Imperial College London

ProfessorAbbasDehghan

Faculty of MedicineSchool of Public Health

Professor in Molecular Epidemiology
 
 
 
//

Contact

 

+44 (0)20 7594 3347a.dehghan CV

 
 
//

Location

 

Building E - Sir Michael UrenWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

381 results found

Huffman JE, Nicolas J, Hahn J, Heath AS, Raffield LM, Yanek LR, Brody JA, Thibord F, Almasy L, Bartz TM, Bielak LF, Bowler RP, Carrasquilla GD, Chasman DI, Chen M-H, Emmert DB, Ghanbari M, Haessle J, Hottenga J-J, Kleber ME, Le N-Q, Lee J, Lewis JP, Li-Gao R, Luan J, Malmberg A, Mangino M, Marioni RE, Martinez-Perez A, Pankratz N, Polasek O, Richmond A, Rodriguez BA, Rotter JI, Steri M, Suchon P, Trompet S, Weiss S, Zare M, Auer P, Cho MH, Christofidou P, Davies G, de Geus E, Deleuze J-F, Delgado GE, Ekunwe L, Faraday N, Gögele M, Greinacher A, He G, Howard T, Joshi PK, Kilpeläinen TO, Lahti J, Linneberg A, Naitza S, Noordam R, Paüls-Vergés F, Rich SS, Rosendaal FR, Rudan I, Ryan KA, Souto JC, van Rooij FJ, Wang H, Zhao W, Becker LC, Beswick A, Brown MR, Cade BE, Campbell H, Cho K, Crapo JD, Curran JE, de Maat MP, Doyle M, Elliott P, Floyd JS, Fuchsberger C, Grarup N, Guo X, Harris SE, Hou L, Kolcic I, Kooperberg C, Menni C, Nauck M, O'Connell JR, Orrù V, Psaty BM, Räikkönen K, Smith JA, Soria JM, Stott DJ, van Hylckama Vlieg A, Watkins H, Willemsen G, Wilson P, Ben-Shlomo Y, Blangero J, Boomsma D, Cox SR, Dehghan A, Eriksson JG, Fiorillo E, Fornage M, Hansen T, Hayward C, Ikram MA, Jukema JW, Kardia SL, Lange LA, März W, Mathias RA, Mitchell BD, Mook-Kanamori DO, Morange P-E, Pedersen O, Pramstaller PP, Redline S, Reiner A, Ridker PM, Silverman EK, Spector TD, Völker U, Wareham N, Wilson JF, Yao J, VA Million Veteran Program, NHLBI Trans-Omics for Precision Medicine TOPMed Consortium, Trégouët D-A, Johnson AD, Wolberg AS, de Vries PS, Sabater-Lleal M, Morrison AC, Smith NLet al., 2023, Whole genome analysis of plasma fibrinogen reveals population-differentiated genetic regulators with putative liver roles., medRxiv

UNLABELLED: Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10% higher in African populations. Three ( SERPINA1, ZFP36L2 , and TLR10) signals contain predicted deleterious missense variants. Two loci, SOCS3 and HPN , each harbor two conditionally distinct, non-coding variants. The gene region encoding the protein chain subunits ( FGG;FGB;FGA ), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common (MAF=0.180) in African reference panels but extremely rare (MAF=0.008) in Europeans. Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation. KEY POINTS: Largest and most diverse genetic study of plasma fibrinogen identifies 54 regions (18 novel), housing 69 conditionally distinct variants (20 novel).Suff

Journal article

Hahn J, Bressler J, Domingo-Relloso A, Chen M-H, McCartney DL, Teumer A, van Dongen J, Kleber ME, Aïssi D, Swenson BR, Yao J, Zhao W, Huang J, Xia Y, Brown MR, Costeira R, de Geus EJC, Delgado GE, Dobson DA, Elliott P, Grabe HJ, Guo X, Harris SE, Huffman JE, Kardia SLR, Liu Y, Lorkowski S, Marioni RE, Nauck M, Ratliff SM, Sabater-Lleal M, Spector TD, Suchon P, Taylor KD, Thibord F, Trégouët D-A, Wiggins KL, Willemsen G, Bell JT, Boomsma DI, Cole SA, Cox SR, Dehghan A, Greinacher A, Haack K, März W, Morange P-E, Rotter JI, Sotoodehnia N, Tellez-Plaza M, Navas-Acien A, Smith JA, Johnson AD, Fornage M, Smith NL, Wolberg AS, Morrison AC, de Vries PSet al., 2023, DNA methylation analysis is used to identify novel genetic loci associated with circulating fibrinogen levels in blood., J Thromb Haemost, Vol: 21, Pages: 1135-1147

BACKGROUND: Fibrinogen plays an essential role in blood coagulation and inflammation. Circulating fibrinogen levels may be determined based on interindividual differences in DNA methylation at cytosine-phosphate-guanine (CpG) sites and vice versa. OBJECTIVES: To perform an EWAS to examine an association between blood DNA methylation levels and circulating fibrinogen levels to better understand its biological and pathophysiological actions. METHODS: We performed an epigenome-wide association study of circulating fibrinogen levels in 18 037 White, Black, American Indian, and Hispanic participants, representing 14 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. Circulating leukocyte DNA methylation was measured using the Illumina 450K array in 12 904 participants and using the EPIC array in 5133 participants. In each study, an epigenome-wide association study of fibrinogen was performed using linear mixed models adjusted for potential confounders. Study-specific results were combined using array-specific meta-analysis, followed by cross-replication of epigenome-wide significant associations. We compared models with and without CRP adjustment to examine the role of inflammation. RESULTS: We identified 208 and 87 significant CpG sites associated with fibrinogen levels from the 450K (p < 1.03 × 10-7) and EPIC arrays (p < 5.78 × 10-8), respectively. There were 78 associations from the 450K array that replicated in the EPIC array and 26 vice versa. After accounting for overlapping sites, there were 83 replicated CpG sites located in 61 loci, of which only 4 have been previously reported for fibrinogen. The examples of genes located near these CpG sites were SOCS3 and AIM2, which are involved in inflammatory pathways. The associations of all 83 replicated CpG sites were attenuated after CRP adjustment, although many remained significant. CONCLUSION: We identified 83 CpG sites associated with circ

Journal article

Huang J, Gill D, Zuber V, Matthews PAUL, Elliott PAUL, Tzoulaki I, Dehghan ABBASet al., 2023, Circulatory proteins relate cardiovascular disease to cognitive performance: a Mendelian randomisation study, Frontiers in Genetics, Vol: 14, Pages: 1-11, ISSN: 1664-8021

Background and objectives: Mechanistic research suggests synergistic effects of cardiovascular disease (CVD) and dementia pathologies on cognitive decline. Interventions targeting proteins relevant to shared mechanisms underlying CVD and dementia could also be used for the prevention of cognitive impairment.Methods: We applied Mendelian randomisation (MR) and colocalization analysis to investigate the causal relationships of 90 CVD-related proteins measured by the Olink CVD I panel with cognitive traits. Genetic instruments for circulatory protein concentrations were obtained using a meta-analysis of genome-wide association studies (GWAS) from the SCALLOP consortium (N = 17,747) based on three sets of criteria: 1) protein quantitative trait loci (pQTL); 2) cis-pQTL (pQTL within ±500 kb from the coding gene); and 3) brain-specific cis-expression QTL (cis-eQTL) which accounts for coding gene expression based on GTEx8. Genetic associations of cognitive performance were obtained from GWAS for either: 1) general cognitive function constructed using Principal Component Analysis (N = 300,486); or, 2) g Factor constructed using genomic structural equation modelling (N = 11,263–331,679). Findings for candidate causal proteins were replicated using a separate protein GWAS in Icelanders (N = 35,559).Results: A higher concentration of genetically predicted circulatory myeloperoxidase (MPO) was nominally associated with better cognitive performance (p < 0.05) using different selection criteria for genetic instruments. Particularly, brain-specific cis-eQTL predicted MPO, which accounts for protein-coding gene expression in brain tissues, was associated with general cognitive function (βWald = 0.22, PWald = 2.4 × 10−4). The posterior probability for colocalization (PP.H4) of MPO pQTL with the g Factor was 0.577. Findings for MPO were replicated using the Icelandic GWAS. Although we did not find evidence for colocalization, we found that higher gene

Journal article

Kojouri M, Pinto R, Mustafa R, Huang J, He G, Elliott P, Tzoulaki I, Dehghan Aet al., 2023, Metabolome-wide association study on physical activity, Scientific Reports, Vol: 13, Pages: 1-9, ISSN: 2045-2322

The underlying mechanisms linking physical activity to better health are not fully understood. Here we examined the associations between physical activity and small circulatory molecules, the metabolome, to highlight relevant biological pathways. We examined plasma metabolites associated with self-reported physical activity among 2217 participants from the Airwave Health Monitoring Study. Metabolic profiling was conducted using the mass spectrometry-based Metabolon platform (LC/GC–MS), measuring 828 known metabolites. We replicated our findings in an independent subset of the study (n = 2971) using untargeted LC–MS. Mendelian randomisation was carried out to investigate potential causal associations between physical activity, body mass index, and metabolites. Higher vigorous physical activity was associated (P < 0.05/828 = 6.03 × 10–5) with circulatory levels of 28 metabolites adjusted for age, sex and body mass index. The association was inverse for glutamate and diacylglycerol lipids, and direct for 3–4-hydroxyphenyllactate, phenyl lactate (PLA), alpha-hydroxy isovalerate, tiglylcarnitine, alpha-hydroxyisocaproate, 2-hydroxy-3-methylvalerate, isobutyrylcarnitine, imidazole lactate, methionine sulfone, indole lactate, plasmalogen lipids, pristanate and fumarate. In the replication panel, we found 23 untargeted LC–MS features annotated to the identified metabolites, for which we found nominal associations with the same direction of effect for three features annotated to 1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1), 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2), 1-stearoyl-2-dihomo-linolenoyl-GPC (18:0/20:3n3 or 6). Using Mendelian randomisation, we showed a potential causal relationship between body mass index and three identified metabolites. Circulatory metabolites are associated with physical activity and may play a role in mediating its health effects.

Journal article

Huang J, Su B, Karhunen V, Gill D, Zuber V, Ahola-Olli A, Palaniswamy S, Auvinen J, Herzig K-H, Keinänen-Kiukaanniemi S, Salmi M, Jalkanen S, Lehtimäki T, Salomaa V, Raitakari OT, Matthews PM, Elliott P, Tsilidis KK, Jarvelin M-R, Tzoulaki I, Dehghan Aet al., 2023, Inflammatory diseases, inflammatory biomarkers, and Alzheimer disease: an observational analysis and mendelian randomization, Neurology, Vol: 100, Pages: e568-e581, ISSN: 0028-3878

OBJECTIVES: Whether chronic autoimmune inflammatory diseases causally affect the risk of AD is controversial. We characterised the relationship between inflammatory diseases and the risk of AD and explore the role of circulating inflammatory biomarkers in the relationships between inflammatory diseases and AD. METHODS: We performed observational analyses for chronic autoimmune inflammatory diseases and risk of AD using data from 2,047,513 participants identified in the UK Clinical Practice Research Datalink (CPRD). Using data of a total of more than 1,100,000 individuals from 15 large scale genome-wide association study (GWAS) datasets, we performed two-sample Mendelian randomisation (MR) to investigate the relationships between chronic autoimmune inflammatory diseases, circulating inflammatory biomarker levels, and risk of AD. RESULTS: Cox regression models using CPRD data showed that overall incidence of AD was higher among patients with inflammatory bowel disease (IBD) (hazard ratio (HR)=1.17; 95%CI 1.15 to 1.19; P-value=2.1×10-4), other inflammatory polyarthropathies & systematic connective tissue disorders (OID) (HR=1.13; 95%CI 1.12 to 1.14; P-value=8.6×10-5), psoriasis (HR=1.13; 95%CI 1.10 to 1.16; P-value=2.6×10-4), rheumatoid arthritis (RA) (HR=1.08; 95%CI 1.06 to 1.11; P-value=4.0×10-4), and multiple sclerosis (MS) (HR=1.06; 95%CI 1.04 to 1.07; P-value=2.8×10-4) compared to the age (± 5 years) and sex-matched comparison groups free from all inflammatory diseases under investigation. Bidirectional MR analysis identified relationships between chronic autoimmune inflammatory diseases and circulating inflammatory biomarkers. Particularly, circulating monokine induced by gamma interferon (MIG) level was suggestively associated with a higher risk of AD (odds ratio from inverse variance weighted (ORIVW)=1.23; 95%CI 1.06 to 1.42; PIVW=0.007), and lower risk of Crohn's disease (ORIVW=0.73; 95%CI -0.62, 0.86; PIVW=1.3×10

Journal article

Al-Jafar R, Wahyuni NS, Belhaj K, Ersi MH, Boroghani Z, Alreshidi A, Alkhalaf Z, Elliott P, Tsilidis KK, Dehghan A, Al Jafar Ret al., 2023, The impact of Ramadan fasting on anthropometric measurements and body composition: evidence from London Ramadan Study and a meta-analysis, Frontiers in Nutrition, Vol: 10, Pages: 1-24, ISSN: 2296-861X

Background: Although the effect of Ramadan intermittent fasting (RIF) on anthropometry and body composition has been questioned, none of the previous studies tried to explain the reported changes in these parameters. Also, systematic reviews that investigated the topic were limited to healthy individuals or a specific disease group.Methods: The London Ramadan Study (LORANS) is an observational study on health effects of RIF. We measured weight, waist circumference (WC), hip circumference (HC), body mass index (BMI), waist-to-hip ratio (WHR), basal metabolic rate (BMR), fat percentage (FP), free-fat mass (FFM), extremities predicted muscle mass, total body water (TBW), trunk FM, trunk FFM and trunk predicted muscle mass before and immediately after Ramadan. Using mixed-effects regression models, we investigated the effect of RIF with adjustment for potential confounders. We also conducted a meta-analysis of the results of LORANS with other studies that investigated the effect of RIF on anthropometry and body composition. The review protocol is registered with PROSPERO registry (CRD42020186532).Results: We recruited 146 participants (Mean ± SD age = 43.3 ± 15 years). Immediately after Ramadan, compared with before Ramadan, the mean difference was−1.6 kg (P<0.01) in weight,−1.95cm (P<0.01) in WC,−2.86cm (P <0.01) in HC, −0.60 kg/m2 (P < 0.01) in BMI and −1.24 kg (P < 0.01) in FM. In the systematic review and meta-analysis, after screening 2,150 titles and abstracts, 66 studies comprising 7,611 participants were included. In the general population, RIF was followed by a reduction of 1.12 Kg in body weight (−1.89– −0.36, I2 = 0), 0.74 kg/m2 reduction in BMI (−0.96– −0.53, I2 = 0), 1.54cm reduction in WC (−2.37– −0.71, I2 = 0) and 1.76cm reduction in HC (−2.69– −0.83, I2 = 0). The effect of fasting on anthropometric and body composition parame

Journal article

Garcia-Segura ME, Durainayagam BR, Liggi S, Graça G, Jimenez B, Dehghan A, Tzoulaki I, Karaman I, Elliott P, Griffin JLet al., 2023, Pathway-based integration of multi-omics data reveals lipidomics alterations validated in an Alzheimer´s Disease mouse model and risk loci carriers, Journal of Neurochemistry, Vol: 164, Pages: 57-76, ISSN: 0022-3042

Alzheimer´s Disease (AD) is a highly prevalent neurodegenerative disorder. Despite increasing evidence of the importance of metabolic dysregulation in AD, the underlying metabolic changes that may impact amyloid plaque formation are not understood, particularly for late onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics and proteomics data obtained from several data repositories to obtain differentially expressed (DE) multi-omics elements in mouse models of AD. We characterized the metabolic modulation in these datasets using gene ontology, transcription factor, pathway, and cell-type enrichment analyses. A predicted lipid signature was extracted from genome-scale metabolic networks (GSMN) and subsequently validated in a lipidomic dataset derived from cortical tissue of ABCA-7 null mice, a mouse model of one of the genes associated with late onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to further characterize the association between dysregulated lipid metabolism in human blood serum and genes associated with AD risk. We found 203 DE transcripts, 164 DE proteins and 58 DE GWAS-derived mouse orthologs associated with significantly enriched metabolic biological processes. Lipid and bioenergetics metabolic pathways were significantly over-represented across the AD multi-omics datasets. Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic transcriptome. We also extracted a predicted lipid signature that was validated and robustly modelled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid species exhibiting statistically significant modulations. MWAS revealed 298 AD single nucleotide polymorphisms (SNP)-metabolite associations, of which 70% corresponded to lipid classes. These results support the importance of lipid metabolism dysregulation in AD and highlight the suitability of mapping AD multi-omics data into GSMNs to identify metabol

Journal article

Zagkos L, Dib M-J, Pinto R, Gill D, Koskeridis F, Drenos F, Markozannes G, Elliott P, Zuber V, Tsilidis K, Dehghan A, Tzoulaki Iet al., 2022, Associations of genetically predicted fatty acid levels across the phenome: a mendelian randomisation study, PLoS Medicine, Vol: 19, ISSN: 1549-1277

BACKGROUND: Fatty acids are important dietary factors that have been extensively studied for their implication in health and disease. Evidence from epidemiological studies and randomised controlled trials on their role in cardiovascular, inflammatory, and other diseases remains inconsistent. The objective of this study was to assess whether genetically predicted fatty acid concentrations affect the risk of disease across a wide variety of clinical health outcomes. METHODS AND FINDINGS: The UK Biobank (UKB) is a large study involving over 500,000 participants aged 40 to 69 years at recruitment from 2006 to 2010. We used summary-level data for 117,143 UKB samples (base dataset), to extract genetic associations of fatty acids, and individual-level data for 322,232 UKB participants (target dataset) to conduct our discovery analysis. We studied potentially causal relationships of circulating fatty acids with 845 clinical diagnoses, using mendelian randomisation (MR) approach, within a phenome-wide association study (PheWAS) framework. Regression models in PheWAS were adjusted for sex, age, and the first 10 genetic principal components. External summary statistics were used for replication. When several fatty acids were associated with a health outcome, multivariable MR and MR-Bayesian method averaging (MR-BMA) was applied to disentangle their causal role. Genetic predisposition to higher docosahexaenoic acid (DHA) was associated with cholelithiasis and cholecystitis (odds ratio per mmol/L: 0.76, 95% confidence interval: 0.66 to 0.87). This was supported in replication analysis (FinnGen study) and by the genetically predicted omega-3 fatty acids analyses. Genetically predicted linoleic acid (LA), omega-6, polyunsaturated fatty acids (PUFAs), and total fatty acids (total FAs) showed positive associations with cardiovascular outcomes with support from replication analysis. Finally, higher genetically predicted levels of DHA (0.83, 0.73 to 0.95) and omega-3 (0.83, 0.75 to 0.

Journal article

Lumbers RT, Shah S, Lin H, Czuba T, Henry A, Swerdlow DI, Malarstig A, Andersson C, Verweij N, Holmes MV, Arnlov J, Svensson P, Hemingway H, Sallah N, Almgren P, Aragam KG, Asselin G, Backman JD, Biggs ML, Bloom HL, Boersma E, Brandimarto J, Brown MR, Brunner-La Rocca H-P, Carey DJ, Chaffin MD, Chasman DI, Chazara O, Chen X, Chen X, Chung JH, Chutkow W, Cleland JGF, Cook JP, de Denus S, Dehghan A, Delgado GE, Denaxas S, Doney AS, Doerr M, Dudley SC, Engstrom G, Esko T, Fatemifar G, Felix SB, Finan C, Ford I, Fougerousse F, Fouodjio R, Ghanbari M, Ghasemi S, Giedraitis V, Giulianini F, Gottdiener JS, Gross S, Guobjartsson DF, Gui H, Gutmann R, Haggerty CM, van der Harst P, Hedman AK, Helgadottir A, Hillege H, Hyde CL, Jacob J, Jukema JW, Kamanu F, Kardys I, Kavousi M, Khaw K-T, Kleber ME, Kober L, Koekemoer A, Kraus B, Kuchenbaecker K, Langenberg C, Lind L, Lindgren CM, London B, Lotta LA, Lovering RC, Luan J, Magnusson P, Mahajan A, Mann D, Margulies KB, Marston NA, Maerz W, McMurray JJV, Melander O, Melloni G, Mordi IR, Morley MP, Morris AD, Morris AP, Morrison AC, Nagle MW, Nelson CP, Newton-Cheh C, Niessner A, Niiranen T, Nowak C, O'Donoghue ML, Owens AT, Palmer CNA, Pare G, Perola M, Perreault L-PL, Portilla-Fernandez E, Psaty BM, Rice KM, Ridker PM, Romaine SPR, Roselli C, Rotter JI, Ruff CT, Sabatine MS, Salo P, Salomaa V, van Setten J, Shalaby AA, Smelser DT, Smith NL, Stefansson K, Stender S, Stott DJ, Sveinbjornsson G, Tammesoo M-L, Tardif J-C, Taylor KD, Teder-Laving M, Teumer A, Thorgeirsson G, Thorsteinsdottir U, Torp-Pedersen C, Trompet S, Tuckwell D, Tyl B, Uitterlinden AG, Vaura F, Veluchamy A, Visscher PM, Voelker U, Voors AA, Wang X, Wareham NJ, Weeke PE, Weiss R, White HD, Wiggins KL, Xing H, Yang J, Yang Y, Yerges-Armstrong LM, Yu B, Zannad F, Zhao F, Wilk JB, Holm H, Sattar N, Lubitz SA, Lanfear DE, Shah S, Dunn ME, Wells QS, Asselbergs FW, Hingorani AD, Dube M-P, Samani NJ, Lang CC, Cappola TP, Ellinor PT, Vasan RS, Smith JGet al., 2022, The genomics of heart failure: design and rationale of the HERMES consortium, ESC HEART FAILURE, Vol: 8, Pages: 5531-5541, ISSN: 2055-5822

Journal article

Dib M-J, Ahmadi KR, Zagkos L, Gill D, Morris B, Elliott P, Dehghan A, Tzoulaki Iet al., 2022, Associations of genetically predicted vitamin B12 status across the pohenome, Nutrients, Vol: 14, ISSN: 2072-6643

Variation in vitamin B12 levels has been associated with a range of diseases across the life-course, the causal nature of which remains elusive. We aimed to interrogate genetically predicted vitamin B12 status in relation to a plethora of clinical outcomes available in the UK Biobank. Genome-wide association study (GWAS) summary data obtained from a Danish and Icelandic cohort of 45,576 individuals were used to identify 8 genetic variants associated with vitamin B12 levels, serving as genetic instruments for vitamin B12 status in subsequent analyses. We conducted a Mendelian randomisation (MR)-phenome-wide association study (PheWAS) of vitamin B12 status with 945 distinct phenotypes in 439,738 individuals from the UK Biobank using these 8 genetic instruments to proxy alterations in vitamin B12 status. We used external GWAS summary statistics for replication of significant findings. Correction for multiple testing was taken into consideration using a 5% false discovery rate (FDR) threshold. MR analysis identified an association between higher genetically predicted vitamin B12 status and lower risk of vitamin B deficiency (including all B vitamin deficiencies), serving as a positive control outcome. We further identified associations between higher genetically predicted vitamin B12 status and a reduced risk of megaloblastic anaemia (OR = 0.35, 95% CI: 0.20–0.50) and pernicious anaemia (0.29, 0.19–0.45), which was supported in replication analyses. Our study highlights that higher genetically predicted vitamin B12 status is potentially protective of risk of vitamin B12 deficiency associated with pernicious anaemia diagnosis, and reduces risk of megaloblastic anaemia. The potential use of genetically predicted vitamin B12 status in disease diagnosis, progression and management remains to be investigated.

Journal article

Koskeridis F, Evangelou E, Said S, Boyle J, Elliott P, Dehghan A, Tzoulaki Iet al., 2022, Pleiotropic genetic architecture and novel loci for C-reactive protein levels, Nature Communications, Vol: 13, ISSN: 2041-1723

C-reactive protein is involved in a plethora of pathophysiological conditions. Many genetic loci associated with C-reactive protein are annotated to lipid and glucose metabolism genes supporting common biological pathways between inflammation and metabolic traits. To identify novel pleiotropic loci, we perform multi-trait analysis of genome-wide association studies on C-reactive protein levels along with cardiometabolic traits, followed by a series of in silico analyses including colocalization, phenome-wide association studies and Mendelian randomization. We find 41 novel loci and 19 gene sets associated with C-reactive protein with various pleiotropic effects. Additionally, 41 variants colocalize between C-reactive protein and cardiometabolic risk factors and 12 of them display unexpected discordant effects between the shared traits which are translated into discordant associations with clinical outcomes in subsequent phenome-wide association studies. Our findings provide insights into shared mechanisms underlying inflammation and lipid metabolism, representing potential preventive and therapeutic targets.

Journal article

Mustafa R, Mens MMJ, van Hilten A, Huang J, Roshchupkin G, Huan T, Broer L, Elliott P, Levy D, Ikram MA, Evangelou M, Dehghan A, Ghanbari Met al., 2022, An atlas of genetic regulation and disease associations of microRNAs

<jats:title>Abstract</jats:title><jats:p>MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Identification of genetic variants influencing the transcription of miRNAs can provide an understanding of their genetic regulation and implication in human disease. Here we present genome-wide association studies of 2,083 plasma circulating miRNAs measured by next-generation sequencing in 2,178 participants of the Rotterdam Study to identify miRNA-expression quantitative trait loci (miR-eQTLs). We report 4,310 cis- and trans-miR-eQTLs for 64 miRNAs that have been replicated across independent studies. Many of these miR-eQTLs overlap with gene expression, protein, and metabolite-QTLs and with disease-associated variants. The consequences of perturbation in miRNA transcription on a wide range of clinical conditions are systematically investigated in phenome-wide association studies, with their causality tested using Mendelian randomization. Integration of genomics and miRNAs enables interrogation of the genetic architecture of miRNAs, revealing their clinical importance, and providing valuable resources for future studies of miRNAs in human disease.</jats:p>

Journal article

Ghanbari M, Mustafa R, Mens M, Hilten AV, Huang J, Roshchupkin G, Huan T, Broer L, Elliott P, Levy D, Ikram MA, Evangelou M, Dehghan Aet al., 2022, An atlas of genetic regulation and disease associations of microRNAs

<jats:title>Abstract</jats:title> <jats:p>MicroRNAs (miRNAs) are small non<jats:italic>-</jats:italic>coding RNAs that post-transcriptionally regulate gene expression. Identification of genetic variants influencing the transcription of miRNAs can provide an understanding of their genetic regulation and implication in human disease. Here we present genome-wide association studies of 2,083 plasma circulating miRNAs measured by next-generation sequencing in 2,178 participants of the Rotterdam Study to identify miRNA-expression quantitative trait loci (miR-eQTLs). We report 4,310 cis- and trans-miR-eQTLs for 64 miRNAs that have been replicated across independent studies. Many of these miR-eQTLs overlap with gene expression, protein, and metabolite-QTLs and with disease-associated variants. The consequences of perturbation in miRNA transcription on a wide range of clinical conditions are systematically investigated in phenome-wide association studies, with their causality tested using Mendelian randomization. Integration of genomics and miRNAs enables interrogation of the genetic architecture of miRNAs, revealing their clinical importance, and providing valuable resources for future studies of miRNAs in human disease.</jats:p>

Journal article

Dehghan A, Pinto RC, Karaman I, Huang J, Durainayagam BR, Ghanbari M, Nazeer A, Zhong Q, Liggi S, Whiley L, Mustafa R, Kivipelto M, Solomon A, Ngandu T, Kanekiyo T, Aikawa T, Radulescu CI, Barnes SJ, Graça G, Chekmeneva E, Camuzeaux S, Lewis MR, Kaluarachchi MR, Ikram MA, Holmes E, Tzoulaki I, Matthews PM, Griffin JL, Elliott Pet al., 2022, Metabolome-wide association study on ABCA7 indicates a role of ceramide metabolism in Alzheimer's disease., Proceedings of the National Academy of Sciences of USA, Vol: 119, Pages: 1-12, ISSN: 0027-8424

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.

Journal article

Portilla-Fernandez E, Klarin D, Hwang S-J, Biggs ML, Bis JC, Weiss S, Rospleszcz S, Natarajan P, Hoffmann U, Rogers IS, Truong QA, Völker U, Dörr M, Bülow R, Criqui MH, Allison M, Ganesh SK, Yao J, Waldenberger M, Bamberg F, Rice KM, Essers J, Kapteijn DMC, van der Laan SW, de Knegt RJ, Ghanbari M, Felix JF, Ikram MA, Kavousi M, Uitterlinden AG, Roks AJM, Danser AHJ, Tsao PS, Damrauer SM, Guo X, Rotter JI, Psaty BM, Kathiresan S, Völzke H, Peters A, Johnson C, Strauch K, Meitinger T, O'Donnell CJ, Dehghan A, VA Million Veteran Programet al., 2022, Genetic and clinical determinants of abdominal aortic diameter: genome-wide association studies, exome array data and Mendelian randomization study, Human Molecular Genetics, Vol: 31, Pages: 3566-3579, ISSN: 0964-6906

Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of Abdominal Aortic Aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in ten cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects (PBIO) as replication. Maximum anterior-posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In GWAS on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = -0.02, SE = 0.004, p-value = 2.10 × 10-8). The association replicated in the PBIO1 cohort (p-value = 8.19 × 10-4). In exome-array single-variant analysis (p-value threshold = 9 × 10-7), the lowest p-value was found for rs239259 located in SLC22A20 (beta = 0.007, p-value =1.2 × 10-5). In the gene-based analysis (p-value threshold = 1.85 × 10-6), PCSK5 showed an association with AAD (p-value = 8.03 × 10-7). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = -0.003, p-value = 0.02), triglycerides (beta = -0.16, p-value = 0.008) and height (beta = 0.03, p-value<0.0001), known risk factors for AAA, consistent with a

Journal article

Pankratz N, Wei P, Brody JA, Chen M-H, de Vries PS, Huffman JE, Stimson MR, Auer PL, Boerwinkle E, Cushman M, de Maat MPM, Folsom AR, Franco OH, Gibbs RA, Haagenson KK, Hofman A, Johnsen JM, Kovar CL, Kraaij R, McKnight B, Metcalf GA, Muzny D, Psaty BM, Tang W, Uitterlinden AG, van Rooij JGJ, Dehghan A, O'Donnell CJ, Reiner AP, Morrison AC, Smith NLet al., 2022, Whole-exome sequencing of 14 389 individuals from the ESP and CHARGE consortia identifies novel rare variation associated with hemostatic factors., Hum Mol Genet, Vol: 31, Pages: 3120-3132

Plasma levels of fibrinogen, coagulation factors VII and VIII and von Willebrand factor (vWF) are four intermediate phenotypes that are heritable and have been associated with the risk of clinical thrombotic events. To identify rare and low-frequency variants associated with these hemostatic factors, we conducted whole-exome sequencing in 10 860 individuals of European ancestry (EA) and 3529 African Americans (AAs) from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and the National Heart, Lung and Blood Institute's Exome Sequencing Project. Gene-based tests demonstrated significant associations with rare variation (minor allele frequency < 5%) in fibrinogen gamma chain (FGG) (with fibrinogen, P = 9.1 × 10-13), coagulation factor VII (F7) (with factor VII, P = 1.3 × 10-72; seven novel variants) and VWF (with factor VIII and vWF; P = 3.2 × 10-14; one novel variant). These eight novel rare variant associations were independent of the known common variants at these loci and tended to have much larger effect sizes. In addition, one of the rare novel variants in F7 was significantly associated with an increased risk of venous thromboembolism in AAs (Ile200Ser; rs141219108; P = 4.2 × 10-5). After restricting gene-based analyses to only loss-of-function variants, a novel significant association was detected and replicated between factor VIII levels and a stop-gain mutation exclusive to AAs (rs3211938) in CD36 molecule (CD36). This variant has previously been linked to dyslipidemia but not with the levels of a hemostatic factor. These efforts represent the largest integration of whole-exome sequence data from two national projects to identify genetic variation associated with plasma hemostatic factors.

Journal article

Nazarzadeh M, Bidel Z, Canoy D, Copland E, Bennett DA, Dehghan A, Davey Smith G, Holman RR, Woodward M, Gupta A, Adler AI, Wamil M, Sattar N, Cushman WC, McManus RJ, Teo K, Davis BR, Chalmers J, Pepine CJ, Rahimi K, Blood Pressure Lowering Treatment Trialists' Collaborationet al., 2022, Blood pressure-lowering treatment for prevention of major cardiovascular diseases in people with and without type 2 diabetes: an individual participant-level data meta-analysis, The Lancet Diabetes and Endocrinology, Vol: 10, Pages: 645-654, ISSN: 2213-8595

BACKGROUND: Controversy exists as to whether the threshold for blood pressure-lowering treatment should differ between people with and without type 2 diabetes. We aimed to investigate the effects of blood pressure-lowering treatment on the risk of major cardiovascular events by type 2 diabetes status, as well as by baseline levels of systolic blood pressure. METHODS: We conducted a one-stage individual participant-level data meta-analysis of major randomised controlled trials using the Blood Pressure Lowering Treatment Trialists' Collaboration dataset. Trials with information on type 2 diabetes status at baseline were eligible if they compared blood pressure-lowering medications versus placebo or other classes of blood pressure-lowering medications, or an intensive versus a standard blood pressure-lowering strategy, and reported at least 1000 persons-years of follow-up in each group. Trials exclusively on participants with heart failure or with short-term therapies and acute myocardial infarction or other acute settings were excluded. We expressed treatment effect per 5 mm Hg reduction in systolic blood pressure on the risk of developing a major cardiovascular event as the primary outcome, defined as the first occurrence of fatal or non-fatal stroke or cerebrovascular disease, fatal or non-fatal ischaemic heart disease, or heart failure causing death or requiring hospitalisation. Cox proportional hazard models, stratified by trial, were used to estimate hazard ratios (HRs) separately by type 2 diabetes status at baseline, with further stratification by baseline categories of systolic blood pressure (in 10 mm Hg increments from <120 mm Hg to ≥170 mm Hg). To estimate absolute risk reductions, we used a Poisson regression model over the follow-up duration. The effect of each of the five major blood pressure-lowering drug classes, including angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, β blockers, calcium channel blockers, and th

Journal article

Nazarzadeh M, Bidel Z, Mohseni H, Canoy D, Pinho-Gomes A-C, Hassaine A, Dehghan A, Tregouet D-A, Smith NL, Rahimi Ket al., 2022, Blood pressure and risk of venous thromboembolism: a cohort analysis of 5.5 million UK adults and Mendelian randomization studies, CARDIOVASCULAR RESEARCH, ISSN: 0008-6363

Journal article

Kasher M, Williams FMK, Freidin MB, Malkin I, Cherny SS, CHARGE Inflammation Working Group, Livshits Get al., 2022, Understanding the complex genetic architecture connecting rheumatoid arthritis, osteoporosis and inflammation: discovering causal pathways., Hum Mol Genet, Vol: 31, Pages: 2810-2819

Rheumatoid arthritis (RA) and osteoporosis (OP) are two comorbid complex inflammatory conditions with evidence of shared genetic background and causal relationships. We aimed to clarify the genetic architecture underlying RA and various OP phenotypes while additionally considering an inflammatory component, C-reactive protein (CRP). Genome-wide association study summary statistics were acquired from the GEnetic Factors for OSteoporosis Consortium, Cohorts for Heart and Aging Research Consortium and UK Biobank. Mendelian randomization (MR) was used to detect the presence of causal relationships. Colocalization analysis was performed to determine shared genetic variants between CRP and OP phenotypes. Analysis of pleiotropy between traits owing to shared causal single nucleotide polymorphisms (SNPs) was performed using PL eiotropic A nalysis under CO mposite null hypothesis (PLACO). MR analysis was suggestive of horizontal pleiotropy between RA and OP traits. RA was a significant causal risk factor for CRP (β = 0.027, 95% confidence interval = 0.016-0.038). There was no evidence of CRP→OP causal relationship, but horizontal pleiotropy was apparent. Colocalization established shared genomic regions between CRP and OP, including GCKR and SERPINA1 genes. Pleiotropy arising from shared causal SNPs revealed through the colocalization analysis was all confirmed by PLACO. These genes were found to be involved in the same molecular function 'protein binding' (GO:0005515) associated with RA, OP and CRP. We identified three major components explaining the epidemiological relationship among RA, OP and inflammation: (1) Pleiotropy explains a portion of the shared genetic relationship between RA and OP, albeit polygenically; (2) RA contributes to CRP elevation and (3) CRP, which is influenced by RA, demonstrated pleiotropy with OP.

Journal article

Roa-Díaz ZM, Teuscher J, Gamba M, Bundo M, Grisotto G, Wehrli F, Gamboa E, Rojas LZ, Gómez-Ochoa SA, Verhoog S, Vargas MF, Minder B, Franco OH, Dehghan A, Pazoki R, Marques-Vidal P, Muka Tet al., 2022, Gene-diet interactions and cardiovascular diseases: a systematic review of observational and clinical trials., BMC Cardiovasc Disord, Vol: 22

BACKGROUND: Both genetic background and diet are important determinants of cardiovascular diseases (CVD). Understanding gene-diet interactions could help improve CVD prevention and prognosis. We aimed to summarise the evidence on gene-diet interactions and CVD outcomes systematically. METHODS: We searched MEDLINE® via Ovid, Embase, PubMed®, and The Cochrane Library for relevant studies published until June 6th 2022. We considered for inclusion cross-sectional, case-control, prospective cohort, nested case-control, and case-cohort studies as well as randomised controlled trials that evaluated the interaction between genetic variants and/or genetic risk scores and food or diet intake on the risk of related outcomes, including myocardial infarction, coronary heart disease (CHD), stroke and CVD as a composite outcome. The PROSPERO protocol registration code is CRD42019147031. RESULTS AND DISCUSSION: We included 59 articles based on data from 29 studies; six articles involved multiple studies, and seven did not report details of their source population. The median sample size of the articles was 2562 participants. Of the 59 articles, 21 (35.6%) were qualified as high quality, while the rest were intermediate or poor. Eleven (18.6%) articles adjusted for multiple comparisons, four (7.0%) attempted to replicate the findings, 18 (30.5%) were based on Han-Chinese ethnicity, and 29 (49.2%) did not present Minor Allele Frequency. Fifty different dietary exposures and 52 different genetic factors were investigated, with alcohol intake and ADH1C variants being the most examined. Of 266 investigated diet-gene interaction tests, 50 (18.8%) were statistically significant, including CETP-TaqIB and ADH1C variants, which interacted with alcohol intake on CHD risk. However, interactions effects were significant only in some articles and did not agree on the direction of effects. Moreover, most of the studies that reported significant interactions lacked replication. Overall, th

Journal article

Francis C, Futschik M, Huang J, Bai W, Sargurupremraj M, Teumer A, Breteler M, Petretto E, SR HO A, Amouyel P, Engelter S, Bülow R, Völker U, Völzke H, Dörr M, Imtiaz M-A, Aziz A, Lohner V, Ware J, Debette S, Elliott P, Dehghan A, Matthews Pet al., 2022, Genome-wide associations of aortic distensibility suggest causality for aortic aneurysms and brain white matter hyperintensities, Nature Communications, Vol: 13, ISSN: 2041-1723

Aortic dimensions and distensibility are key risk factors for aortic aneurysms and dissections, as well as for other cardiovascular and cerebrovascular diseases. We present genome-wide associations of ascending and descending aortic distensibility and area derived from cardiac magnetic resonance imaging (MRI) data of up to 32,590 Caucasian individuals in UK Biobank. We identify 102 loci (including 27 novel associations) tagging genes related to cardiovascular development, extracellular matrix production, smooth muscle cell contraction and heritable aortic diseases. Functional analyses highlight four signalling pathways associated with aortic distensibility (TGF-, IGF, VEGF and PDGF). We identify distinct sex-specific associations with aortic traits. We develop co-expression networks associated with aortic traits and apply phenome-wide Mendelian randomization (MR-PheWAS), generating evidence for a causal role for aortic distensibility in development of aortic aneurysms. Multivariable MR suggests a causal relationship between aortic distensibility and cerebral white matter hyperintensities, mechanistically linking aortic traits and brain small vessel disease.

Journal article

Said S, Pazoki R, Karhunen V, Vosa U, Ligthart S, Bodinier B, Koskeridis F, Welsh P, Alizadeh BZ, Chasman DI, Sattar N, Chadeau-Hyam M, Evangelou E, Jarvelin M-R, Elliott P, Tzoulaki I, Dehghan Aet al., 2022, Genetic analysis of over half a million people characterises C-reactive protein loci (vol 13, 2198, 2022), Nature Communications, Vol: 13, Pages: 1-1, ISSN: 2041-1723

Journal article

Mazidi M, Mikhailidis DP, Dehghan A, Jozwiak J, Covic A, Sattar N, Banach Met al., 2022, The association between coffee and caffeine consumption and renal function: insight from individual-level data, Mendelian randomization, and meta-analysis, ARCHIVES OF MEDICAL SCIENCE, Vol: 18, Pages: 900-911, ISSN: 1734-1922

Journal article

Winkler TW, Rasheed H, Teumer A, Gorski M, Rowan BX, Stanzick KJ, Thomas LF, Tin A, Hoppmann A, Chu AY, Tayo B, Thio CHL, Cusi D, Chai J-F, Sieber KB, Horn K, Li M, Scholz M, Cocca M, Wuttke M, van der Most PJ, Yang Q, Ghasemi S, Nutile T, Li Y, Pontali G, Guenther F, Dehghan A, Correa A, Parsa A, Feresin A, de Vries APJ, Zonderman AB, Smith A, Oldehinkel AJ, De Grandi A, Rosenkranz AR, Franke A, Teren A, Metspalu A, Hicks AA, Morris AP, Toenjes A, Morgan A, Podgornaia A, Peters A, Koerner A, Mahajan A, Campbell A, Freedman B, Spedicati B, Ponte B, Schoettker B, Brumpton B, Banas B, Kraemer BK, Jung B, Asvold BO, Smith BH, Ning B, Penninx BWJH, Vanderwerff BR, Psaty BM, Kammerer CM, Langefeld CD, Hayward C, Spracklen CN, Robinson-Cohen C, Hartman CA, Lindgren CM, Wang C, Sabanayagam C, Heng C-K, Lanzani C, Khor C-C, Cheng C-Y, Fuchsberger C, Gieger C, Shaffer CM, Schulz C-A, Willer CJ, Chasman D, Gudbjartsson DF, Ruggiero D, Toniolo D, Czamara D, Porteous DJ, Waterworth DM, Mascalzoni D, Mook-Kanamori DO, Reilly DF, Daw EW, Hofer E, Boerwinkle E, Salvi E, Bottinger EP, Tai E-S, Catamo E, Rizzi F, Guo F, Rivadeneira F, Guilianini F, Sveinbjornsson G, Ehret G, Waeber G, Biino G, Girotto G, Pistis G, Nadkarni GN, Delgado GE, Montgomery GW, Snieder H, Campbell H, White HD, Gao H, Stringham HM, Schmidt H, Li H, Brenner H, Holm H, Kirsten H, Kramer H, Rudan I, Nolte IM, Tzoulaki I, Olafsson I, Martins J, Cook JP, Wilson JF, Halbritter J, Felix JF, Divers J, Kooner JS, Lee JJ-M, O'Connell J, Rotter J, Liu J, Xu J, Thiery J, Arnlov J, Kuusisto J, Jakobsdottir J, Tremblay J, Chambers JC, Whitfield JB, Gaziano JM, Marten J, Coresh J, Jonas JB, Mychaleckyj JC, Christensen K, Eckardt K-U, Mohlke KL, Endlich K, Dittrich K, Ryan KA, Rice KM, Taylor KD, Ho K, Nikus K, Matsuda K, Strauch K, Miliku K, Hveem K, Lind L, Wallentin L, Yerges-Armstrong LM, Raffield LM, Phillips LS, Launer LJ, Lyytikainen L-P, Lange LA, Citterio L, Klaric L, Ikram MA, Ising M, Kleber ME, Francescatto M Cet al., 2022, Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals, Communications Biology, Vol: 5, ISSN: 2399-3642

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.

Journal article

Temprano-Sagrera G, Sitlani CM, Bone WP, Martin-Bornez M, Voight BF, Morrison AC, Damrauer SM, de Vries PS, Smith NL, Sabater-Lleal Met al., 2022, Multi-phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations., J Thromb Haemost, Vol: 20, Pages: 1331-1349

BACKGROUND: Multi-phenotype analysis of genetically correlated phenotypes can increase the statistical power to detect loci associated with multiple traits, leading to the discovery of novel loci. This is the first study to date to comprehensively analyze the shared genetic effects within different hemostatic traits, and between these and their associated disease outcomes. OBJECTIVES: To discover novel genetic associations by combining summary data of correlated hemostatic traits and disease events. METHODS: Summary statistics from genome wide-association studies (GWAS) from seven hemostatic traits (factor VII [FVII], factor VIII [FVIII], von Willebrand factor [VWF] factor XI [FXI], fibrinogen, tissue plasminogen activator [tPA], plasminogen activator inhibitor 1 [PAI-1]) and three major cardiovascular (CV) events (venous thromboembolism [VTE], coronary artery disease [CAD], ischemic stroke [IS]), were combined in 27 multi-trait combinations using metaUSAT. Genetic correlations between phenotypes were calculated using Linkage Disequilibrium Score Regression (LDSC). Newly associated loci were investigated for colocalization. We considered a significance threshold of 1.85 × 10-9 obtained after applying Bonferroni correction for the number of multi-trait combinations performed (n = 27). RESULTS: Across the 27 multi-trait analyses, we found 4 novel pleiotropic loci (XXYLT1, KNG1, SUGP1/MAU2, TBL2/MLXIPL) that were not significant in the original individual datasets, were not described in previous GWAS for the individual traits, and that presented a common associated variant between the studied phenotypes. CONCLUSIONS: The discovery of four novel loci contributes to the understanding of the relationship between hemostasis and CV events and elucidate common genetic factors between these traits.

Journal article

Jarvelin M-R, 2022, DNA methylation signature of chronic low-gradeinflammation and its role in cardio-respiratorydiseases, Nature Communications, Vol: 13, ISSN: 2041-1723

We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD.

Journal article

Said S, Karhunen V, vosa U, ligthart S, Bodinier B, Koskeridis F, welsh P, Alizadeh B, Daniel C, sattar N, Chadeau M, evalgelou E, Jarvelin M-R, Elliott P, Tzoulaki I, Dehghan Aet al., 2022, Genetic analysis of over half a million people characterises C-reactive protein loci, Nature Communications, Vol: 13, ISSN: 2041-1723

Chronic low-grade inflammation is linked to a multitude of chronic diseases. We report the largest genome-wide association study (GWAS) on C-reactive protein (CRP), a marker of systemic inflammation, in UK Biobank participants (N = 427,367, European descent) and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (total N = 575,531 European descent). We identify 266 independent loci, of which 211 are not previously reported. Gene-set analysis highlighted 42 gene sets associated with CRP levels (p ≤ 3.2 ×10−6) and tissue expression analysis indicated a strong association of CRP related genes with liver and whole blood gene expression. Phenome-wide association study identified 27 clinical outcomes associated with genetically determined CRP and subsequent Mendelian randomisation analyses supported a causal association with schizophrenia, chronic airway obstruction and prostate cancer. Our findings identified genetic loci and functional properties of chronic low-grade inflammation and provided evidence for causal associations with a range of diseases.

Journal article

Climaco Pinto R, Karaman I, Lewis MR, Hällqvist J, Kaluarachchi M, Graça G, Chekmeneva E, Durainayagam B, Ghanbari M, Ikram MA, Zetterberg H, Griffin J, Elliott P, Tzoulaki I, Dehghan A, Herrington D, Ebbels Tet al., 2022, Finding correspondence between metabolomic features in untargeted liquid chromatography-mass spectrometry metabolomics datasets., Analytical Chemistry, Vol: 94, Pages: 5493-5503, ISSN: 0003-2700

Integration of multiple datasets can greatly enhance bioanalytical studies, for example, by increasing power to discover and validate biomarkers. In liquid chromatography-mass spectrometry (LC-MS) metabolomics, it is especially hard to combine untargeted datasets since the majority of metabolomic features are not annotated and thus cannot be matched by chemical identity. Typically, the information available for each feature is retention time (RT), mass-to-charge ratio (m/z), and feature intensity (FI). Pairs of features from the same metabolite in separate datasets can exhibit small but significant differences, making matching very challenging. Current methods to address this issue are too simple or rely on assumptions that cannot be met in all cases. We present a method to find feature correspondence between two similar LC-MS metabolomics experiments or batches using only the features' RT, m/z, and FI. We demonstrate the method on both real and synthetic datasets, using six orthogonal validation strategies to gauge the matching quality. In our main example, 4953 features were uniquely matched, of which 585 (96.8%) of 604 manually annotated features were correct. In a second example, 2324 features could be uniquely matched, with 79 (90.8%) out of 87 annotated features correctly matched. Most of the missed annotated matches are between features that behave very differently from modeled inter-dataset shifts of RT, MZ, and FI. In a third example with simulated data with 4755 features per dataset, 99.6% of the matches were correct. Finally, the results of matching three other dataset pairs using our method are compared with a published alternative method, metabCombiner, showing the advantages of our approach. The method can be applied using M2S (Match 2 Sets), a free, open-source MATLAB toolbox, available at https://github.com/rjdossan/M2S.

Journal article

Stacey D, Chen L, Stanczyk PJ, Howson JMM, Mason AM, Burgess S, MacDonald S, Langdown J, McKinney H, Downes K, Farahi N, Peters JE, Basu S, Pankow JS, Tang W, Pankratz N, Sabater-Lleal M, de Vries PS, Smith NL, Dehghan A, Dehghan A, Heath AS, Morrison AC, Reiner AP, Johnson A, Richmond A, Peters A, van Hylckama Vlieg A, McKnight B, Psaty BM, Hayward C, Ward-Caviness C, O'Donnell C, Chasman D, Strachan DP, Tregouet DA, Mook-Kanamori D, Gill D, Thibord F, Asselbergs FW, Leebeek FWG, Rosendaal FR, Davies G, Homuth G, Temprano G, Campbell H, Taylor HA, Bressler J, Huffman JE, Rotter JI, Yao J, Wilson JF, Bis JC, Hahn JM, Desch KC, Wiggins KL, Raffield LM, Bielak LF, Yanek LR, Kleber ME, Mueller M, Kavousi M, Mangino M, Conomos MP, Liu M, Brown MR, Jhun M-A, Chen M-H, de Maat MPM, Peyser PA, Elliot P, Wei P, Wild PS, Morange PE, van der Harst P, Yang Q, Le N-Q, Marioni R, Li R, Damrauer SM, Cox SR, Trompet S, Felix SB, Volker U, Koenig W, Jukema JW, Guo X, Gelinas AD, Schneider DJ, Janjic N, Samani NJ, Ye S, Summers C, Chilvers ER, Danesh J, Paul DSet al., 2022, Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus (vol 13, 1222, 2022), NATURE COMMUNICATIONS, Vol: 13

Journal article

Castaneda AB, Petty LE, Scholz M, Jansen R, Weiss S, Zhang X, Schramm K, Beutner F, Kirsten H, Schminke U, Hwang S-J, Marzi C, Dhana K, Seldenrijk A, Krohn K, Homuth G, Wolf P, Peters MJ, Dörr M, Peters A, van Meurs JBJ, Uitterlinden AG, Kavousi M, Levy D, Herder C, van Grootheest G, Waldenberger M, Meisinger C, Rathmann W, Thiery J, Polak J, Koenig W, Seissler J, Bis JC, Franceshini N, Giambartolomei C, Cohorts for Heart and Aging Research in Genomic Epidemiology CHARGE Subclinical Working Group, Hofman A, Franco OH, Penninx BWJH, Prokisch H, Völzke H, Loeffler M, O'Donnell CJ, Below JE, Dehghan A, de Vries PSet al., 2022, Associations of carotid intima media thickness with gene expression in whole blood and genetically predicted gene expression across 48 tissues., Hum Mol Genet, Vol: 31, Pages: 1171-1182

Carotid intima media thickness (cIMT) is a biomarker of subclinical atherosclerosis and a predictor of future cardiovascular events. Identifying associations between gene expression levels and cIMT may provide insight to atherosclerosis etiology. Here, we use two approaches to identify associations between mRNA levels and cIMT: differential gene expression analysis in whole blood and S-PrediXcan. We used microarrays to measure genome-wide whole blood mRNA levels of 5647 European individuals from four studies. We examined the association of mRNA levels with cIMT adjusted for various potential confounders. Significant associations were tested for replication in three studies totaling 3943 participants. Next, we applied S-PrediXcan to summary statistics from a cIMT genome-wide association study (GWAS) of 71 128 individuals to estimate the association between genetically determined mRNA levels and cIMT and replicated these analyses using S-PrediXcan on an independent GWAS on cIMT that included 22 179 individuals from the UK Biobank. mRNA levels of TNFAIP3, CEBPD and METRNL were inversely associated with cIMT, but these associations were not significant in the replication analysis. S-PrediXcan identified associations between cIMT and genetically determined mRNA levels for 36 genes, of which six were significant in the replication analysis, including TLN2, which had not been previously reported for cIMT. There was weak correlation between our results using differential gene expression analysis and S-PrediXcan. Differential expression analysis and S-PrediXcan represent complementary approaches for the discovery of associations between phenotypes and gene expression. Using these approaches, we prioritize TNFAIP3, CEBPD, METRNL and TLN2 as new candidate genes whose differential expression might modulate cIMT.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00830410&limit=30&person=true