Imperial College London

Dr Ajay Gambhir

Faculty of Natural SciencesThe Grantham Institute for Climate Change

Visiting Researcher
 
 
 
//

Contact

 

+44 (0)20 7594 6363a.gambhir

 
 
//

Location

 

Electrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

97 results found

Gross R, Hanna RF, Gambhir A, Heptonstall P, Speirs Jet al., 2018, How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technology, Energy Policy, Vol: 123, Pages: 685-699, ISSN: 0301-4215

Recent climate change initiatives, such as ‘Mission Innovation’ launched alongside the Paris Agreement in 2015, urge redoubled research into innovative low carbon technologies. However, climate change is an urgent problem – emissions reductions must take place rapidly throughout the coming decades. This raises an important question: how long might it take for individual technologies to emerge from research, find market opportunities and make a tangible impact on emissions reductions? Here, we consider historical evidence for the time a range of energy supply and energy end-use technologies have taken to emerge from invention, diffuse into the market and reach widespread deployment. We find considerable variation, from 20 to almost 70 years. Our findings suggest that the time needed for new technologies to achieve widespread deployment should not be overlooked, and that innovation policy should focus on accelerating the deployment of existing technologies as well as research into new ones.

Journal article

Dietz S, Bowen A, Doda B, Gambhir A, Warren Ret al., 2018, The economics of 1.5 degrees C climate change, Annual Review of Environment and Resources, Vol: 43, Pages: 455-480, ISSN: 1543-5938

The economic case for limiting warming to 1.5°C is unclear, due to manifold uncertainties. However, it cannot be ruled out that the 1.5°C target passes a cost-benefit test. Costs are almost certainly high: The median global carbon price in 1.5°C scenarios implemented by various energy models is more than US$100 per metric ton of CO2 in 2020, for example. Benefits estimates range from much lower than this to much higher. Some of these uncertainties may reduce in the future, raising the question of how to hedge in the near term. Maintaining an option on limiting warming to 1.5°C means targeting it now. Setting off with higher emissions will make 1.5°C unattainable quickly without recourse to expensive large-scale carbon dioxide removal (CDR), or solar radiation management (SRM), which can be cheap but poses ambiguous risks society seems unwilling to take. Carbon pricing could reduce mitigation costs substantially compared with ramping up the current patchwork of regulatory instruments. Nonetheless, a mix of policies is justified and technology-specific approaches may be required. It is particularly important to step up mitigation finance to developing countries, where emissions abatement is relatively cheap.

Journal article

Few SPM, Schmidt O, Offer GJ, Brandon N, Nelson J, Gambhir Aet al., 2018, Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: An analysis informed by expert elicitations, Energy Policy, Vol: 114, Pages: 578-590, ISSN: 0301-4215

This paper presents probabilistic estimates of the 2020 and 2030 cost and cycle life of lithium-ion battery (LiB) packs for off-grid stationary electricity storage made by leading battery experts from academia and industry, and insights on the role of public research and development (R&D) funding and other drivers in determining these. By 2020, experts expect developments to arise chiefly through engineering, manufacturing and incremental chemistry changes, and expect additional R&D funding to have little impact on cost. By 2030, experts indicate that more fundamental chemistry changes are possible, particularly under higher R&D funding scenarios, but are not inevitable. Experts suggest that significant improvements in cycle life (eg. doubling or greater) are more achievable than in cost, particularly by 2020, and that R&D could play a greater role in driving these. Experts expressed some concern, but had relatively little knowledge, of the environmental impact of LiBs. Analysis is conducted of the implications of prospective LiB improvements for the competitiveness of solar photovoltaic + LiB systems for off-grid electrification.

Journal article

Schmidt O, Gambhir A, Staffell IL, Hawkes A, Nelson J, Few Set al., 2017, Future cost and performance of water electrolysis: An expert elicitation study, International Journal of Hydrogen Energy, Vol: 42, Pages: 30470-30492, ISSN: 0360-3199

The need for energy storage to balance intermittent and inflexible electricity supply with demand is driving interest in conversion of renewable electricity via electrolysis into a storable gas. But, high capital cost and uncertainty regarding future cost and performance improvements are barriers to investment in water electrolysis. Expert elicitations can support decision-making when data are sparse and their future development uncertain. Therefore, this study presents expert views on future capital cost, lifetime and efficiency for three electrolysis technologies: alkaline (AEC), proton exchange membrane (PEMEC) and solid oxide electrolysis cell (SOEC). Experts estimate that increased R&D funding can reduce capital costs by 0–24%, while production scale-up alone has an impact of 17–30%. System lifetimes may converge at around 60,000–90,000 h and efficiency improvements will be negligible. In addition to innovations on the cell-level, experts highlight improved production methods to automate manufacturing and produce higher quality components. Research into SOECs with lower electrode polarisation resistance or zero-gap AECs could undermine the projected dominance of PEMEC systems. This study thereby reduces barriers to investment in water electrolysis and shows how expert elicitations can help guide near-term investment, policy and research efforts to support the development of electrolysis for low-carbon energy systems.

Journal article

Lowe JA, Arnell NW, Warren R, Gambhir AJ, Bernie D, Thompson Eet al., 2017, Avoiding dangerous climate: results from the AVOID2 programme, Weather, Vol: 72, Pages: 340-345, ISSN: 0043-1656

The AVOID2 programme provided evidence for UK Government on what might constitute dangerous climate change and the feasibility of avoiding it. The programme quantified some of the benefits of moving from a world that warms by around 4–5°C to one limiting global warming to below or well below 2°C. Whilst there is evidence that this transition is feasible, it will require early action to reduce emissions and to develop the potential for large-scale deployment of a range of low carbon technologies.

Journal article

Schmidt O, Hawkes, Gambhir, Staffellet al., 2017, The future cost of electrical energy storage based on experience rates, Nature Energy, Vol: 2, ISSN: 2058-7546

Electrical energy storage could play a pivotal role in future low-carbon electricity systems, balancing inflexible or intermittentsupply with demand. Cost projections are important for understanding this role, but data are scarce and uncertain.Here, we construct experience curves to project future prices for 11 electrical energy storage technologies. We find that,regardless of technology, capital costs are on a trajectory towards US$340 ± 60 kWh−1for installed stationary systems andUS$175 ± 25 kWh−1for battery packs once 1 TWh of capacity is installed for each technology. Bottom-up assessment ofmaterial and production costs indicates this price range is not infeasible. Cumulative investments of US$175–510 billion wouldbe needed for any technology to reach 1 TWh deployment, which could be achieved by 2027–2040 based on market growthprojections. Finally, we explore how the derived rates of future cost reduction influence when storage becomes economicallycompetitive in transport and residential applications. Thus, our experience-curve data set removes a barrier for further studyby industry, policymakers and academics.

Journal article

Gambhir A, Napp T, Hawkes A, Hoglund-Isaksson L, Winiwarter W, Purohit P, Wagner F, Bernie D, Lowe Jet al., 2017, The contribution of non-CO2 greenhouse gas mitigation to achieving long-term temperature goals, Energies, Vol: 10, ISSN: 1996-1073

This paper analyses the emissions and cost impacts of mitigation of non-CO2 greenhouse gases (GHGs) at a global level, in scenarios aimed at meeting a range of long-term temperature goals (LTTGs). The study combines an integrated assessment model (TIAM-Grantham) representing CO2 emissions (and their mitigation) from the fossil fuel combustion and industrial sectors, coupled with a model covering non-CO2 emissions (GAINS), using the latest global warming potentials from the Intergovernmental Panel on Climate Change’s Fifth Assessment Report. We illustrate that in general non-CO2 mitigation measures are less costly than CO2 mitigation measures, with the majority of their abatement potential achievable at US2005$100/tCO2e or less throughout the 21st century (compared to a marginal CO2 mitigation cost which is already greater than this by 2030 in the most stringent mitigation scenario). As a result, the total cumulative discounted cost over the period 2010–2100 (at a 5% discount rate) of limiting global average temperature change to 2.5 °C by 2100 is $48 trillion (about 1.6% of cumulative discounted GDP over the period 2010–2100) if only CO2 from the fossil fuel and industrial sectors is targeted, whereas the cost falls to $17 trillion (0.6% of GDP) by including non-CO2 GHG mitigation in the portfolio of options—a cost reduction of about 65%. The criticality of non-CO2 mitigation recommends further research, given its relatively less well-explored nature when compared to CO2 mitigation.

Journal article

Few SPM, Gambhir A, Napp T, Hawkes A, Mangeon S, Bernie D, Lowe Jet al., 2017, The impact of shale gas on the cost and feasibility of meeting climate targets - a global energy system model analysis and an exploration of uncertainties, Energies, Vol: 10, ISSN: 1996-1073

There exists considerable uncertainty over both shaleand conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extractionand its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES Integrated Assessment Model),to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenariosaimed at achieving a limit to global warming of below 2°C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energy system cost is relatively small (up to0.4%), and the mitigation cost increases by 1-3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expectedleakage rates, are also considered;andare each found to have the potential to increase the cost and reduce feasibility of meeting globaltemperature goals. We concludethat the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globallycoordinatedaction, but could increase required mitigation effort if not handled sufficiently carefully.

Journal article

Napp T, Bernie D, Thomas R, Lowe J, Hawkes A, Gambhir Aet al., 2017, Exploring the feasibility of low-carbon scenarios using historical energy transitions analysis, Energies, Vol: 10, ISSN: 1996-1073

The scenarios generated by energy systems models provide a picture of the range of possible pathways to a low-carbon future. However, in order to be truly useful, these scenarios should not only be possible but also plausible. In this paper, we have used lessons from historical energy transitions to create a set of diagnostic tests to assess the feasibility of an example 2 °C scenario (generated using the least cost optimization model, TIAM-Grantham). The key assessment criteria included the rate of deployment of low carbon technologies and the rate of transition between primary energy resources. The rates of deployment of key low-carbon technologies were found to exceed the maximum historically observed rate of deployment of 20% per annum. When constraints were added to limit the scenario to within historically observed rates of change, the model no longer solved for 2 °C. Under these constraints, the lowest median 2100 temperature change for which a solution was found was about 2.1 °C and at more than double the cumulative cost of the unconstrained scenario. The analysis in this paper highlights the considerable challenge of meeting 2 °C, requiring rates of energy supply technology deployment and rates of declines in fossil fuels which are unprecedented.

Journal article

Gambhir A, Drouet L, McCollum D, Napp T, Bernie D, Hawkes A, Fricko O, Havlik P, Riahi K, Bosetti V, Lowe Jet al., 2017, Assessing the feasibility of global long-term mitigation scenarios, Energies, Vol: 10, ISSN: 1996-1073

This study explores the critical notion of how feasible it is to achieve long-term mitigation goals to limit global temperature change. It uses a model inter-comparison of three integrated assessment models (TIAM-Grantham, MESSAGE-GLOBIOM and WITCH) harmonized for socio-economic growth drivers using one of the new shared socio-economic pathways (SSP2), to analyse multiple mitigation scenarios aimed at different temperature changes in 2100, in order to assess the model outputs against a range of indicators developed so as to systematically compare the feasibility across scenarios. These indicators include mitigation costs and carbon prices, rates of emissions reductions and energy efficiency improvements, rates of deployment of key low-carbon technologies, reliance on negative emissions, and stranding of power generation assets. The results highlight how much more challenging the 2OC goal is, when compared to the 2.5-4OC goals, across virtually all measures of feasibility. Any delay in mitigation or limitation in technology options also renders the 2OC goal much less feasible across the economic and technical dimensions explored. Finally, a sensitivity analysis indicates that aiming for less than 2OC is even less plausible, with significantly higher mitigation costs and faster carbon price increases, significantly faster decarbonization and zero-carbon technology deployment rates, earlier occurrence of very significant carbon capture and earlier onset of global net negative emissions. Such a systematic analysis allows a more in-depth consideration of what realistic level of long-term temperature changes can be achieved and what adaptation strategies are therefore required.

Journal article

Dessens O, Anandarajah G, Gambhir A, 2016, Limiting global warming to 2 °C: What do the latest mitigation studies tell us about costs, technologies and other impacts?, Energy Strategy Reviews, Vol: 13-14, Pages: 67-76, ISSN: 2211-467X

There is now a wealth of model-based evidence on the technology choices, costs and other impacts (such as fossil fuel demand) associated with mitigation towards stringent climate targets. Results from over 900 hundred scenarios have been reviewed in the latest Intergovernmental Panel on Climate Change Assessment Report (IPCC AR5) including baseline scenarios under which no mitigation action is taken, as well as those under which different limits to global warming are targeted. A number of additional studies have been undertaken in order to assess the implications of global mitigation action. The objective of the paper is to provide a concise overview and comparison of major input assumptions and outputs of recent studies focused on mitigating to the most stringent targets explored, which means around the 2 °C level of global average temperature increase by 2100. The paper extracts key messages grouped into four pillars: mitigation costs, technology uncertainty, policy constraints, and co-benefits. The principal findings from this comparison are that, according to the models, mitigation to 2 °C is feasible, but delayed action, the absence or limited deployment of any of a number of key technologies (including nuclear, CCS, wind and solar), and limited progress on energy efficiency, all make mitigation more costly and in many models infeasible. Further, rapid mitigation following delayed action leads to potentially thousands of idle fossil fuel plants globally, posing distributional and political economy challenges.

Journal article

Few SPM, Schmidt O, Gambhir A, 2016, Electrical energy storage for mitigating climate change, Publisher: Grantham Institute, Imperial College London, 20

Report

Gambhir A, Sandwell P, Nelson J, 2016, The future costs of OPV - A bottom-up model of material and manufacturing costs with uncertainty analysis, Solar Energy Materials and Solar Cells, Vol: 156, Pages: 49-58, ISSN: 0927-0248

Organic photovoltaic (OPV) technology has the potential to provide cheap solar electricity, given advances in low-cost production and module efficiency and lifetime. However, several uncertainties remain in terms of the future costs of OPV modules, which depend on future material and manufacturing costs, as well as key performance characteristics. This assessment takes an engineering-based approach to assessing the potential future cost of each component of OPV modules, as well as the future scale of OPV production plants and associated scale economies, using stochastic analysis to account for uncertainty. The analysis suggests that OPV module costs could fall within a (interquartile) range of US$0.23–0.34/Wp, with a median cost estimate of US$0.28/Wp in the near-term, with future costs most sensitive to manufacturing scale, cell efficiency and module fill factor. This compares to a projected range of module costs for more established PV technologies (crystalline silicon, cadmium telluride and copper indium gallium selenide) of US$0.35–0.6/Wp by 2020. In levelised cost of electricity terms, OPV could compete with the established technologies in both roof- and ground-mounted systems if it can achieve a 10-year lifetime.

Journal article

Sandwell P, Chan NLA, Foster S, Nagpal D, Emmott CJM, Candelise C, Buckle SJ, Ekins-Daukes N, Gambhir A, Nelson Jet al., 2016, Off-grid solar photovoltaic systems for rural electrification and emissions mitigation in India, Solar Energy Materials and Solar Cells, Vol: 156, Pages: 147-156, ISSN: 0927-0248

Over one billion people lack access to electricity and many of them in rural areas far from existing infrastructure. Off-grid systems can provide an alternative to extending the grid network and using renewable energy, for example solar photovoltaics (PV) and battery storage, can mitigate greenhouse gas emissions from electricity that would otherwise come from fossil fuel sources. This paper presents a model capable of comparing several mature and emerging PV technologies for rural electrification with diesel generation and grid extension for locations in India in terms of both the levelised cost and lifecycle emissions intensity of electricity. The levelised cost of used electricity, ranging from $0.46–1.20/kWh, and greenhouse gas emissions are highly dependent on the PV technology chosen, with battery storage contributing significantly to both metrics. The conditions under which PV and storage becomes more favourable than grid extension are calculated and hybrid systems of PV, storage and diesel generation are evaluated. Analysis of expected price evolutions suggest that the most cost-effective hybrid systems will be dominated by PV generation around 2018.

Journal article

Ang CP, Toper B, Gambhir A, 2016, Financial impacts of UK's energy and climate change policies on commercial and industrial businesses, Energy Policy, Vol: 91, Pages: 273-286, ISSN: 1873-6777

Journal article

Hanna R, Gross R, Speirs J, Heptonstall PJ, Gambhir Aet al., 2015, Innovation timelines from invention to maturity: A rapid review of the evidence on the time taken for new technologies to reach widespread commercialisation

Report

Gambhir A, Tse LKC, Tong D, Martinez-Botas Ret al., 2015, Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis, Applied Energy, Vol: 157, Pages: 905-917, ISSN: 1872-9118

The growth of China’s road transport sector has driven huge increases in China’s oil demand and CO2 emissions over the last two decades, and these trends are likely to continue in the absence of specific measures to reduce the average carbon intensity of road vehicles. This paper describes a model, provided in full online, to undertake scenario analysis on the cost and CO2 emissions impact of substituting current vehicle drivetrain types with alternatives during the period 2010–2050. A detailed decomposition of the additional costs and CO2 emissions savings of each low-carbon vehicle type into their component parts is undertaken to calculate the marginal abatement cost of each vehicle and drivetrain type in 2050. The results indicate that passenger cars and heavy-duty trucks constitute the majority of future CO2 emissions savings potential, but that, using the central cost assumptions, alternative vehicle drivetrains are significantly more cost-effective for trucks than passenger cars. The low-carbon scenario sees demand for oil products (gasoline and diesel) more than 40% below the business-as-usual scenario in 2050. The total mitigation cost in 2050 is (US2010)$64 billion per year, or 1.3% of the total annual expenditure on road transport in China in 2050, using a discount rate of 5% to annualise vehicle purchase costs, although this cost increases with higher discount rates. A sensitivity analysis demonstrates that measures in addition to those assumed in the low-carbon scenario could achieve further emissions reductions, in some cases at negative costs. The availability and transparency of the model allows testing and development of a range of further scenarios and sensitivities, to aid in planning an optimal decarbonisation strategy for this highly carbon-intensive sector.

Journal article

Gambhir A, Napp TA, Emmott CJM, Anandarajah Get al., 2014, India's CO<sub>2</sub> emissions pathways to 2050: Energy system, economic and fossil fuel impacts with and without carbon permit trading, ENERGY, Vol: 77, Pages: 791-801, ISSN: 0360-5442

Journal article

Anandarajah G, Gambhir A, 2014, India's CO<sub>2</sub> emission pathways to 2050: What role can renewables play?, APPLIED ENERGY, Vol: 131, Pages: 79-86, ISSN: 0306-2619

Journal article

Hills T, Gambhir A, Fennell PS, 2014, The suitability of different types of industry for inter-site heat integration, Pages: 423-434, ISSN: 2001-7979

Several studies have shown that some highly-intensive processes are suitable for heat integration with each other (inter-site heat integration). This paper shows the results of an integration of the waste heat sources and potential sinks across several industries which have not yet received much attention for inter-site heat integration. The purpose of this paper is not to suggest that any particular configuration is currently possible, it is to demonstrate the significant theoretical savings and stimulate discussion of the where future research (e.g. into high temperature heat exchangers or solid to gas heat exchangers). By building two theoretical heat exchange networks, one to maximise heat recovery and one to maximise electricity generation, the characteristics of different process streams which are conducive or obstructive to successful, profitable integration can be identified. Heat recovery is slightly more profitable than electricity generation on first examination, but there are several major issues which are difficult to quantify and will add significant cost. In general, processes involving large quantities of liquids and condensing and evaporating gases, such as refineries, offer significant potential. Processes with incondensable, low-pressure gases and solid streams, such as cement plants, generally gain less profit from inter-site heat integration. All costs are in 2013 Euros.

Conference paper

Warren R, Lowe JA, Arnell NW, Hope C, Berry P, Brown S, Gambhir A, Gosling SN, Nicholls RJ, O'Hanley J, Osborn TJ, Osborne T, Price J, Raper SCB, Rose G, Vanderwal Jet al., 2013, The AVOID programme's new simulations of the global benefits of stringent climate change mitigation, CLIMATIC CHANGE, Vol: 120, Pages: 55-70, ISSN: 0165-0009

Journal article

Napp TA, Gambhir A, Hills TP, Florin N, Fennell PSet al., 2013, A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries, Renewable & Sustainable Energy Reviews

Industrial processes account for one-third of global energy demand. The iron and steel, cement and refining sectors are particularly energy-intensive, together making up over 30% of total industrial energy consumption and producing millions of tonnes of CO2 per year. The aim of this paper is to provide a comprehensive overview of the technologies for reducing emissions from industrial processes by collating information from a wide range of sources. The paper begins with a summary of energy consumption and emissions in the industrial sector. This is followed by a detailed description of process improvements in the three sectors mentioned above, as well as cross-cutting technologies that are relevant to many industries. Lastly, a discussion of the effectiveness of government policies to facilitate the adoption of those technologies is presented. Whilst there has been significant improvement in energy efficiency in recent years, cost-effective energy efficient options still remain. Key energy efficiency measures include upgrading process units to Best Practice, installing new electrical equipment such as pumps and even replacing the process completely. However, these are insufficient to achieve the deep carbon reductions required if we are to avoid dangerous climate change. The paper concludes with recommendations for action to achieve further decarbonisation.

Journal article

Gambhir A, Schulz N, Napp T, Tong D, Munuera L, Faist M, Riahi Ket al., 2013, A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050, Energy Policy, Vol: 59, Pages: 614-632, ISSN: 0301-4215

Journal article

Shah N, Vallejo L, Cockerill T, Gambhir A, Hills T, Jennings M, Jones O, Kalas N, Keirstead J, Khor C, Mazur C, Napp T, Strapasson A, Tong D, Woods Jet al., 2013, Halving Global CO2 Emissions: Technologies and Costs, Publisher: Imperial College London

Report

Gambhir A, 2012, Will we meet the Copenhagen emission targets, Publisher: Responding to Climate Change

Working paper

Napp T, Gambhir A, Muuls M, 2012, Effectiveness of policies in enabling energy efficient technologies in the UK industrial sector, eceee 2012 Summer Study on energy efficiency in industry

Conference paper

Gambhir A, 2012, How China can decarbonise by 2050, Publisher: China Dialogue

Working paper

Gambhir A, 2012, Analysis: China’s dilemma in Durban, Publisher: Responding to Climate Change

Working paper

Gambhir A, Hirst N, Brown T, Riahi K, Schulz N, Faist M, Foster S, Jennings M, Munuera L, Tong D, Tse Let al., 2012, China's Energy Technologies to 2050, China's Energy Technologies to 2050, London, UK, Publisher: Grantham Institute for Climate Change, Imperial College Lonodon, Grantham Research Report 2 (GR2)

Report

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00670736&limit=30&person=true&page=3&respub-action=search.html