion of infected hosts) alone may be insufficient to capture the impact of TBIs, which also suppress parasite density in secondarily infected hosts.ConclusionsThe method indicates that potentially useful, partially effective TBIs may require multiple infection cycles before substantial reductions in prevalence are observed, despite more rapidly suppressing parasite density. Accurate models to quantify effica

Journal article

Churcher TS, Sinden RE, Edwards NJ, Poulton ID, Rampling TW, Brock PM, Griffin JT, Upton LM, Zakutansky SE, Sala KA, Angrisano F, Hill AV, Blagborough AMet al., 2017, Probability of transmission of malaria from mosquito to human Is regulated by mosquito parasite density in naïve and vaccinated hosts, PLOS Pathogens, Vol: 13, ISSN: 1553-7366

Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker) than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP), and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

Journal article

Sherrard-Smith E, Sala KA, Betancourt M, Upton LM, Angrisano F, Morin MJ, Ghani AC, Churcher TS, Blagborough AMet al., 2017, USING ANTIBODIES TO SIMULATE THE CO-ADMINISTRATION OF TRANSMISSION-BLOCKING AND PRE-ERYTHROCYTIC VACCINES ACCELERATES MALARIA ELIMINATION IN MICE, 66th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 532-532, ISSN: 0002-9637

Conference paper

Churcher TS, Sinden RE, Edwards NJ, Poulton I, Rampling TW, Brock PM, Griffin JT, Upton LM, Zakutansky SE, Sala KA, Angrisano F, Hill AV, Blagborough AMet al., 2017, PROBABILITY OF TRANSMISSION OF MALARIA FROM MOSQUITO TO HUMAN IS REGULATED BY PARASITE DENSITY IN NAIVE AND VACCINATED HOSTS, 66th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 230-230, ISSN: 0002-9637

Conference paper

Vainieri ML, Blagborough AM, MacLean AL, Haltalli MLR, Ruivo N, Fletcher HA, Stumpf MPH, Sinden RE, Lo Celso Cet al., 2016, Systematic tracking of altered haematopoiesis during sporozoite-mediated malaria development reveals multiple response points, Open Biology, Vol: 6, ISSN: 2046-2441

Haematopoiesis is the complex developmental process that maintainsthe turn-over of all blood cell lineages. It critically depends on the correct functioning of rare, quiescent haematopoietic stem cells (HSCs) and more numerous, HSC-derived, highly proliferative and differentiating haematopoietic progenitor cells (HPCs). Infection is known to affect HSCs, with severe and chronic inflammatory stimuli leading to stem cell pool depletion, while acute, non-lethal infections exert transient and even potentiating effects. Both whetherthis paradigm applies to all infections and whether the HSC response is the dominant driver of the changes observed during stressed haematopoiesis remain open questions. We use a mouse model of malaria, based on natural, sporozoite-driven Plasmodium bergheiinfection as an experimental platform to gain a global view of haematopoietic perturbations during infection progression. We observe coordinated responses by the most primitive HSCs and multiple HPCs, some starting before blood parasitaemia is detected. Weshow that, despite highly variable inter-host responses, primitive HSCsbecome highly proliferative, but mathematical modelling suggests that this alone is not sufficient to significantly impact the whole haematopoietic cascade. We observe that the dramatic expansion of Sca-1þ progenitors results from combined proliferation of direct HSC progeny and phenotypic changes in downstream populations. We observe that the simultaneous perturbation of HSC/HPC population dynamics is coupled with early signs of anaemia onset. Our data uncover a complex relationship between Plasmodium and itshost’s haematopoiesis and raise the question whether the variable responses observed may affect the outcome of the infection itself and its long-term consequences on the host.

Journal article

Baragaña B, Hallyburton I, Lee MC, Norcross NR, Grimaldi R, Otto TD, Proto WR, Blagborough AM, Meister S, Wirjanata G, Ruecker A, Upton LM, Abraham TS, Almeida MJ, Pradhan A, Porzelle A, Martínez MS, Bolscher JM, Woodland A, Luksch T, Norval S, Zuccotto F, Thomas J, Simeons F, Stojanovski L, Osuna-Cabello M, Brock PM, Churcher TS, Sala KA, Zakutansky SE, Jiménez-Díaz MB, Sanz LM, Riley J, Basak R, Campbell M, Avery VM, Sauerwein RW, Dechering KJ, Noviyanti R, Campo B, Frearson JA, Angulo-Barturen I, Ferrer-Bazaga S, Gamo FJ, Wyatt PG, Leroy D, Siegl P, Delves MJ, Kyle DE, Wittlin S, Marfurt J, Price RN, Sinden RE, Winzeler EA, Charman SA, Bebrevska L, Gray DW, Campbell S, Fairlamb AH, Willis PA, Rayner JC, Fidock DA, Read KD, Gilbert IHet al., 2016, Corrigendum: A novel multiple-stage antimalarial agent that inhibits protein synthesis., Nature, Vol: 537, Pages: 122-122, ISSN: 0028-0836

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00484787&limit=30&person=true