Imperial College London

DrArmandoDel Rio Hernandez

Faculty of EngineeringDepartment of Bioengineering

Reader in Cellular and Molecular Mechanotransduction
 
 
 
//

Contact

 

+44 (0)20 7594 5187a.del-rio-hernandez

 
 
//

Location

 

308Bessemer BuildingSouth Kensington Campus

//

Summary

 

Summary

Our research is focused on the field of cellular and molecular mechanotransduction, the study of the mechanisms by which cells and molecules transform mechanical stimuli into biochemical signals. For more information, please click this link.

Enquires from motivated and exceptional students and postdocs to work in his group are always welcome. Please send full CV and cover letter to: a.del-rio-hernandez@imperial.ac.uk

 In the Department of Bioengineering, Dr. del Río Hernández is the Director of the MRes in Bioengineering, which offers the opportunity for graduate students to begin their careers in scientific research. 

Research website 

ORCID       Google Scholar      Scopus       Publons

Web of Science Researcher ID: D-3555-2012

Affiliations: FRSB, FRSC


Contact information

Office: Bessemer building (number 11 in the South Kensington campus map)

Room 308, 3rd Floor

Department of Bioengineering

Imperial College London

South Kensington Campus

London SW7 2AZ

United Kingdom

Telephone: 44 (0) 20 7594 5187

Skype: armando.delrio

 

 

    Selected Publications

    Journal Articles

    Lachowski D, Matellan C, Gopal S, et al., 2022, Substrate stiffness-driven membrane tension modulates vesicular trafficking via caveolin-1., ACS Nano, Vol:16, ISSN:1936-0851, Pages:4322-4337

    Chronopoulos A, Thorpe SD, Cortes E, et al., 2020, Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway, Nature Materials, Vol:19, ISSN:1476-1122, Pages:669-678

    Mehta V, Pang K-L, Rozbesky D, et al., 2020, The guidance receptor plexin D1 is a mechanosensor in endothelial cells, Nature, Vol:578, ISSN:0028-0836, Pages:290-295

    Lachowski D, Cortes E, Rice A, et al., 2019, Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis, Scientific Reports, Vol:9, ISSN:2045-2322

    Matellan C, Del Río Hernández AE, 2019, Engineering the cellular mechanical microenvironment - from bulk mechanics to the nanoscale., J Cell Sci, Vol:132

    Cortes E, Lachowski D, Rice A, et al., 2019, Retinoic acid receptor-β is downregulated in hepatocellular carcinoma and cirrhosis and its expression inhibits myosin-driven activation and durotaxis in hepatic stellate cells, Hepatology, Vol:69, ISSN:0270-9139, Pages:785-802

    Cortes E, Sarper M, Robinson B, et al., 2019, GPER is a mechanoregulator of pancreatic stellate cells and the tumor microenvironment, EMBO Reports, Vol:20, ISSN:1469-221X

    Cortes E, Lachowski D, Robinson B, et al., 2019, Tamoxifen mechanically reprograms the tumor microenvironment via HIF-1A and reduces cancer cell survival, EMBO Reports, Vol:20, ISSN:1469-221X

    Cortes E, Lachowski D, Rice A, et al., 2018, Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor, Oncogene, Vol:38, ISSN:0950-9232, Pages:2910-2922

    Yeldag G, Rice A, Del Rio Hernandez A, 2018, Chemoresistance and the self-maintaining tumor microenvironment, Cancers, Vol:10, ISSN:2072-6694

    Haining AWM, Rahikainen R, Cortes E, et al., 2018, Mechanotransduction in talin through the interaction of the R8 domain with DLC1, PLOS Biology, Vol:16, ISSN:1544-9173, Pages:1-20

    Elsharkawy S, Al-Jawad M, Pantano MF, et al., 2018, Protein disorder-order interplay to guide the growth of hierarchical mineralized structures, Nature Communications, Vol:9, ISSN:2041-1723

    von Erlach T, Bertazzo S, Wozniak MA, et al., 2018, Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate, Nature Materials, Vol:17, ISSN:1476-1122, Pages:237-242

    Lachowski D, Cortes E, Robinson B, et al., 2018, FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis, The FASEB Journal, Vol:32, ISSN:0892-6638, Pages:1099-1107

    Rice AJ, Cortes E, Lachowski D, et al., 2017, Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells, Oncogenesis, Vol:6, ISSN:2157-9024, Pages:e352-e352

    Chronopoulos A, Lieberthal TJ, del Río Hernández AE, 2017, Exosomes as a platform for ‘liquid biopsy’ in pancreatic cancer, Convergent Science Physical Oncology, Vol:3, Pages:013005-013005

    Chronopoulos A, Lieberthal TJ, del Río Hernández AE, 2017, Pancreatic cancer: a mechanobiology approach, Convergent Science Physical Oncology, Vol:3, Pages:013001-013001

    Attwood S, Cortes E, Haining, et al., 2016, Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment, Scientific Reports, Vol:6, ISSN:2045-2322

    Chronopoulos A, Robinson B, Sarper M, et al., 2016, ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion, Nature Communications, Vol:7, ISSN:2041-1723, Pages:1-12

    Haining AW, von Essen M, Attwood SJ, et al., 2016, All subdomains of the talin rod are mechanically vulnerable and may contribute to cellular mechanosensing, ACS Nano, Vol:10, ISSN:1936-0851, Pages:6648-6658

    Sarper M, Cortes E, Lieberthal T, et al., 2016, ATRA modulates mechanical activation of TGF-β by pancreatic stellate cells, Scientific Reports, Vol:6, ISSN:2045-2322

    Haining AWM, Lieberthal TJ, del Rio Hernandez A, 2016, Talin: a mechanosensitive molecule in healthand disease, The FASEB Journal, ISSN:0892-6638

    Roca-Cusachs P, del Rio A, Puklin-Faucher E, et al., 2013, Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation, Proceedings of the National Academy of Sciences of the United States of America, Vol:110, ISSN:0027-8424, Pages:E1361-E1370

    Roca-Cusachs P, Gauthier NC, del Rio A, et al., 2009, Clustering of α<sub>5</sub>β<sub>1</sub> integrins determines adhesion strength whereas α<sub>v</sub>β<sub>3</sub> and talin enable mechanotransduction, Proceedings of the National Academy of Sciences of the United States of America, Vol:106, ISSN:0027-8424, Pages:16245-16250

    del Rio A, Perez-Jimenez R, Liu R, et al., 2009, Stretching Single Talin Rod Molecules Activates Vinculin Binding, Science, Vol:323, ISSN:0036-8075, Pages:638-641

    Del Rio A, Dutta K, Chavez J, et al., 2007, Solution structure and dynamics of the N-terminal cytosolic domain of rhomboid intramembrane protease from <i>Pseudomonas aeruginosa</i>:: Insights into a functional role in intramembrane proteolysis, Journal of Molecular Biology, Vol:365, ISSN:0022-2836, Pages:109-122

    More Publications