Imperial College London

ProfessorAhmedElghazouli

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Emeritus Professor of Structural Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6021a.elghazouli

 
 
//

Assistant

 

Ms Ruth Bello +44 (0)20 7594 6040

 
//

Location

 

440Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

365 results found

Elzeadani M, Bompa DV, Elghazouli AY, 2023, Creep Response of Rubberized Alkali-Activated Concrete, Journal of Materials in Civil Engineering, Vol: 35, ISSN: 0899-1561

Journal article

Elzeadani M, Bompa DV, Elghazouli AY, 2023, Compressive and splitting tensile impact properties of rubberised one-part alkali-activated concrete, Journal of Building Engineering, Vol: 71, Pages: 1-27, ISSN: 2352-7102

This paper presents an experimental assessment of the compressive and splitting tensile properties of rubberised one-part alkali-activated concrete under quasi-static and low-velocity impact loading. An optimised mix design, employing blast furnace slag and fly ash as precursors and anhydrous sodium metasilicate as a solid activator, is used as a reference. Rubber contents of up to 60% volumetric replacement of total natural aggregates are considered. Quasi-static tests are performed using servo-hydraulic machines, whilst the impact tests are performed in an instrumented drop-weight loading rig. Digital image correlation is used to get displacement measurements under both quasi-static and impact loading conditions. Three impact velocities of 5, 10, and 15 m/s are considered, giving rise to strain-rates in the range of 3–270 s−1. The quasi-static results show shape- and size-dependency and characteristically lower compressive and splitting tensile strengths with higher rubber content. The dynamic properties are notably influenced by the rubber content, with a higher ratio resulting in greater impact duration under compressive loading, reduced peak compressive strength, and reduced peak splitting tensile strength. The shape of the stress-strain response under compressive loading changes with rubber addition, showing two major peaks as opposed to a single peak for the non-rubberised specimens. The dynamic mechanical properties are also strain-rate dependent, exhibiting an increase with higher strain-rates. The rubberised specimens exhibit higher strain-rate sensitivity in splitting tension than compression, signified by higher dynamic increase factors for a given strain-rate and lower critical transition strain-rates. A higher rubber content in the mix also result in reduced critical transition strain-rates for the compressive strength, axial crushing strain, and splitting tensile strength. Based on the results of this study, analytical expressions are prov

Journal article

Shen M-H, Chung K-F, Elghazouli AY, 2023, Performance of stud shear connections under combined shear and pull-out forces, STRUCTURES, Vol: 51, Pages: 415-434, ISSN: 2352-0124

Journal article

Bompa DV, Elghazouli AY, Bogdan T, Eatherthon MR, Leon RTet al., 2023, Inelastic cyclic response of RBS connections with jumbo sections, Engineering Structures, Vol: 281, Pages: 1-23, ISSN: 0141-0296

This paper examines the cyclic performance of reduced beam section (RBS) moment connections incorporating larger member sizes than those allowed in the current seismic provisions for prequalified steel connections, through experimentally validated three-dimensional nonlinear numerical assessments. Validations of the adopted nonlinear finite element procedures are carried out against experimental results from two test series, including four full-scale RBS connections comprising large structural members, outside the prequalification limits. After gaining confidence in the ability of the numerical models to predict closely the full inelastic response and failure modes, parametric investigations are undertaken. Particular attention is given to assessing the influence of the RBS-to-column capacity ratio as well as the RBS geometry and location on the overall response. The numerical results and test observations provide a detailed insight into the structural behavior, including strength, ductility, and failure modes of large RBS connections. It is shown that connections which consider sections beyond the code limits, by up to two times the weight or beam depth limits, developed a stable inelastic response characterized by beam flexural yielding and inelastic local buckling. However, connections with very large beam sections, up to three-times the typically prescribed limits, exhibited significant hardening resulting in severe demands at the welds, hence increasing susceptibility to weld fracture and propagation through the column. The findings from this study point to the need, in jumbo sections with thick flanges, for a deeper RBS cut than currently specified in design, to about 66% of the total beam width. This modification would be required to promote a response governed by extensive yielding at the RBS while reducing the excessive strain demands at the beam-to-column welds. Moreover, for connections incorporating relatively deep columns, it is shown that more stringen

Journal article

Elzeadani M, Bompa DV, Elghazouli AY, 2023, Monotonic and cyclic constitutive behaviour of rubberised one-part alkali-activated concrete, Construction and Building Materials, Vol: 368, Pages: 1-22, ISSN: 0950-0618

This study presents an experimental assessment into the monotonic and cyclic compressive stress-strain rate-dependent response of rubberised one-part alkali-activated concrete. Three different volumetric crumb rubber replacement ratios of total natural aggregates (0%, 30% and 60%), and three different strain rates accounting for quasi-static, moderate seismic and severe seismic conditions are considered. The results indicate a reduction in the elastic modulus, compressive strength, and crushing energy in proportion to the rubber content regardless of the strain rate or loading condition, monotonic or cyclic. A reduction in the axial crushing strain is also obtained with the increase in rubber content within the ranges considered. The increase in strain rate leads to a proportional enhancement in elastic modulus, compressive strength, and axial crushing strain. Under cyclic conditions, the unloading and reloading branches of the stress-strain response fall within the monotonic curves. The cumulative energy dissipation from each first cyclic loop reduces with the increase in rubber content, whilst an increase in the loading rate results in a proportional increase in the cumulative energy dissipation. The unloading modulus is shown to be sensitive to the unloading strain, rubber content and strain rate, while the plastic residual strain is mainly influenced by the unloading strain. Analytical expressions to predict the reduction in elastic modulus, compressive strength, axial crushing strain, unloading modulus and plastic residual strain, with varying rubber contents and for the different strain rates considered, are proposed. Constitutive models representing the monotonic stress-strain response of rubberised alkali-activated concrete materials, as well as the unloading and reloading branches of the cyclic stress-strain response, are also given. Finally, formulations for the strain rate-dependent dynamic increase factors for the elastic modulus, compressive strength, a

Journal article

Bakkar AR, Elyamani A, El-Attar AG, Bompa DV, Elghazouli AY, Mourad SAet al., 2023, Dynamic characterisation of a heritage structure with limited accessibility using ambient vibrations, Buildings, Vol: 13, Pages: 1-23, ISSN: 2075-5309

Historic Cairo has been a UNESCO World Heritage Site since 1979. It has more than 600 historic structures, which require extensive studies to sustain their cultural, religious, and economic values. The main aim of this paper is to undertake dynamic investigation tests for the dome of Fatima Khatun, a historic mausoleum in Historic Cairo dating back to the 13th century and consisting of mainly bricks and stones. The challenge was that the structure was difficult to access, and only a small portion of the top was accessible for the attachment of accelerometers. Current dynamic identification procedures typically adopt methods in which the sensors are arranged at optimal locations and permit direct assessment of the natural frequencies, mode shapes, and damping ratios of a structure. Approaches that allow for the evaluation of dynamic response for structures with limited accessibility are lacking. To this end, in addition to in situ dynamic investigation tests, a numerical model was created based on available architectural, structural, and material documentation to obtain detailed insight into the dominant modes of vibration. The free vibration analysis of the numerical model identified the dynamic properties of the structure using reasonable assumptions on boundary conditions. System identification, which was carried out using in situ dynamic investigation tests and input from modelling, captured three experimental natural frequencies of the structure with their mode shapes and damping ratios. The approach proposed in this study informs and directs structural restoration for the mausoleum and can be used for other heritage structures located in congested historic sites.

Journal article

Bompa D, Elghazouli A, 2023, Connections of reinforced concrete beams or flat slabs to steel columns using shear keys, Design of Hybrid Structures: Where Steel Profiles Meet Concrete, Pages: 271-336, ISBN: 9780367712075

Hybrid connections between steel columns and reinforced concrete beams or flat slabs may be required due to design constraints or constructional considerations. This chapter presents a unified design procedure for hybrid connections provided with steel shear keys that are welded to the column and fully integrated into the concrete floor. The procedure, based on the fundamentals of European design provisions, includes design expressions for assessing the bending and shear resistances of various regions of connections to beams, as well as for determining the flexural and punching shear capacities of hybrid flat-slab configurations. In addition, detailed requirements for each specific region of the connection are included. Recommendations are also given for determining shear-key dependent parameters, such as the embedment length and cross-section size. The design procedure was validated against an extensive database of tests and numerical models and is suitable for effective practical application.

Book chapter

Elzeadani M, Bompa DV, Elghazouli AY, 2023, Creep Response of Rubberised One-Part Alkali-Activated Concrete, Pages: 298-308, ISSN: 2366-2557

This paper presents the creep deformations and long-term constitutive behavior of rubberised one-part alkali-activated concrete. Blast furnace slag and fly ash are used as the main and secondary aluminosilicate precursor, respectively, while anhydrous sodium metasilicate is employed as a solid activator. Crumb rubber particles are used to replace up to 60% by volume of the total natural aggregates. Specimens are allowed to cure at ambient conditions for 28 days, and the creep specimens are then subjected to two compressive stress levels of 10 and 20% of the 28-day strength, which are sustained for a period of one-year. Results show a deterioration in the compressive strength and elastic modulus with higher rubber content. The long-term strength properties of the creep specimens and their unloaded counterparts are lower than similar specimens tested at 28 days. The axial and lateral crushing strains of the specimens tested at the end of the creep test are higher than similar specimens tested at 28 days. The creep strains increase as the creep load increases but reduce with higher rubber content. The specific creep and creep coefficients show a reduction as the creep load increases from 10 to 20% of the 28-day compressive strength but increase as the rubber content increases. The creep coefficients of the non-rubberised specimens are significantly higher than those given by design equations in the CEB-FIP Model Code 2010, while the opposite is seen for specimens with high rubber content.

Conference paper

Mujdeci A, Guo YT, Bompa DV, Elghazouli AYet al., 2022, Axial and bending behaviour of steel tubes infilled with rubberised concrete, Thin-Walled Structures, Vol: 181, Pages: 1-18, ISSN: 0263-8231

This paper presents an experimental and numerical study into the behaviour of rubberised concrete-filled steel tubes (RuCFST), incorporating concrete with relatively high rubber replacements of up to 60% of mineral aggregates by volume. Axial compression, eccentric compression, and three-point bending tests on circular specimens are carried out and the results are used to validate the nonlinear procedures adopted in continuum finite element (FE) models of RuCFST members. A constitutive material model specific for confined rubberised concrete and associated modelling techniques, developed from existing procedures for concrete-filled steel tubes (CFST), is proposed for RuCFST members. The modelling techniques involve different damage definitions including low strength concrete with high rubber replacements in compression and bending. It is shown that the proposed modelling procedures can predict reliably the structural behaviour of circular RuCFST members under combined axial-bending conditions. The numerical procedures are then employed in undertaking a detailed parametric assessment for RuCFST cross-sections. The results are used to appraise current design procedures and to propose modifications that provide improved capacity predictions for a wide range of properties and loading conditions.

Journal article

Elghazouli AY, Mujdeci A, Bompa DV, Guo YTet al., 2022, Experimental cyclic response of rubberised concrete-filled steel tubes, Journal of Constructional Steel Research, Vol: 199, Pages: 1-17, ISSN: 0143-974X

This paper examines the behaviour of circular steel tubes infilled with concrete incorporating recycled rubber particles. The rubberised concrete-filled steel tubes are tested under lateral cyclic deformations with and without co-existing axial loading. A detailed account of the cyclic tests on twelve specimens is provided together with complementary material and section tests. The rubber replacement ratio is varied up to a relatively high value of 60%, under axial loads reaching up to 30% of the nominal capacity. Hollow steel members are also tested for comparison purposes. The experimental results are discussed in detail with respect to the member stiffness, capacity, ductility, energy dissipation and failure mechanisms. Although high rubber ratios lead to a considerable loss in concrete strength, the test results show that the corresponding reduction in member capacity is much less significant due to the contribution of the steel tube and the comparatively high confinement effects mobilised within the rubberised concrete. In comparison with the members incorporating normal concrete, the rubberised concrete members are found to exhibit up to about 10% and 17% increase in ductility and energy dissipation, respectively, depending on the rubber content. Analytical treatments are then used to suggest simplified relationships for predicting the stiffness, moment-axial strength interaction, plastic hinge length and local ductility criteria. Overall, the test results demonstrate the favourable inelastic cyclic performance of circular steel tubes infilled with rubberised concrete and provide valuable experimental data. The proposed expressions for key response parameters also offer the basis for developing practical assessment and design methods.

Journal article

Elzeadani M, Bompa DV, Elghazouli AY, 2022, Experimental assessment and constitutive modelling of rubberised One-Part Alkali-Activated concrete, Construction and Building Materials, Vol: 353, Pages: 1-27, ISSN: 0950-0618

This study deals with the development and assessment of rubberised one-part alkali-activated concrete. An experimental programme, focusing on optimising the material proportions for high flowability and compressive strength, is firstly described. This includes varying the proportions of aluminosilicate precursors, binder-to-aggregate ratio, activator dosage, and admixture quantity to find an optimum mix design with stable strength development up to 90 days. Crumb rubber particles are then added to replace up to 60 % by volume of the natural mineral aggregates. The effect of rubber addition on the mechanical properties is quantified and analytical expressions for the compressive strength, elastic modulus, splitting tensile strength, and flexural strength are presented. A database consisting of 241 conventional rubberised concrete as well as 57 rubberised alkali-activated mixes, available in the literature, is then assembled and used for direct comparison of the characteristics of different rubberised concrete materials. It is shown that the degradation in compressive strength for one-part rubberised alkali-activated concrete with high rubber replacement ratios falls within similar ranges as conventional and two-part alkali-activated rubberised concrete. However, the results show that the elastic modulus of one-part rubberised alkali-activated concrete is significantly lower than that of rubberised concrete mixes with the same compressive strength. Moreover, while the lateral crushing strain of one-part rubberised alkali-activated concrete increases with higher rubber replacement ratios, the axial crushing strain reduces slightly. It is also shown that the post-peak stress–strain response exhibits greater softening with higher rubber ratios. Based on the findings of the study, constitutive models for representing the compressive stress–strain response and flexural stress-crack width response are proposed. The presented expressions provide insights into the

Journal article

Guo YT, Bompa DV, Elghazouli AY, 2022, Nonlinear numerical assessments for the in-plane response of historic masonry walls, Engineering Structures, Vol: 268, Pages: 1-20, ISSN: 0141-0296

This study examines the in-plane cyclic response of historic masonry elements using a micro modelling approach that incorporates damage-plasticity and surface-based cohesive-contact interface approaches. The nonlinear procedures adopted are validated against tests on dry and wet panels in diagonal compression and large walls under reverse shear-compression loading. Considering the inherent material variability, the numerical results are shown to correlate well with the test results in terms of stiffness, strength, ductility, overall hysteretic response, and cyclic degradation. Based on the validated models, followed by exploratory sensitivity studies, detailed parametric assessments are carried out. The parameter ranges are selected to cover historical masonry materials, consisting of bricks and mortar, and address both dry and wet conditions. Four typical failure modes, namely, flexural strut crushing, diagonal cracking, flexural toe crushing, and mixed sliding, in an order of increasing ductility, are quantified and discussed. It is shown that wet masonry walls have an average reduction of 16% in terms of stiffness and capacity compared with the dry counterparts. Although the failure modes in dry and wet wall pairs are similar, some cases are identified in which the weaker moisture-affected joint strength results in a shift to a more brittle mode. It is also shown that the ductility of the flexural strut crushing mode, which often governs the failure of historical masonry due to its low strength, is considerably overestimated in existing guidelines. Based on the results of the parametric investigations, analytical models for predicting the inelastic response are evaluated, and suggestions for modifications are proposed.

Journal article

Elzeadani M, Bompa DV, Elghazouli AY, 2022, One part alkali activated materials: A state-of-the-art review, Journal of Building Engineering, Vol: 57, Pages: 104871-104871, ISSN: 2352-7102

This article assesses the state-of-the-art for research on one-part alkali-activated materials, with particular emphasis on recent work dealing with the constituent materials, preparation methods, fresh properties, mechanical properties, and durability characteristics. The review, which covers over 170 studies, first discusses the different precursors, solid activators, admixtures, and aggregates used within such materials. Preparation techniques of one-part alkali-activated materials are then addressed, including pre-mixing treatment, mixing and curing, and 3D-printing. Reaction mechanisms and resulting binding phases are also outlined, followed by a detailed discussion on the fresh, mechanical and durability characteristics. The sensitivity of the compressive strength to different precursors and solid activators with varying chemical compositions, is examined, and predictive strength equations are proposed for common mixes. A brief comparison between the fresh, mechanical and durability characteristics of one-part and two-part AAMs is outlined, followed by a discussion on design standards as well as health and environmental aspects. The review concludes with suggestions for future research for key applications, with due consideration to the projected availability of precursors and the sustainability of solid activators. It is shown that despite the significant recent developments on one-part alkali-activated materials, further progress necessitates future research with a focus on optimising mixes made from precursors other than fly ash and blast furnace slag, as well as detailed investigations on structural members and components.

Journal article

Elghazouli A, Bompa DV, Mourad SA, Elyamani Aet al., 2022, Seismic performance of heritage clay brick and lime mortar masonry structures, 17th European Conference on Earthquake Engineering

Conference paper

Elghazouli A, Bompa DV, Mourad SA, Elyamani Aet al., 2022, Seismic performance of heritage clay brick and lime mortar masonry structures, Progress in European Earthquake Engineering and Seismology, Editors: Vacareanu, Ionescu, Publisher: Springer

Book chapter

Elghazouli A, Bompa DV, El-Zeadani M, 2022, Mechanical properties and stress-strain response of rubberised one-part alkali-activated concrete, 14th fib Sympsoium in Civil Engineering, Pages: 265-272, ISSN: 2617-4820

Conference paper

Liapopoulou M, Stafford PJ, Elghazouli A, 2022, Duration effects on the seismic collapse of steel frames, 17th European Conference on Earthquake Engineering, Pages: Paper ID 8642-Paper ID 8642

Conference paper

Guo Y, Bompa DV, Elghazouli A, 2022, Numerical modelling of the cyclic behaviour of clay brick and lime mortar masonry elements, 17th European Conference on Earthquake Engineering, Pages: Paper ID 8472-Paper ID 8472

Conference paper

Bompa DV, Elghazouli A, 2022, Ultimate cyclic response of steel reduced beam section connections, 17th European Conference on Earthquake Engineering, Pages: Paper ID 3438-Paper ID 3438

Conference paper

Martinez-Paneda M, Elghazouli A, 2022, Seismic performance of tall buildings with novel damping approaches, 17th European Conference on Earthquake Engineering, Pages: Paper ID 4311-Paper ID 4311

Conference paper

Bompa D, Bogdan T, Elghazouli A, Nuñez E, Eatherthon M, Leon Ret al., 2022, Nonlinear Numerical Assessment of SteelReduced Beam Section Connections, Proceedings of the 10th International Conference on Behaviour of Steel Structures in Seismic Areas - STESSA 2022, Editors: Mazzolani, Dubina, Stratan, Publisher: Springer, Pages: 252-260

Book chapter

Sahin B, Bravo-Haro MA, Elghazouli AY, 2022, Assessment of cyclic degradation effects in composite steel-concrete members, Journal of Constructional Steel Research, Vol: 192, Pages: 107231-107231, ISSN: 0143-974X

This paper investigates the inelastic behaviour of composite steel concrete beams, with particular emphasis on cyclic deterioration effects. A detailed continuum model is firstly developed to represent the hysteretic response of composite steel beam and concrete slab assemblages, validated against available experimental cyclic results on both steel and composite members. The proposed model is then adopted to perform detailed parametric assessments which are used to gain insights into the key response characteristics related to the inelastic cyclic performance of composite steel/concrete members, including their stiffness, capacity, and ductility. A synthetically generated numerical database is subsequently used to develop relationships governing the plastic rotation and cyclic degradation of dissipative composite beams as a function of the main geometric and material properties, with focus on members designed to European codified procedures. The deterioration effects are shown to be dependent on a number of key factors including, most significantly, the composite beam depth and the steel cross-section slenderness. In addition to the asymmetry in behaviour under sagging and hogging moments, it is shown that composite members typically exhibit 20% more degradation under cyclic loading compared to their bare steel counterparts. Importantly, the proposed cyclic degradation expressions for composite beams also enable the calibration of widely used uniaxial deterioration models which are suitable for implementation in computationally efficient nonlinear inelastic frame analysis for structural systems. These expressions also provide fundamental information required for idealised pushover representations for practical seismic assessment and design purposes.

Journal article

Moharram M, Bompa D, Xu B, Elghazouli AYet al., 2022, Behaviour and design of hybrid RC beam-to-steel column connections, Engineering Structures, Vol: 250, Pages: 2-18, ISSN: 0141-0296

Journal article

Khalil Z, Elghazouli AY, Martínez-Pañeda E, 2022, A generalised phase field model for fatigue crack growth in elastic-plastic solids with an efficient monolithic solver, Computer Methods in Applied Mechanics and Engineering, Vol: 388, Pages: 1-22, ISSN: 0045-7825

We present a generalised phase field-based formulation for predicting fatigue crack growth in metals. The theoretical framework aims at covering a wide range of material behaviour. Different fatigue degradation functions are considered and their influence is benchmarked against experiments. The phase field constitutive theory accommodates the so-called AT1, AT2 and phase field-cohesive zone (PF-CZM) models. In regards to material deformation, both non-linear kinematic and isotropic hardening are considered, as well as the combination of the two. Moreover, a monolithic solution scheme based on quasi-Newton algorithms is presented and shown to significantly outperform staggered approaches. The potential of the computational framework is demonstrated by investigating several 2D and 3D boundary value problems of particular interest. Constitutive and numerical choices are compared and insight is gained into their differences and similarities. The framework enables predicting fatigue crack growth in arbitrary geometries and for materials exhibiting complex (cyclic) deformation and damage responses. The finite element code developed is made freely available at www.empaneda.com/codes.

Journal article

Bompa DV, Bogdan T, Elghazouli AY, Nuñez E, Eatherthon MR, Leon RTet al., 2022, Nonlinear Numerical Assessment of Steel Reduced Beam Section Connections, Pages: 252-260, ISSN: 2366-2557

Cyclic tests on Reduced Beam Section (RBS) connections made of heavy structural sections provided detailed insight into the structural behaviour, including strength, ductility, and failure modes of such configurations. The experimental results indicated that geometrical and material effects need to be carefully considered when designing welded RBS connections incorporating large steel profiles. To better interpret the experimental results, nonlinear finite element simulations are conducted for the test series, comprising four large-scale specimens with distinct sizes. It is shown that the numerical models can reproduce the overall moment-rotation curves, inelastic distribution, as well as failure modes. The findings point out the need, in relatively large sections with thick flanges, for a deeper RBS cut than currently specified in design guidance. This modification would be required to promote a response governed by extensive yielding at the RBS while reducing the excessive strain demands at the beam-column welds.

Conference paper

Elzeadani M, Bompa D, Elghazouli AY, 2021, Preparation and properties of rubberised geopolymer concrete: A review, Construction and Building Materials, Vol: 313, Pages: 1-20, ISSN: 0950-0618

Interest in geopolymer concrete (GeoPC) and in rubberised concrete (RuC) has grown over the past two decades. The former offers an attractive alternative to ordinary Portland cement (OPC) concrete given its environmental footprint, while the latter provides a sustainable solution to tyre recycling and helps mitigate the depletion of natural aggregates. The benefits of combining the merits of GeoPC and RuC to form rubberised geopolymer concrete (RuG) as a potential sustainable construction material have been recognised in the past few years. As such, this paper presents a detailed review of RuG highlighting its constituent components, preparation and curing aspects, fresh and physical qualities, durability features, and thermal and sound insulation qualities, with a particular focus on mechanical properties. The influence of crumb rubber replacement on key characteristics is critically reviewed, including the effect of binder type, alkaline solution, alkaline solution-to-binder content, and curing conditions. Comparative quantitative assessments and prediction relationships are also presented where relevant. Finally, gaps in the available literature and recommendations for future research are outlined, with a view to supporting further developments in research and future deployment of RuG materials in practice. Whilst previous studies demonstrate the significant potential of RuG and provide essential information on its funda-mental properties, this review reveals that much research is still needed in order to optimise the merits of the material and to provide a full characterisation of its behaviour at both the material and structural levels under various loading conditions.

Journal article

Elghazouli A, Bompa DV, Mourad SA, Elyamani Aet al., 2021, Structural Behaviour of Clay Brick Lime Mortar Masonry Walls Under Lateral Cyclic Loading in Dry and Wet Conditions, Protection of Historical Constructions Proceedings of PROHITECH 2020, Editors: Vayas, Mazzolani, Publisher: Springer, ISBN: 9783030907877

Book chapter

Martinez-Paneda M, Elghazouli A, 2021, Optimal application of fluid viscous dampers in tall buildings incorporating integrated damping systems, The Structural Design of Tall and Special Buildings, Vol: 30, Pages: 1-26, ISSN: 1541-7808

This paper examines the detailed performance of an Integrated-Damping-System (IDS) approach which wasrecently introduced to provide large damping levels by enabling two parts of a building to move independentlythrough a parallel arrangement of springs and fluid viscous dampers. Extensive assessments into thecharacteristics and distribution of constituent dampers are illustrated through the dynamic response of a typical300m central-core building. Besides examining the system performance under typical wind conditions andselected seismic excitations, five damper placement methods are assessed for various linear and nonlinear damperexponents. It is shown that intermediate exponents provide the best overall response. However, when the designtargets a particular damping, deformation or acceleration related performance parameter, specific combinationsof damper exponent and distribution can result in an optimal application. Most importantly, due to the underlyingIDS nature, which acts as an inherent large-mass damper, the findings show that the overall performance is nothighly sensitive to the damper placement and does not necessitate the use of an advanced distribution. Whilstspecific placements can be adopted to refine targeted performance aspects where necessary, simple and practicaluniform or stiffness proportional arrangements can be consistently employed with the IDS to provide a highlyeffective solution.

Journal article

Elghazouli A, Bompa DV, Mourad SA, Elyamani Aet al., 2021, Structural behaviour of clay brick lime mortar masonry walls under lateral cyclic loading in dry and wet conditions, International Conference on Protection of Historical Constructions

Conference paper

Bompa DV, Elghazouli A, 2021, Shear-compression failure envelopes for clay brick lime mortar masonry under wet and dry conditions, International Conference on Protection of Historical Constructions

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00158252&limit=30&person=true