Imperial College London

André Tristany Farinha

Faculty of EngineeringDepartment of Aeronautics

Research Postgraduate



a.farinha17 CV




420City and Guilds BuildingSouth Kensington Campus





Publication Type

5 results found

Farinha A, Zufferey R, Zheng P, Armanini SF, Kovac Met al., 2020, Unmanned aerial sensor placement for cluttered environments, IEEE Robotics and Automation Letters, Vol: 5, Pages: 6623-6630, ISSN: 2377-3766

Unmanned aerial vehicles (UAVs) have been shown to be useful for the installation of wireless sensor networks (WSNs). More notably, the accurate placement of sensor nodes using UAVs, opens opportunities for many industrial and scientific uses, in particular, in hazardous environments or inaccessible locations. This publication proposes and demonstrates a new aerial sensor placement method based on impulsive launching. Since direct physical interaction is not required, sensor deployment can be achieved in cluttered environments where the target location cannot be safely approached by the UAV, such as under the forest canopy. The proposed method is based on mechanical energy storage and an ultralight shape memory alloy (SMA) trigger. The developed aerial system weighs a total of 650 grams and can execute up to 17 deployments on a single battery charge. The system deploys sensors of 30 grams up to 4 meters from a target with an accuracy of ±10 cm. The aerial deployment method is validated through more than 80 successful deployments in indoor and outdoor environments. The proposed approach can be integrated in field operations and complement other robotic or manual sensor placement procedures. This would bring benefits for demanding industrial applications, scientific field work, smart cities and hazardous environments [Video attachment:].

Journal article

Debruyn D, Zufferey R, Armanini SF, Winston C, Farinha A, Jin Y, Kovac Met al., 2020, MEDUSA: a multi-environment dual-robot for underwater sample acquisition, IEEE Robotics and Automation Letters, Vol: 5, Pages: 4564-4571, ISSN: 2377-3766

Aerial-aquatic robots possess the unique ability of operating in both air and water. However, this capability comes with tremendous challenges, such as communication incompatibility, increased airborne mass, potentially inefficient operation in each of the environments and manufacturing difficulties. Such robots, therefore, typically have small payloads and a limited operational envelope, often making their field usage impractical. We propose a novel robotic water sampling approach that combines the robust technologies of multirotors and underwater micro-vehicles into a single integrated tool usable for field operations. The proposed solution encompasses a multirotor capable of landing and floating on the water, and a tethered mobile underwater pod that can be deployed to depths of several meters. The pod is controlled remotely in three dimensions and transmits video feed and sensor data via the floating multirotor back to the user. The ‚dual-robot‛ approach considerably simplifies robotic underwater monitoring, while also taking advantage of the fact that multirotors can travel long distances, fly over obstacles, carry payloads and manoeuvre through difficult terrain, while submersible robots are ideal for underwater sampling or manipulation. The presented system can perform challenging tasks which would otherwise require boats or submarines. The ability to collect aquatic images, samples and metrics will be invaluable for ecology and aquatic research, supporting our understanding of local climate in difficult-to-access environments.

Journal article

Zufferey R, Ancel AO, Farinha A, Siddall R, Armanini SF, Nasr M, Brahmal R, Kennedy G, Kovac Met al., 2019, Consecutive aquatic jump-gliding with water-reactive fuel, SCIENCE ROBOTICS, Vol: 4, ISSN: 2470-9476

Journal article

Zufferey R, Ancel AO, Raposo C, Armanini SF, Farinha A, Siddall R, Berasaluce I, Zhu H, Kovac Met al., 2019, SailMAV: Design and Implementation of a Novel Multi-Modal Flying Sailing Robot, IEEE Robotics and Automation Letters, Vol: 4, Pages: 2894-2901, ISSN: 2377-3766

Despite significant research progress on small-scale aerial-aquatic robots, most existing prototypes are still constrained by short operation times and limited performance in different fluids. The main challenge is to design a vehicle that satisfies the partially conflicting design requirements for aerial and aquatic operations. In this letter we present a new class of aerial-aquatic robot, the sailing micro air vehicle, 'SailMAV.' Thanks to a three-part folding wing design, the SailMAV is capable of both flying and sailing. The robot design permits long and targeted missions at the water interface by leveraging the wind as movement vector. It simultaneously offers the flexibility of flight for rapidly reaching a designated area, overcoming obstacles, and moving from one body of water to another, which can be very useful for water sampling in areas with many obstacles. With a total wingspan of 0.96 m, the SailMAV employs the same wing and actuation surfaces for sailing as for flying. It is capable of water surface locomotion as well as takeoff and flight at a cruising speed of 10.8 mcdots-1. The main contributions of this letter are new solutions to the challenges of combined aerial and aquatic locomotions, the design of a novel hybrid concept, the development of the required control laws, and the demonstration of the vehicle successfully sailing and taking off from the water. This letter can inform the design of hybrid vehicles that adapt their morphology to move effectively.

Journal article

Jarvis R, Farinha A, Kovac M, Cegla Fet al., 2018, NDE sensor delivery using unmanned aerial vehicles, Insight (Northampton): non-destructive testing and condition monitoring, Vol: 60, Pages: 463-467, ISSN: 1354-2575

The robotic deployment of NDE sensors has great cost-saving potential in cases where the measurement cost is high due to access restrictions or the need to temporarily decommission the test structure. Unmanned aerial vehicles (UAVs) are able to quickly reach inaccessible components to perform visual inspection and deploy NDE sensors. In this work, a mechanical sensor release mechanism is presented that has enabled electromagnetic acoustic transducers (EMATs) to be deployed onto a ferromagnetic pipe and a plate, after which the component wall thickness measurements can be transmitted wirelessly to a remote location. The reliability of the method and the most promising areas for future development are discussed.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01462887&limit=30&person=true