Imperial College London

DrAnaEulalio

Faculty of Natural SciencesDepartment of Life Sciences

Reader in Cellular Microbiology
 
 
 
//

Contact

 

a.eulalio

 
 
//

Location

 

1.42Flowers buildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

43 results found

Rodrigues Lopes I, Alcantara LM, Silva RJ, Josse J, Vega EP, Cabrerizo AM, Bonhomme M, Lopez D, Laurent F, Vandenesch F, Mano M, Eulalio Aet al., 2022, Microscopy-based phenotypic profiling of infection by Staphylococcus aureus clinical isolates reveals intracellular lifestyle as a prevalent feature, Nat Commun, Vol: 13, ISSN: 2041-1723

Staphylococcus aureus is increasingly recognized as a facultative intracellular pathogen, although the significance and pervasiveness of its intracellular lifestyle remain controversial. Here, we applied fluorescence microscopy-based infection assays and automated image analysis to profile the interaction of 191 S. aureus isolates from patients with bone/joint infections, bacteremia, and infective endocarditis, with four host cell types, at five times post-infection. This multiparametric analysis revealed that almost all isolates are internalized and that a large fraction replicate and persist within host cells, presenting distinct infection profiles in non-professional vs. professional phagocytes. Phenotypic clustering highlighted interesting sub-groups, including one comprising isolates exhibiting high intracellular replication and inducing delayed host death in vitro and in vivo. These isolates are deficient for the cysteine protease staphopain A. This study establishes S. aureus intracellular lifestyle as a prevalent feature of infection, with potential implications for the effective treatment of staphylococcal infections.

Journal article

Lisowski C, Dias J, Costa S, Silva RJ, Mano M, Eulalio Aet al., 2022, Dysregulated endolysosomal trafficking in cells arrested in the G1 phase of the host cell cycle impairs Salmonella vacuolar replication, Autophagy, Vol: 18, Pages: 1785-1800, ISSN: 1554-8635

Modulation of the host cell cycle has emerged as a common theme among the pathways regulated by bacterial pathogens, arguably to promote host cell colonization. However, in most cases the exact benefit ensuing from such interference to the infection process remains unclear. Previously, we have shown that Salmonella actively induces G2/M arrest of host cells, and that infection is severely inhibited in cells arrested in G1. In this study, we demonstrate that Salmonella vacuolar replication is inhibited in host cells blocked in G1, whereas the cytosolic replication of the closely related pathogen Shigella is not affected. Mechanistically, we show that cells arrested in G1, but not cells arrested in G2, present dysregulated endolysosomal trafficking, displaying an abnormal accumulation of vesicles positive for late endosomal and lysosomal markers. In addition, the macroautophagic/autophagic flux and degradative lysosomal function are strongly impaired. This endolysosomal trafficking dysregulation results in sustained activation of the SPI-1 type III secretion system and lack of vacuole repair by the autophagy pathway, ultimately compromising the maturation and integrity of the Salmonella-containing vacuole. As such, Salmonella is released in the host cytosol. Collectively, our findings demonstrate that the modulation of the host cell cycle occurring during Salmonella infection is related to a disparity in the permissivity of cells arrested in G1 and G2/M, due to their intrinsic characteristics.Abbreviations: CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CDK4-CDK6i: CDK4-CDK6 inhibitor IV; cfu: colony-forming units; CHQ: chloroquine; DMSO: dimethyl sulfoxide; EEA1: early endosome antigen 1; FITC: fluorescein isothiocyanate; GFP: green fluorescent protein; hpi: hours post-infection; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MOI: multiplicity of infection; RAB7: RAB7, member RAS

Journal article

Cordero M, Garcia-Fernandez J, Acosta IC, Yepes A, Avendano-Ortiz J, Lisowski C, Oesterreicht B, Ohlsen K, Lopez-Collazo E, Forstner KU, Eulalio A, Lopez Det al., 2022, The induction of natural competence adapts staphylococcal metabolism to infection, Nat Commun, Vol: 13, ISSN: 2041-1723

A central question concerning natural competence is why orthologs of competence genes are conserved in non-competent bacterial species, suggesting they have a role other than in transformation. Here we show that competence induction in the human pathogen Staphylococcus aureus occurs in response to ROS and host defenses that compromise bacterial respiration during infection. Bacteria cope with reduced respiration by obtaining energy through fermentation instead. Since fermentation is energetically less efficient than respiration, the energy supply must be assured by increasing the glycolytic flux. The induction of natural competence increases the rate of glycolysis in bacteria that are unable to respire via upregulation of DNA- and glucose-uptake systems. A competent-defective mutant showed no such increase in glycolysis, which negatively affects its survival in both mouse and Galleria infection models. Natural competence foster genetic variability and provides S. aureus with additional nutritional and metabolic possibilities, allowing it to proliferate during infection.

Journal article

Aguilar C, Costa S, Maudet C, Vivek-Ananth RP, Zaldivar-Lopez S, Garrido JJ, Samal A, Mano M, Eulalio Aet al., 2021, Reprogramming of microRNA expression via E2F1 downregulation promotes Salmonella infection both in infected and bystander cells, Nat Commun, Vol: 12, ISSN: 2041-1723

Cells infected with pathogens can contribute to clearing infections by releasing signals that instruct neighbouring cells to mount a pro-inflammatory cytokine response, or by other mechanisms that reduce bystander cells' susceptibility to infection. Here, we show the opposite effect: epithelial cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells. We find that the endoplasmic reticulum stress response is activated in both infected and bystander cells, and this leads to activation of JNK pathway, downregulation of transcription factor E2F1, and consequent reprogramming of microRNA expression in a time-dependent manner. These changes are not elicited by infection with other bacterial pathogens, such as Shigella flexneri or Listeria monocytogenes. Remarkably, the protein HMGB1 present in the secretome of Salmonella-infected cells is responsible for the activation of the IRE1 branch of the endoplasmic reticulum stress response in non-infected, neighbouring cells. Furthermore, E2F1 downregulation and the associated microRNA alterations promote Salmonella replication within infected cells and prime bystander cells for more efficient infection.

Journal article

Aguilar C, Cruz AR, Rodrigues Lopes I, Maudet C, Sunkavalli U, Silva RJ, Sharan M, Lisowski C, Zaldivar-Lopez S, Garrido JJ, Giacca M, Mano M, Eulalio Aet al., 2020, Functional screenings reveal different requirements for host microRNAs in Salmonella and Shigella infection, Nat Microbiol, Vol: 5, Pages: 192-205, ISSN: 2058-5276

MicroRNAs (miRNAs) are increasingly recognized for their role in infection by bacterial pathogens, although the effect of each individual miRNA remains largely unknown. Here, we used a comparative genome-wide microscopy-based functional screening approach to identify miRNAs controlling infection by two bacterial pathogens-Salmonella enterica serovar Typhimurium and Shigella flexneri. Despite the similarities between these pathogens, we found infections to be controlled by largely non-overlapping subsets of miRNAs, seemingly reflecting different requirements prompted by their distinct intracellular lifestyles. By characterizing a small subset of miRNAs chosen among the strongest inhibitors of Shigella infection, we discovered that miR-3668, miR-4732-5p and miR-6073 exert a selective effect on Shigella infection by impairing bacterial actin-based motility by downregulating N-WASP. Additionally, by identifying let-7i-3p miRNA as a strong inhibitor of Salmonella replication and performing in-depth analysis of its mechanisms of action, we showed that this miRNA specifically inhibits Salmonella infection via modulation of endolysosomal trafficking and the vacuolar environment by targeting the host RGS2 protein. These findings illustrate two paradigms underlying miRNA-mediated regulation of bacterial infection, acting as part of the host response to infection, or as part of bacterial strategies to modulate the host environment and favour pathogenesis.

Journal article

Rodrigues Lopes I, Silva RJ, Caramelo I, Eulalio A, Mano Met al., 2019, Shedding light on microRNA function via microscopy-based screening, Methods, Vol: 152, Pages: 55-64, ISSN: 1095-9130

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally modulate gene expression and orchestrate a wide range of biological and pathological processes. The use of high-throughput screening technologies, in particular microscopy-based screenings (also known as high-content screenings), coupled with genome-wide libraries for modulation of miRNA levels, allow for comprehensive functional analysis of each member of the miRNome in different phenotypic cell-based assays. The wealth of information obtained from such screenings spans across various fields of research, including cancer, cardiovascular, cell reprogramming, and infection biology. Here, we provide an overview of the rationale for performing screenings using synthetic libraries of miRNA mimics and inhibitors, and of the microscopy-based miRNA screenings performed to date. Moreover, a list of resources available for such endeavor is provided. Finally, we describe a detailed procedure for a case study where microscopy-based screening using a library of miRNA mimics was performed to identify miRNAs that control infection of epithelial cells by the bacterial pathogen Salmonella. The methodologies described here can be easily adapted for screenings addressing other biological questions.

Journal article

Aguilar C, Mano M, Eulalio A, 2019, MicroRNAs at the Host-Bacteria Interface: Host Defense or Bacterial Offense, Trends Microbiol, Vol: 27, Pages: 206-218, ISSN: 1878-4380

MicroRNAs are a class of small noncoding RNAs that act as major post-transcriptional regulators of gene expression. They are currently recognized for their important role in the intricate interaction between host and bacterial pathogens, either as part of the host immune response to neutralize infection, or as a molecular strategy employed by bacteria to hijack host pathways for their own benefit. Here, we summarize recent advances on the function of miRNAs during infection of mammalian hosts by bacterial pathogens, highlighting key cellular pathways. In addition, we discuss emerging themes in this field, including the participation of miRNAs in host-microbiota crosstalk and cell-to-cell communication.

Journal article

Aguilar C, Mano M, Eulalio A, 2019, Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction, Microbiol Spectr, Vol: 7, ISSN: 2165-0497

MicroRNAs (miRNAs) are a well-characterized class of small noncoding RNAs that act as major posttranscriptional regulators of gene expression. Accordingly, miRNAs have been associated with a wide range of fundamental biological processes and implicated in human diseases. During the past decade, miRNAs have also been recognized for their role in the complex interplay between the host and bacterial pathogens, either as part of the host response to counteract infection or as a molecular strategy employed by bacteria to subvert host pathways for their own benefit. Importantly, the characterization of downstream miRNA targets and their underlying mechanisms of action has uncovered novel molecular factors and pathways relevant to infection. In this article, we review the current knowledge of the miRNA response to bacterial infection, focusing on different bacterial pathogens, including Salmonella enterica, Listeria monocytogenes, Mycobacterium spp., and Helicobacter pylori, among others.

Journal article

Tawk C, Nigro G, Rodrigues Lopes I, Aguilar C, Lisowski C, Mano M, Sansonetti P, Vogel J, Eulalio Aet al., 2018, Stress-induced host membrane remodeling protects from infection by non-motile bacterial pathogens, EMBO J, Vol: 37, ISSN: 1460-2075

While mucosal inflammation is a major source of stress during enteropathogen infection, it remains to be fully elucidated how the host benefits from this environment to clear the pathogen. Here, we show that host stress induced by different stimuli mimicking inflammatory conditions strongly reduces the binding of Shigella flexneri to epithelial cells. Mechanistically, stress activates acid sphingomyelinase leading to host membrane remodeling. Consequently, knockdown or pharmacological inhibition of the acid sphingomyelinase blunts the stress-dependent inhibition of Shigella binding to host cells. Interestingly, stress caused by intracellular Shigella replication also results in remodeling of the host cell membrane, in vitro and in vivo, which precludes re-infection by this and other non-motile pathogens. In contrast, Salmonella Typhimurium overcomes the shortage of permissive entry sites by gathering effectively at the remaining platforms through its flagellar motility. Overall, our findings reveal host membrane remodeling as a novel stress-responsive cell-autonomous defense mechanism that protects epithelial cells from infection by non-motile bacterial pathogens.

Journal article

Tawk C, Sharan M, Eulalio A, Vogel Jet al., 2017, A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins, Sci Rep, Vol: 7, ISSN: 2045-2322

Many pathogenic bacteria utilize specialized secretion systems to deliver proteins called effectors into eukaryotic cells for manipulation of host pathways. The vast majority of known effector targets are host proteins, whereas a potential targeting of host nucleic acids remains little explored. There is only one family of effectors known to target DNA directly, and effectors binding host RNA are unknown. Here, we take a two-pronged approach to search for RNA-binding effectors, combining biocomputational prediction of RNA-binding domains (RBDs) in a newly assembled comprehensive dataset of bacterial secreted proteins, and experimental screening for RNA binding in mammalian cells. Only a small subset of effectors were predicted to carry an RBD, indicating that if RNA targeting was common, it would likely involve new types of RBDs. Our experimental evaluation of effectors with predicted RBDs further argues for a general paucity of RNA binding activities amongst bacterial effectors. We obtained evidence that PipB2 and Lpg2844, effector proteins of Salmonella and Legionella species, respectively, may harbor novel biochemical activities. Our study presenting the first systematic evaluation of the RNA-targeting potential of bacterial effectors offers a basis for discussion of whether or not host RNA is a prominent target of secreted bacterial proteins.

Journal article

Chowdhury SR, Reimer A, Sharan M, Kozjak-Pavlovic V, Eulalio A, Prusty BK, Fraunholz M, Karunakaran K, Rudel Tet al., 2017, Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission, J Cell Biol, Vol: 216, Pages: 1071-1089, ISSN: 1540-8140

Obligate intracellular bacteria such as Chlamydia trachomatis depend on metabolites of the host cell and thus protect their sole replication niche by interfering with the host cells' stress response. Here, we investigated the involvement of host microRNAs (miRNAs) in maintaining the viability of C. trachomatis-infected primary human cells. We identified miR-30c-5p as a prominently up-regulated miRNA required for the stable down-regulation of p53, a major suppressor of metabolite supply in C. trachomatis-infected cells. Loss of miR-30c-5p led to the up-regulation of Drp1, a mitochondrial fission regulator and a target gene of p53, which, in turn, severely affected chlamydial growth and had a marked effect on the mitochondrial network. Drp1-induced mitochondrial fragmentation prevented replication of C. trachomatis even in p53-deficient cells. Additionally, Chlamydia maintain mitochondrial integrity during reactive oxygen species-induced stress that occurs naturally during infection. We show that C. trachomatis require mitochondrial ATP for normal development and hence postulate that they preserve mitochondrial integrity through a miR-30c-5p-dependent inhibition of Drp1-mediated mitochondrial fission.

Journal article

Sharan M, Forstner KU, Eulalio A, Vogel Jet al., 2017, APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins, Nucleic Acids Res, Vol: 45, ISSN: 1362-4962

RNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs) and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches. We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using position-specific scoring matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot.

Journal article

Sunkavalli U, Aguilar C, Silva RJ, Sharan M, Cruz AR, Tawk C, Maudet C, Mano M, Eulalio Aet al., 2017, Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia, PLoS Pathog, Vol: 13, ISSN: 1553-7374

MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells.

Journal article

Eulalio A, Mano M, 2015, MicroRNA Screening and the Quest for Biologically Relevant Targets, J Biomol Screen, Vol: 20, Pages: 1003-1017, ISSN: 1552-454X

MicroRNAs (miRNAs) are a class of genome-encoded small RNAs that post-transcriptionally regulate gene expression by repressing target transcripts containing partially or fully complementary binding sites.Despite their relatively low number, miRNAs have been shown to directly regulate a large fraction of the transcriptome. In agreement with their pervasive role in the regulation of eukaryotic gene expression, miRNAs have been implicated in virtually all biological processes, including different pathologies.The use of screening technologies to systematically analyze miRNA function in cell-based assays offers a unique opportunity to gain new insights into complex biological and disease-relevant processes. Given the low complexity of the miRNome and the similarities to small interfering RNA (siRNA) screening experimental approaches, phenotypic screening using genome-wide libraries of miRNA mimics or inhibitors is not, per se, technically challenging. The identification of miRNA targets and, more importantly, the characterization of their mechanisms of action through the identification of the key targets underlying observed phenotypes remain the major challenges of this approach.This article provides an overview of cell-based screenings for miRNA function that were performed in different biological contexts. The advantages and limitations of computational and experimental approaches commonly used to identify miRNA targets are also discussed.

Journal article

Maudet C, Mano M, Sunkavalli U, Sharan M, Giacca M, Forstner KU, Eulalio Aet al., 2014, Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection, Nat Commun, Vol: 5, ISSN: 2041-1723

Increasing evidence suggests an important role for miRNAs in the molecular interplay between bacterial pathogens and host cells. Here we perform a fluorescence microscopy-based screen using a library of miRNA mimics and demonstrate that miRNAs modulate Salmonella infection. Several members of the miR-15 miRNA family were among the 17 miRNAs that more efficiently inhibit Salmonella infection. We discovered that these miRNAs are downregulated during Salmonella infection, through the inhibition of the transcription factor E2F1. Analysis of miR-15 family targets revealed that derepression of cyclin D1 and the consequent promotion of G1/S transition are crucial for Salmonella intracellular proliferation. In addition, Salmonella induces G2/M cell cycle arrest in infected cells, further promoting its replication. Overall, these findings uncover a mechanism whereby Salmonella renders host cells more susceptible to infection by controlling cell cycle progression through the active modulation of host cell miRNAs.

Journal article

Maudet C, Mano M, Eulalio A, 2014, MicroRNAs in the interaction between host and bacterial pathogens, FEBS Lett, Vol: 588, Pages: 4140-4147, ISSN: 1873-3468

MicroRNAs (miRNAs) are small non-coding RNAs with a central role in the post-transcriptional control of gene expression, that have been implicated in a wide-range of biological processes. Regulation of miRNA expression is increasingly recognized as a crucial part of the host response to infection by bacterial pathogens, as well as a novel molecular strategy exploited by bacteria to manipulate host cell pathways. Here, we review the current knowledge of bacterial pathogens that modulate host miRNA expression, focusing on mammalian host cells, and the implications of miRNA regulation on the outcome of infection. The emerging role of commensal bacteria, as part of the gut microbiota, on host miRNA expression in the presence or absence of bacterial pathogens is also discussed.

Journal article

Huntzinger E, Kuzuoglu-Ozturk D, Braun JE, Eulalio A, Wohlbold L, Izaurralde Eet al., 2013, The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets, Nucleic Acids Res, Vol: 41, Pages: 978-994, ISSN: 1362-4962

Animal miRNAs silence the expression of mRNA targets through translational repression, deadenylation and subsequent mRNA degradation. Silencing requires association of miRNAs with an Argonaute protein and a GW182 family protein. In turn, GW182 proteins interact with poly(A)-binding protein (PABP) and the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These interactions are required for the deadenylation and decay of miRNA targets. Recent studies have indicated that miRNAs repress translation before inducing target deadenylation and decay; however, whether translational repression and deadenylation are coupled or represent independent repressive mechanisms is unclear. Another remaining question is whether translational repression also requires GW182 proteins to interact with both PABP and deadenylases. To address these questions, we characterized the interaction of Drosophila melanogaster GW182 with deadenylases and defined the minimal requirements for a functional GW182 protein. Functional assays in D. melanogaster and human cells indicate that miRNA-mediated translational repression and degradation are mechanistically linked and are triggered through the interactions of GW182 proteins with PABP and deadenylases.

Journal article

Eulalio A, Schulte L, Vogel J, 2012, The mammalian microRNA response to bacterial infections, RNA Biol, Vol: 9, Pages: 742-750, ISSN: 1555-8584

MicroRNAs are small RNAs that post-transcriptionally regulate eukaryotic gene expression. In addition to their involvement in a wide range of physiological and pathological processes, including viral infections, microRNAs are increasingly implicated in the eukaryotic response to bacterial pathogens. Recent studies have characterized changes in host microRNA expression following infection with exclusively extracellular (Helicobacter pylori) or intracellular (Salmonella enterica) Gram-negative bacteria, as well as in the response to Gram-positive (Listeria monocytogenes) and other pathogens (Mycobacterium and Francisella species). In this review, we discuss the emerging roles of microRNAs in mammalian host signaling and defense against bacterial pathogens.

Journal article

Lovric J, Mano M, Zentilin L, Eulalio A, Zacchigna S, Giacca Met al., 2012, Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins, Mol Ther, Vol: 20, Pages: 2087-2097, ISSN: 1525-0024

Gene therapy vectors based on the adeno-associated virus (AAV) are extremely efficient for gene transfer into post-mitotic cells of heart, muscle, brain, and retina. The reason for their exquisite tropism for these cells has long remained elusive. Here, we show that upon terminal differentiation, cardiac and skeletal myocytes downregulate proteins of the DNA damage response (DDR) and that this markedly induces permissivity to AAV transduction. We observed that expression of members of the MRN complex (Mre11, Rad50, Nbs1), which bind the incoming AAV genomes, faded in cardiomyocytes at ~2 weeks after birth, as well as upon myoblast differentiation in vitro; in both cases, withdrawal of the cells from the cell cycle coincided with increased AAV permissivity. Treatment of proliferating cells with short-interfering RNAs (siRNAs) against the MRN proteins, or with microRNA-24, which is normally upregulated upon terminal differentiation and negatively controls the Nbs1 levels, significantly increased permissivity to AAV transduction. Consistently, delivery of these small RNAs to the juvenile liver concomitant with AAV markedly improved in vivo hepatocyte transduction. Collectively, these findings support the conclusion that cellular DDR proteins inhibit AAV transduction and that terminal cell differentiation relieves this restriction.

Journal article

Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca Met al., 2012, Functional screening identifies miRNAs inducing cardiac regeneration, Nature, Vol: 492, Pages: 376-381, ISSN: 1476-4687

In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.

Journal article

Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel Jet al., 2011, Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family, EMBO J, Vol: 30, Pages: 1977-1989, ISSN: 1460-2075

MicroRNAs have well-established roles in eukaryotic host responses to viruses and extracellular bacterial pathogens. In contrast, microRNA responses to invasive bacteria have remained unknown. Here, we report cell type-dependent microRNA regulations upon infection of mammalian cells with the enteroinvasive pathogen, Salmonella Typhimurium. Murine macrophages strongly upregulate NF-kappaB associated microRNAs; strikingly, these regulations which are induced by bacterial lipopolysaccharide (LPS) occur and persist regardless of successful host invasion and/or replication, or whether an inflammatory response is mounted, suggesting that microRNAs belong to the first line of anti-bacterial defence. However, a suppression of the global immune regulator miR-155 in endotoxin-tolerant macrophages revealed that microRNA responses also depend on the status of infected cells. This study identifies the let-7 family as the common denominator of Salmonella-regulated microRNAs in macrophages and epithelial cells, and suggests that repression of let-7 relieves cytokine IL-6 and IL-10 mRNAs from negative post-transcriptional control. Our results establish a paradigm of microRNA-mediated feed-forward activation of inflammatory factors when mammalian cells are targeted by bacterial pathogens.

Journal article

Eulalio A, Frohlich KS, Mano M, Giacca M, Vogel Jet al., 2011, A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly, PLoS One, Vol: 6, ISSN: 1932-6203

P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.

Journal article

Heale BS, Eulalio A, Schulte L, Vogel J, O'Connell MAet al., 2010, Analysis of A to I editing of miRNA in macrophages exposed to Salmonella, RNA Biol, Vol: 7, Pages: 621-627, ISSN: 1555-8584

The main mediator of the lipopolysaccharide (LPS) response in macrophages is activation of Toll-like receptor 4 (TLR4). This generates interferon-beta (INF-beta) production that stimulates increased expression of the RNA editing enzyme ADAR1. To determine if there is an increase in RNA editing in mature miRNA in response to TLR4 activation upon Salmonella infection of macrophages we analyzed small RNA deep sequencing data. Interestingly, we found that direct infection of macrophage cell lines with Salmonella does not result in an increase of edited mature miRNA. Thus, despite elevated levels of ADAR1 during TLR4 activation of macrophages mediated by Salmonella infection, ADAR1 does not result in redirection of miRNA. The most common consequence of ADAR activity on miRNA is a reduction in the mature miRNA level due to interference with miRNA processing of pri-miRNA. However, we found very few miRNAs with reductions in level, and no significant difference between miRNAs previously reported to be edited and those reported to be not edited. In particular, we did not see significant decrease in mir-22 and mir-142, nor editing of pri-mir-22 or pri-mir-142 in infected RAW macrophages. Thus, ADAR1 has very little, if any, effect on the miRNA machinery following TL4 activation by Salmonella infection.

Journal article

Eulalio A, Tritschler F, Buttner R, Weichenrieder O, Izaurralde E, Truffault Vet al., 2009, The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing, Nucleic Acids Res, Vol: 37, Pages: 2974-2983, ISSN: 1362-4962

Proteins of the GW182 family interact with Argonaute proteins and are required for miRNA-mediated gene silencing. These proteins contain two structural domains, an ubiquitin-associated (UBA) domain and an RNA recognition motif (RRM), embedded in regions predicted to be unstructured. The structure of the RRM of Drosophila melanogaster GW182 reveals that this domain adopts an RRM fold, with an additional C-terminal alpha-helix. The helix lies on the beta-sheet surface, generally used by these domains to bind RNA. This, together with the absence of aromatic residues in the conserved RNP1 and RNP2 motifs, and the lack of general affinity for RNA, suggests that the GW182 RRM does not bind RNA. The domain may rather engage in protein interactions through an unusual hydrophobic cleft exposed on the opposite face of the beta-sheet. We further show that the GW182 RRM is dispensable for P-body localization and for interaction of GW182 with Argonaute-1 and miRNAs. Nevertheless, its deletion impairs the silencing activity of GW182 in a miRNA target-specific manner, indicating that this domain contributes to silencing. The conservation of structural and surface residues suggests that the RRM domain adopts a similar fold with a related function in insect and vertebrate GW182 family members.

Journal article

Eulalio A, Tritschler F, Izaurralde E, 2009, The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing, RNA, Vol: 15, Pages: 1433-1442, ISSN: 1469-9001

GW182 family proteins interact directly with Argonaute proteins and are required for miRNA-mediated gene silencing in animal cells. The domains of the GW182 proteins have recently been studied to determine their role in silencing. These studies revealed that the middle and C-terminal regions function as an autonomous domain with a repressive function that is independent of both the interaction with Argonaute proteins and of P-body localization. Such findings reinforce the idea that GW182 proteins are key components of miRNA repressor complexes in metazoa.

Journal article

Tritschler F, Braun JE, Eulalio A, Truffault V, Izaurralde E, Weichenrieder Oet al., 2009, Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B, Mol Cell, Vol: 33, Pages: 661-668, ISSN: 1097-4164

The DEAD box helicase DDX6/Me31B functions in translational repression and mRNA decapping. How particular RNA helicases are recruited specifically to distinct functional complexes is poorly understood. We present the crystal structure of the DDX6 C-terminal RecA-like domain bound to a highly conserved FDF sequence motif in the decapping activator EDC3. The FDF peptide adopts an alpha-helical conformation upon binding to DDX6, occupying a shallow groove opposite to the DDX6 surface involved in RNA binding and ATP hydrolysis. Mutagenesis of Me31B shows the relevance of the FDF interaction surface both for Me31B's accumulation in P bodies and for its ability to repress the expression of bound mRNAs. The translational repressor Tral contains a similar FDF motif. Together with mutational and competition studies, the structure reveals why the interactions of Me31B with EDC3 and Tral are mutually exclusive and how the respective decapping and translational repressor complexes might hook onto an mRNA substrate.

Journal article

Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde Eet al., 2009, Deadenylation is a widespread effect of miRNA regulation, RNA, Vol: 15, Pages: 21-32, ISSN: 1469-9001

miRNAs silence gene expression by repressing translation and/or by promoting mRNA decay. In animal cells, degradation of partially complementary miRNA targets occurs via deadenylation by the CAF1-CCR4-NOT1 deadenylase complex, followed by decapping and subsequent exonucleolytic digestion. To determine how generally miRNAs trigger deadenylation, we compared mRNA expression profiles in D. melanogaster cells depleted of AGO1, CAF1, or NOT1. We show that approximately 60% of AGO1 targets are regulated by CAF1 and/or NOT1, indicating that deadenylation is a widespread effect of miRNA regulation. However, neither a poly(A) tail nor mRNA circularization are required for silencing, because mRNAs whose 3' ends are generated by a self-cleaving ribozyme are also silenced in vivo. We show further that miRNAs trigger mRNA degradation, even when binding by 40S ribosomal subunits is inhibited in cis. These results indicate that miRNAs promote mRNA decay by altering mRNP composition and/or conformation, rather than by directly interfering with the binding and function of ribosomal subunits.

Journal article

Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde Eet al., 2009, A C-terminal silencing domain in GW182 is essential for miRNA function, RNA, Vol: 15, Pages: 1067-1077, ISSN: 1469-9001

Proteins of the GW182 family are essential for miRNA-mediated gene silencing in animal cells; they interact with Argonaute proteins (AGOs) and are required for both the translational repression and mRNA degradation mediated by miRNAs. To gain insight into the role of the GW182-AGO1 interaction in silencing, we generated protein mutants that do not interact and tested them in complementation assays. We show that silencing of miRNA targets requires the N-terminal domain of GW182, which interacts with AGO1 through multiple glycine-tryptophan (GW)-repeats. Indeed, a GW182 mutant that does not interact with AGO1 cannot rescue silencing in cells depleted of endogenous GW182. Conversely, silencing is impaired by mutations in AGO1 that strongly reduce the interaction with GW182 but not with miRNAs. We further show that a GW182 mutant that does not localize to P-bodies but interacts with AGO1 rescues silencing in GW182-depleted cells, even though in these cells, AGO1 also fails to localize to P-bodies. Finally, we show that in addition to the N-terminal AGO1-binding domain, the middle and C-terminal regions of GW182 (referred to as the bipartite silencing domain) are essential for silencing. Together our results indicate that miRNA silencing in animal cells is mediated by AGO1 in complex with GW182, and that P-body localization is not required for silencing.

Journal article

Eulalio A, Huntzinger E, Izaurralde E, 2008, Getting to the root of miRNA-mediated gene silencing, Cell, Vol: 132, Pages: 9-14, ISSN: 0092-8674

MicroRNAs are approximately 22 nucleotide-long RNAs that silence gene expression posttranscriptionally by binding to the 3' untranslated regions of target mRNAs. Although much is known about their biogenesis and biological functions, the mechanisms allowing miRNAs to silence gene expression in animal cells are still under debate. Here, we discuss current models for miRNA-mediated gene silencing and formulate a hypothesis to reconcile differences.

Journal article

Jinek M, Eulalio A, Lingel A, Helms S, Conti E, Izaurralde Eet al., 2008, The C-terminal region of Ge-1 presents conserved structural features required for P-body localization, RNA, Vol: 14, Pages: 1991-1998, ISSN: 1469-9001

The removal of the 5' cap structure by the DCP1-DCP2 decapping complex irreversibly commits eukaryotic mRNAs to degradation. In human cells, the interaction between DCP1 and DCP2 is bridged by the Ge-1 protein. Ge-1 contains an N-terminal WD40-repeat domain connected by a low-complexity region to a conserved C-terminal domain. It was reported that the C-terminal domain interacts with DCP2 and mediates Ge-1 oligomerization and P-body localization. To understand the molecular basis for these functions, we determined the three-dimensional crystal structure of the most conserved region of the Drosophila melanogaster Ge-1 C-terminal domain. The region adopts an all alpha-helical fold related to ARM- and HEAT-repeat proteins. Using structure-based mutants we identified an invariant surface residue affecting P-body localization. The conservation of critical surface and structural residues suggests that the C-terminal region adopts a similar fold with conserved functions in all members of the Ge-1 protein family.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01100101&limit=30&person=true