Imperial College London

DrApostolosGeorgiadis

Faculty of EngineeringDepartment of Chemical Engineering

Honorary Research Fellow
 
 
 
//

Contact

 

a.georgiadis07 Website

 
 
//

Location

 

C610Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Yesufu-Rufai:2020:10.1016/j.colsurfa.2020.124765,
author = {Yesufu-Rufai, S and Marcelis, F and Georgiadis, A and Berg, S and Rucker, M and van, Wunnik J and Luckham, P},
doi = {10.1016/j.colsurfa.2020.124765},
journal = {Colloids and Surfaces A: Physicochemical and Engineering Aspects},
pages = {1--10},
title = {Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact on wettability modification and mineral morphology},
url = {http://dx.doi.org/10.1016/j.colsurfa.2020.124765},
volume = {597},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Laboratory core flood experiments performed to establish chemical enhanced oil recovery (cEOR) procedures often make use of rock samples that deviate from prevailing conditions within the reservoir. These samples have usually been preserved in an uncontrolled oxidising environment in contrast to reducing reservoir conditions, a discrepancy that affects rock wettability and thus oil recovery. The use of a reducing fluid is a predominant method, particularly regarding iron-bearing minerals, for restoring these samples to representative redox states.In this study, the adhesion of polar (NH2 and COOH) and non-polar (CH3) crude oil components to the pore surfaces of Bandera Brown, an outcrop of similar mineralogy to reservoir sandstones, was investigated using Atomic Force Microscopy to determine the potential of a reducing fluid of Sodium Dithionite in seawater to alter surface wettability. This novel workflow for the observation of redox condition effects illuminates the nanoscopic interaction forces at the rock/fluid interface responsible this phenomenon.The results obtained show that adhesion forces between the oil components and the Bandera Brown surface after treatment with the reducing fluid decreased in the order: NH2 (∼70 %) >COOH (∼36 %) >CH3 (∼3 %), due to diminishing affinity of the surface for the polar functional groups when the oxidation state of iron was altered from iron III to iron II. The morphology of Bandera Brown is noted to be affected as well with some dissolution of the mineral composition within cemented pores observed.The results demonstrate that redox state is indeed important for the assessment of wetting properties of surfaces as measurements performed in oxidising environments may not be representative of reservoir reducing conditions. Also, complete reduction of iron oxides on the mineral surfaces seems unlikely without altering the prevailing pore structure. These findings have relevance not only in EOR cases but can fin
AU - Yesufu-Rufai,S
AU - Marcelis,F
AU - Georgiadis,A
AU - Berg,S
AU - Rucker,M
AU - van,Wunnik J
AU - Luckham,P
DO - 10.1016/j.colsurfa.2020.124765
EP - 10
PY - 2020///
SN - 0927-7757
SP - 1
TI - Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact on wettability modification and mineral morphology
T2 - Colloids and Surfaces A: Physicochemical and Engineering Aspects
UR - http://dx.doi.org/10.1016/j.colsurfa.2020.124765
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000536815300005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - https://www.sciencedirect.com/science/article/pii/S0927775720303587?via%3Dihub
UR - http://hdl.handle.net/10044/1/81618
VL - 597
ER -