Imperial College London

Professor the Lord Darzi of Denham PC KBE FRS FMedSci HonFREng

Faculty of MedicineDepartment of Surgery & Cancer

Co-Director of the IGHI, Professor of Surgery
 
 
 
//

Contact

 

+44 (0)20 3312 1310a.darzi

 
 
//

Location

 

Queen Elizabeth the Queen Mother Wing (QEQM)St Mary's Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Modi:2019,
author = {Modi, H and Singh, H and Fiorentino, F and Orihuela-Espina, F and Athanasiou, T and Yang, G-Z and Darzi, A and Leff, D},
journal = {JAMA Surgery},
title = {Neural signatures of resident resilience},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Importance: Intraoperative stressors may compound cognitive load, prompting performance decline and threatening patient safety. However, not all surgeons cope equally well with stress, and the disparity between performance stability and decline under high cognitive demand may be characterized by differences in activation within brain areas associated with attention and concentration such as the prefrontal cortex (PFC).Objective: To compare PFC activation between surgeons demonstrating stable performance under temporal stress with those exhibiting stress-related performance decline. The a priori hypothesis being that under temporal demand sustained prefrontal “activation(s)” reflect performance stability, whereas performance decline is manifest as “deactivation(s)”.Design: Cohort study conducted from July 2015 to September 2016. Setting: Single center (Imperial College Healthcare NHS Trust, United Kingdom). Participants: 102 surgical residents (PGY1 and above) were invited to participate, of which 33 agreed to partake (median age [range]: 33 [29-56] years, 27 [82%] males).Exposure: Subjects performed a laparoscopic suturing task under two conditions: ‘self-paced’ (SP; without time per knot restrictions), and ‘time pressure’ (TP; two-minute per knot time restriction). Main Outcomes and Measures: A composite deterioration score was computed based on between-condition differences in task performance metrics [(task progression score (au), error score (mm), leak volume (ml) and knot tensile strength (N)]. Based on the composite score, quartiles were computed reflecting performance stability (Q1) and decline (Q4). Changes in PFC oxygenated haemoglobin concentration (HbO2) measured at 24 different locations using functional near-infrared spectroscopy were compared between Q1 and Q4. Secondary outcomes included subjective workload (Surgical Task Load Index) and heart rate. Results: Q1 residents demonstrated task-induced incr
AU - Modi,H
AU - Singh,H
AU - Fiorentino,F
AU - Orihuela-Espina,F
AU - Athanasiou,T
AU - Yang,G-Z
AU - Darzi,A
AU - Leff,D
PY - 2019///
SN - 2168-6254
TI - Neural signatures of resident resilience
T2 - JAMA Surgery
ER -