Imperial College London

ProfessorAnnaHansell

Faculty of MedicineSchool of Public Health

Visiting Professor
 
 
 
//

Contact

 

a.hansell

 
 
//

Location

 

UG42Medical SchoolSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

194 results found

Parkes B, Hansell AL, Ghosh RE, Douglas P, Fecht D, Wellesley D, Kurinczuk JJ, Rankin J, de Hoogh K, Fuller GW, Elliott P, Toledano MBet al., 2020, Risk of congenital anomalies near municipal waste incinerators in England and Scotland, Retrospective population-based cohort study, Vol: 134, ISSN: 0160-4120

Background: Few studies have investigated congenital anomalies in relation to municipal waste incinerators (MWIs) and results are inconclusive. Objectives: To conduct a national investigation into the risk of congenital anomalies in babies born to mothers living within 10 km of an MWI associated with: i) modelled concentrations of PM10 as a proxy for MWI emissions more generally and; ii) proximity of residential postcode to nearest MWI, in areas in England and Scotland that are covered by a congenital anomaly register. Methods: Retrospective population-based cohort study within 10 km of 10 MWIs in England and Scotland operating between 2003 and 2010. Exposure was proximity to MWI and log of daily mean modelled ground-level particulate matter ≤10 μm diameter (PM10) concentrations. Results: Analysis included 219,486 births, stillbirths and terminations of pregnancy for fetal anomaly of which 5154 were cases of congenital anomalies. Fully adjusted odds ratio (OR) per doubling in PM10 was: 1·00 (95% CI 0·98–1·02) for all congenital anomalies; 0·99 (0·97–1·01) for all congenital anomalies excluding chromosomal anomalies. For every 1 km closer to an MWI adjusted OR was: 1·02 (1·00–1·04) for all congenital anomalies combined; 1·02 (1·00–1·04) for all congenital anomalies excluding chromosomal anomalies; and, for specific anomaly groups, 1·04 (1·01–1·08) for congenital heart defect sand 1·07 (1·02–1·12) for genital anomalies. Discussion: We found no increased risk of congenital anomalies in relation to modelled PM10 emissions, but there were small excess risks associated with congenital heart defects and genital anomalies in proximity to MWIs. These latter findings may well reflect incomplete control for confounding, but a possible causal effect cannot be excluded.

Journal article

Lavigne A, Freni Sterrantino A, Liverani S, Blangiardo M, De hoogh K, Molitor J, Hansell Aet al., 2019, Associations between metal constituents of ambient particulate matter and mortality in England; an ecological study, BMJ Open, Vol: 9, ISSN: 2044-6055

Objectives To investigate long-term associations between metal components of particulate matter and mortality and lung cancer incidenceDesign Small area (ecological) study Setting Population living in all wards (~9000 individuals per ward) in the London and Oxford area of England, comprising 13.6 million individuals Exposure and Outcome measures We used land use regression (LUR) models originally used in the Transport related Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) study to estimate exposure to copper, iron and zinc in ambient air particulate matter. We examined associations of metal exposure with Office for National Statistics mortality data from cardiovascular (CVD) and respiratory causes and with lung cancer incidence in 2008-11.Results There were 108,478 CVD deaths, 48,483 respiratory deaths and 24,849 incident cases of lung cancer in the study period and area. Using Poisson regression models adjusted for area-level deprivation, tobacco sales and ethnicity, we found associations between cardiovascular mortality and PM2.5 copper with interdecile range (IDR-2.6-5.7 ng/m3) and IDR Relative risk (RR) 1.005 (95%CI 1.001, 1.009) and between respiratory mortality and PM10 zinc (IDR 1135-153 ng/m3) and IDR RR 1.136 (95%CI 1.010, 1.277). We did not find relevant associations for lung cancer incidence. Metal elements were highly correlated.Conclusion Our analysis showed small but not fully consistent adverse associations between mortality and particulate metal exposures likely derived from non-tailpipe road traffic emissions (brake and tyre-wear), which have previously been associated with increases in inflammatory markers in the blood.

Journal article

Marks GB, Hansell AL, Johnston FH, 2019, The environment is a first order issue for lung health, INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, Vol: 23, Pages: 1239-1242, ISSN: 1027-3719

Journal article

Freni Sterrantino A, Afoakwah P, Smith RB, Ghosh R, Hansell ALet al., 2019, Birth weight centiles and small for gestational age by sex and ethnicity for England and Wales, Archives of Disease in Childhood, Vol: 104, Pages: 1188-1192, ISSN: 1468-2044

Objectives To construct UK Ethnic Birth Weight Centiles (UK-EBWC) for gestational age and cut-offs for small for gestational age (SGA) for England and Wales and to evaluate the SGA misclassification using the UK centiles.Design Analysis of national birth data.Participants All live singleton births in England and Wales in 2006 to 2012, as recorded by the Office for National Statistics (ONS) and birth registrations, linked with National Health Service (NHS) into Numbers for Babies (NN4B).Main Outcome Measures Both sex-specific and ethnicity-sex-specific birth weight centiles for gestational age, and ethnicity-sex-specific SGA cut-offs. Centiles were computed using the Generalized Additive Model for Location, Scale and Shape (GAMLSS). Results Our sex-specific centiles performed well and showed an agreement between the expected and observed number of births below the centiles. The ethnicity-sex-specific centiles for Black and Asian presented lower values compared to the White centiles. Comparisons of sex-specific and ethnicity-sex-specific centiles shows that use of sex-specific centiles increases the SGA diagnosed cases by 50% for Asian, 30% for South Asian (Indian, Pakistani and Bangladeshi) and 20% for Black ethnicity.Conclusions The centiles show important differences between ethnic groups, in particular the 10th centile used to define SGA. To account for these differences and to minimize misclassification of SGA, we recommend the use of customized birth weight centiles.

Journal article

Baudin C, Lefevre M, Selander J, Babisch W, Cadum E, Carlier M-C, Champelovier P, Dimakopoulou K, Huithuijs D, Lambert J, Laumon B, Pershagen G, Theorell T, Velonaki V, Hansell A, Evrard A-Set al., 2019, Saliva cortisol in relation to aircraft noise exposure: pooled-analysis results from seven European countries, ENVIRONMENTAL HEALTH, Vol: 18

Journal article

Johnson L, Thomas R, Vande Hey J, Hansell A, Gulliver J, Taylor CM, Golding J, Macleod J, Boyd Aet al., 2019, Geographically distributed longitudinal nitrogen dioxide and other air pollution sensor measurements in the Avon Longitudinal Study of Parents and Children cohort catchment area, Wellcome Open Research, Vol: 4, Pages: 162-162

<ns4:p>Longitudinal cohort studies provide unique opportunities to investigate the health impact of air pollution. We aimed to enhance the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort study through the systematic collection of routinely monitored air pollution data collected by local authorities and the Department for Environment, Food and Rural Affairs (DEFRA) using a range of sensor technologies. These sensor data are in themselves not well suited for population epidemiology, rather these data are primarily used for validating and calibrating modelled air pollution concentration data over study areas. In this data note we describe the sources of routine air pollution monitoring data and detail data of pollutants including nitrogen dioxide, nitric oxide, nitrogen oxides, particulate matter, benzene and ozone collated from the local authorities that overlap the ALSPAC catchment area (Bristol, North Somerset, South Gloucestershire and part of Bath and North East Somerset).</ns4:p>

Journal article

Hansell A, Cai Y, Granell R, Blangiardo M, Fecht D, Gulliver J, Henderson J, Elliott Pet al., 2019, Prenatal, early-life and childhood exposure to air pollution and lung function in the UK Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, International Congress of the European-Respiratory-Society (ERS), Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Boyd A, Thomas R, Hansell AL, Gulliver J, Hicks LM, Griggs R, Vande Hey J, Taylor CM, Morris T, Golding J, Doerner R, Fecht D, Henderson J, Lawlor DA, Timpson NJ, Macleod Jet al., 2019, Data resource profile: the ALSPAC birth cohort as a platform to study the relationship of environment and health and social factors, International Journal of Epidemiology, Vol: 48, Pages: 1038-1039k, ISSN: 1464-3685

This resource profile describes the information about the physical and social environment collected within the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. This includes spatial and temporal information gathered on three generations about: area-level built and social characteristics (e.g. density and location of fast-food outlets, crime rates within a neighbourhood); exposure measurements (e.g. air pollution concentrations, temperature records); participant-reported data directly related to the spaces and places they inhabit (e.g. neighbourhood safety, presence of damp within a home); information directly measured from participants (e.g. blood lead and total mercury concentrations, physical activity); the location information needed to link these diverse data.We describe the platform’s previous uses, strengths and weaknesses and access arrangements, emphasizing confidentiality safeguard controls. This profile highlights a particular class of ALSPAC data (with distinct access arrangements) to promote the potential for incorporating physical environment and other spatially-dependent data into research investigations.

Journal article

Doiron D, de Hoogh K, Probst-Hensch N, Fortier I, Cai Y, De Matteis S, Hansell Aet al., 2019, Air pollution, lung function and COPD: results from the population-based UK Biobank study, European Respiratory Journal, Vol: 54, ISSN: 0903-1936

Ambient air pollution increases the risk of respiratory mortality but evidence for impacts on lung function and chronic obstructive pulmonary disease (COPD)is less well established. The aim was toevaluatewhether ambient air pollution isassociated with lung function andCOPD, and explore potential vulnerability factors. We used UK Biobank data on 303,887 individuals aged 40-69 years, with complete covariate data and valid lung function measures. Cross-sectional analysesexamined associations ofLand Use Regression-based estimates ofparticulate matter (PM2.5, PM1035and PMcoarse) and nitrogen dioxide (NO2) concentrations withforced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), the FEV1/FVC ratio, and COPD (FEV1/FVC 37< lower limit of normal). Effect modificationwas investigated for sex, age, obesity, smoking status, household income, asthma status, and occupations previously linked to COPD.40Higher exposures to each pollutant weresignificantly associated with lower lung function. A 5 μg/m3increase in PM2.5concentrationwas associated with lower FEV1(-83.13 mL [95%CI: -92.50, -73.75]) and FVC (-62.62 mL [95%CI:-73.91, -51.32]). COPD prevalence was associated with higher concentrations of PM2.5 (OR 1.52 [95%CI: 1.,1.62], per 5 μg/m3),PM10 (OR 1.08 [95%CI: 1.00,1.16], per 5 μg/m3), andNO2(OR 1.12 [95%CI: 1.10, 1.14], per 10 μg/m3), but not with PMcoarse.Stronger lung functionassociations were 46seenfor males, individuals from lower income households,and ‘at-risk’ occupations, and higher COPD associations for obese, lower income,and non-asthmatic participants. Ambient air pollution wasassociated with lowerlung function and increased COPD prevalencein this large study.

Journal article

Freni Sterrantino A, Elliott P, Blangiardo M, Hansell A, Ghosh R, Toledano M, Fecht Det al., 2019, Bayesian spatial modelling for quasi-experimental designs: an interrupted time series study of the opening of Municipal Waste Incinerators in relation to infant mortality and sex ratio, Environment International, Vol: 128, Pages: 109-115, ISSN: 0160-4120

BackgroundThere is limited evidence on potential health risks from Municipal Waste Incinerators (MWIs), and previous studies on birth outcomes show inconsistent results. Here, we evaluate whether the opening of MWIs is associated with infant mortality and sex ratio in the surrounding areas, extending the Interrupted Time Series (ITS) methodological approach to account for spatial dependencies at the small area level.MethodsWe specified a Bayesian hierarchical model to investigate the annual risks of infant mortality and sex-ratio (female relative to male) within 10 km of eight MWIs in England and Wales, during the period 1996–2012. We included comparative areas matched one-to-one of similar size and area characteristics.ResultsDuring the study period, infant mortality rates decreased overall by 2.5% per year in England. The opening of an incinerator in the MWI area was associated with −8 deaths per 100,000 infants (95% CI −62, 40) and with a difference in sex ratio of −0.004 (95% CI −0.02, 0.01), comparing the period after opening with that before, corrected for before-after trends in the comparator areas.ConclusionOur method is suitable for the analysis of quasi-experimental time series studies in the presence of spatial structure and when there are global time trends in the outcome variable. Based on our approach, we do not find evidence of an association of MWI opening with changes in risks of infant mortality or sex ratio in comparison with control areas.

Journal article

Cowie CT, Garden F, Jegasothy E, Knibbs LD, Hanigan I, Morley D, Hansell A, Hoek G, Marks GBet al., 2019, Comparison of model estimates from an intra-city land use regression model with a national satellite-LUR and a regional Bayesian Maximum Entropy model, in estimating NO<sub>2</sub> for a birth cohort in Sydney, Australia, ENVIRONMENTAL RESEARCH, Vol: 174, Pages: 24-34, ISSN: 0013-9351

Journal article

Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne CA, Batini C, Fawcett KA, Song K, Sakornsakolpat P, Li X, Boxall R, Reeve NF, Obeidat M, Zhao JH, Wielscher M, Weiss S, Kentistou KA, Cook JP, Sun BB, Zhou J, Hui J, Karrasch S, Imboden M, Harris SE, Marten J, Enroth S, Kerr SM, Surakka I, Vitart V, Lehtimaki T, Allen RJ, Bakke PS, Beaty TH, Bleecker ER, Bosse Y, Brandsma C-A, Chen Z, Crapo JD, Danesh J, Demeo DL, Dudbridge F, Ewert R, Gieger C, Gulsvik A, Hansell AL, Hao K, Hoffman JD, Hokanson JE, Homuth G, Joshi PK, Joubert P, Langenberg C, Li X, Li L, Lin K, Lind L, Locantore N, Luan J, Mahajan A, Maranville JC, Murray A, Nickle DC, Packer R, Parker MM, Paynton ML, Porteous DJ, Prokopenko D, Qiao D, Rawal R, Runz H, Sayers I, Sin DD, Smith BH, Artigas MS, Sparrow D, Tal-Singer R, Timmers PRHJ, Van den Berge M, Whittaker JC, Woodruff PG, Yerges-Armstrong LM, Troyanskaya OG, Raitakari OT, Kahonen M, Polasek O, Gyllensten U, Rudan I, Deary IJ, Probst-Hensch NM, Schulz H, James AL, Wilson JF, Stubbe B, Zeggini E, Jarvelin M-R, Wareham N, Silverman EK, Hayward C, Morris AP, Butterworth AS, Scott RA, Walters RG, Meyers DA, Cho MH, Strachan DP, Hall IP, Tobin MD, Wain LVet al., 2019, New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries (vol 51, pg 481, 2019), NATURE GENETICS, Vol: 51, Pages: 1067-1067, ISSN: 1061-4036

Journal article

Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne CA, Batini C, Fawcett KA, Song K, Sakornsakolpat P, Li X, Boxall R, Reeve NF, Obeidat M, Zhao JH, Wielscher M, Weiss S, Kentistou KA, Cook JP, Sun BB, Zhou J, Hui J, Karrasch S, Imboden M, Harris SE, Marten J, Enroth S, Kerr SM, Surakka I, Vitart V, Lehtimaki T, Allen RJ, Bakke PS, Beaty TH, Bleecker ER, Bosse Y, Brandsma C-A, Chen Z, Crapo JD, Danesh J, DeMeo DL, Dudbridge F, Ewert R, Gieger C, Gulsvik A, Hansell AL, Hao K, Hoffman JD, Hokanson JE, Homuth G, Joshi PK, Joubert P, Langenberg C, Li X, Li L, Lin K, Lind L, Locantore N, Luan J, Mahajan A, Maranville JC, Murray A, Nickle DC, Packer R, Parker MM, Paynton ML, Porteous DJ, Prokopenko D, Qiao D, Rawal R, Runz H, Sayers I, Sin DD, Smith BH, Artigas MS, Sparrow D, Tal-Singer R, Timmers PRHJ, Van den Berge M, Whittaker JC, Woodruff PG, Verges-Armstrong LM, Troyanskaya OG, Raitakari OT, Kahonenn M, Polasek O, Gyllensten U, Rudan I, Deary IJ, Probst-Hensch NM, Schulz H, James AL, Wilson JF, Stubbe B, Zeggini E, Jarvelin M-R, Wareham N, Silverman EK, Hayward C, Morris AP, Butterworth AS, Scott RA, Walters RG, Meyers DA, Cho MH, Strachan DP, Hall IP, Tobin MD, Wain Let al., 2019, New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries, Nature Genetics, Vol: 51, Pages: 481-493, ISSN: 1061-4036

Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function–associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.

Journal article

Williams B, Douglas P, Roca Barcelo A, Hansell A, Hayes Eet al., 2019, Estimating Aspergillus fumigatus exposure from outdoor composting activities in England between 2005-14, Waste Management, Vol: 84, Pages: 235-244, ISSN: 1879-2456

Bioaerosols, ubiquitous in ambient air, are released in elevated concentrations from composting facilities with open-air processing areas. However, spatial and temporal variability of bioaerosols, particularly in relation to meteorology, is not well understood. Here we model relative concentrations of Aspergillus fumigatus at each postcode-weighted centroid within 4 km of 217 composting facilities in England between 2005 and 2014. Facilities were geocoded with the aid of satellite imagery. Data from existing bioaerosol modelling literature were used to build emission profiles in ADMS. Variation in input parameters between each modelled facility was reduced to a minimum. Meteorological data for each composting facility was derived from the nearest SCAIL-Agriculture validated meteorological station. According to our results, modelled exposure risk was driven primarily by wind speed, direction and time-varying emissions factors incorporating seasonal fluctuations in compostable waste. Modelled A.fumigatus concentrations decreased rapidly from the facility boundary and plateaued beyond 1.5–2.0 km. Where multiple composting facilities were within 4 km of each other, complex exposure risk patterns were evident. More long-term bioaerosol monitoring near facilities is needed to help improve exposure estimation and therefore assessment of any health risks to local populations.

Journal article

Morgan RL, Thayer KA, Santesso N, Holloway AC, Blain R, Eftim SE, Goldstone AE, Ross P, Ansari M, Akl E, Filippini T, Hansell A, Meerpohl JJ, Mustafa RA, Verbeek J, Vinceti M, Whaley P, Schunemann HJet al., 2019, A risk of bias instrument for non-randomized studies of exposures: A users' guide to its application in the context of GRADE, ENVIRONMENT INTERNATIONAL, Vol: 122, Pages: 168-184, ISSN: 0160-4120

Journal article

Wang Y, Pirani M, Hansell A, Richardson S, Blangiardo MAGet al., 2019, Using ecological propensity score to adjust for missing confounders in small area studies, Biostatistics, Vol: 20, Pages: 1-16, ISSN: 1465-4644

Small area ecological studies are commonly used in epidemiology to assess the impact of area level risk factors on health outcomes when data are only available in an aggregated form. However, the resulting estimates are often biased due to unmeasured confounders, which typically are not available from the standard administrative registries used for these studies. Extra information on confounders can be provided through external data sets such as surveys or cohorts, where the data are available at the individual level rather than at the area level; however, such data typically lack the geographical coverage of administrative registries. We develop a framework of analysis which combines ecological and individual level data from different sources to provide an adjusted estimate of area level risk factors which is less biased. Our method (i) summarizes all available individual level confounders into an area level scalar variable, which we call ecological propensity score (EPS), (ii) implements a hierarchical structured approach to impute the values of EPS whenever they are missing, and (iii) includes the estimated and imputed EPS into the ecological regression linking the risk factors to the health outcome. Through a simulation study, we show that integrating individual level data into small area analyses via EPS is a promising method to reduce the bias intrinsic in ecological studies due to unmeasured confounders; we also apply the method to a real case study to evaluate the effect of air pollution on coronary heart disease hospital admissions in Greater London.

Journal article

Liang L, Cai Y, Barratt B, Lyu B, Chan Q, Hansell AL, Xie W, Zhang D, Kelly FJ, Tong Zet al., 2019, Associations between daily air quality and hospitalisations for acute exacerbation of chronic obstructive pulmonary disease in Beijing, 2013-17: an ecological analysis, Lancet Planet Health, Vol: 3, Pages: e270-e279, ISSN: 2542-5196

BACKGROUND: Air pollution in Beijing has been improving through implementation of the Air Pollution Prevention and Control Action Plan (2013-17), but its implications for respiratory morbidity have not been directly investigated. We aimed to assess the potential effects of air-quality improvements on respiratory health by investigating the number of cases of acute exacerbations of chronic obstructive pulmonary disease (COPD) advanced by air pollution each year. METHODS: Daily city-wide concentrations of PM10, PM2.5, PMcoarse (particulate matter >2.5-10 mum diameter), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), and ozone (O3) in 2013-17 were averaged from 35 monitoring stations across Beijing. A generalised additive Poisson time-series model was applied to estimate the relative risks (RRs) and 95% CIs for hospitalisation for acute exacerbation of COPD associated with pollutant concentrations. FINDINGS: From Jan 18, 2013, to Dec 31, 2017, 161 613 hospitalisations for acute exacerbation of COPD were recorded. Mean ambient concentrations of SO2 decreased by 68% and PM2.5 decreased by 33% over this 5-year period. For each IQR increase in pollutant concentration, RRs for same-day hospitalisation for acute exacerbation of COPD were 1.029 (95% CI 1.023-1.035) for PM10, 1.028 (1.021-1.034) for PM2.5, 1.018 (1.013-1.022) for PMcoarse, 1.036 (1.028-1.044) for NO2, 1.019 (1.013-1.024) for SO2, 1.024 (1.018-1.029) for CO, and 1.027 (1.010-1.044) for O3 in the warm season (May to October). Women and patients aged 65 years or older were more susceptible to the effects of these pollutants on hospitalisation risk than were men and patients younger than 65 years. In 2013, there were 12 679 acute exacerbations of COPD cases that were advanced by PM2.5 pollution above the expected number of cases if daily PM2.5 concentrations had not exceeded the WHO target (25 mug/m(3)), whereas the respective figure in 2017 was 7377 cases. INTERPRETATION: Despite improveme

Journal article

Ghosh RE, Freni-Sterrantino A, Douglas P, Parkes B, Fecht D, de Hoogh K, Fuller G, Gulliver J, Font A, Smith RB, Blangiardo M, Elliott P, Toledano MB, Hansell ALet al., 2019, Fetal growth, stillbirth, infant mortality and other birth outcomes near UK municipal waste incinerators; retrospective population based cohort and case-control study, Environment International, Vol: 122, Pages: 151-158, ISSN: 0160-4120

Background: Some studies have reported associations between municipal waste incinerator (MWI) exposures and adverse birth outcomes but there are few studies of modern MWIs operating to current European Union (EU) Industrial Emissions Directive standards. Methods: Associations between modelled ground-level particulate matter ≤10 μm in diameter (PM10) from MWI emissions (as a proxy for MWI emissions) within 10 km of each MWI, and selected birth and infant mortality outcomes were examined for all 22 MWIs operating in Great Britain 2003–10. We also investigated associations with proximity of residence to a MWI. Outcomes used were term birth weight, small for gestational age (SGA) at term, stillbirth, neonatal, post-neonatal and infant mortality, multiple births, sex ratio and preterm delivery sourced from national registration data from the Office for National Statistics. Analyses were adjusted for relevant confounders including year of birth, sex, season of birth, maternal age, deprivation, ethnicity and area characteristics and random effect terms were included in the models to allow for differences in baseline rates between areas and in incinerator feedstock. Results: Analyses included 1,025,064 births and 18,694 infant deaths. There was no excess risk in relation to any of the outcomes investigated during pregnancy or early life of either mean modelled MWI PM10 or proximity to an MWI. Conclusions: We found no evidence that exposure to PM10 from, or living near to, an MWI operating to current EU standards was associated with harm for any of the outcomes investigated. Results should be generalisable to other MWIs operating to similar standards.

Journal article

Blangiardo M, Pirani M, Kanapka L, Hansell A, Fuller Get al., 2019, A hierarchical modelling approach to assess multi pollutant effects in time-series studies, PL o S One, Vol: 14, ISSN: 1932-6203

When assessing the short-term effect of air pollution on health outcomes, it is common practice to consider one pollutant at a time, due to their high correlation. Multi pollutant methods have been recently proposed, mainly consisting of collapsing the different pollutants into air quality indexes or clustering the pollutants and then evaluating the effect of each cluster on the health outcome. A major drawback of such approaches is that it is not possible to evaluate the health impact of each pollutant. In this paper we propose the use of the Bayesian hierarchical framework to deal with multi pollutant concentrations in a two-component model: a pollutant model is specified to estimate the 'true' concentration values for each pollutant and then such concentration is linked to the health outcomes in a time-series perspective. Through a simulation study we evaluate the model performance and we apply the modelling framework to investigate the effect of six pollutants on cardiovascular mortality in Greater London in 2011-2012.

Journal article

Piel FBJ, Brandon P, Hima D, Anna L H, Paul Eet al., 2018, The challenge of opt-outs from NHS data: a small-area perspective, Journal of Public Health, Vol: 40, Pages: e594-e600, ISSN: 1741-3842

Journal article

Pierotti L, Schofield SJ, Collett D, Fecht D, De Hoogh K, Hansell AL, Dark J, Cullinan Pet al., 2018, Traffic-related air pollution and solid organ transplant failure in Great Britain: A retrospective cohort study, Journal of Transport and Health, Vol: 10, Pages: 124-131, ISSN: 2214-1405

Background: Limited evidence suggests that exposure to traffic related air pollution is associated with graft failure among lung transplant recipients. We explored associations between pollution and transplant failure among lung and other solid organ transplant recipients in Great Britain through a retrospective cohort study. Methods: All patients who received a lung, heart, liver, or kidney transplant between 2000 and 2008 in Great Britain were included, as recorded in the National Health Service Blood and Transplant (NHSBT) register and followed to March 2015. Using residential addresses at time of transplant we calculated distance to nearest (major) road and modelled annual average exposures to airborne nitrogen oxides and particulate matter of diameter ≤10µm and ≤2.5µm for each transplant recipient. All-cause mortality or graft failure (kidney) during follow up was the main outcome; median follow-up was around 10 years for each organ type. We fitted Cox regression models with adjustment for age, sex, year of transplant and donor age/smoking status. Results: 780 lung, 1213 heart, 3650 liver and 11966 graft kidney transplant patients were analysed. We did not find any consistent associations between mortality or graft failure and any of the analysed air pollutants or road metrics. Although, exposure to particulate matter was associated with renal transplant failure in univariable analyses but not after adjustment for confounders. Conclusions: Our analysis does not confirm previously reported associations between traffic-related air pollution exposure and the risk of transplant failure.

Journal article

Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne C, Batini C, Fawcett KA, Song K, Sakornsakolpat P, Li X, Boxall R, Reeve NF, Obeidat M, Zhao JH, Wielscher M, Society Scientific Group U, Weiss S, Kentistou KA, Cook JP, Sun BB, Zhou J, Hui J, Karrasch S, Imboden M, Harris SE, Marten J, Enroth S, Kerr SM, Surakka I, Vitart V, Lehtimäki T, Allen RJ, Bakke PS, Beaty TH, Bleecker ER, Bossé Y, Brandsma C-A, Chen Z, Crapo JD, Danesh J, DeMeo DL, Dudbridge F, Ewert R, Gieger C, Gulsvik A, Hansell AL, Hao K, Hoffman JD, Hokanson J, Homuth G, Joshi PK, Joubert P, Langenberg C, Li X, Li L, Lin K, Lind L, Locantore N, Luan J, Mahajan A, Maranville JC, Murray A, Nickle DC, Packer R, Parker MM, Paynton ML, Porteous D, Prokopenko D, Qiao D, Rawal R, Runz H, Sayers I, Sin DD, H Smith B, Artigas MS, Sparrow D, Tal-Singer R, Timmers PRHJ, Van den Berge M, Whittaker JC, Woodruff P, M Yerges Armstrong L, Troyanskaya OG, Raitakari OT, Kähönen M, Polasek O, Gyllensten U, Rudan I, Deary IJ, Probst-Hensch NM, Schulz H, James AL, Wilson JF, Stubbe B, Zeggini E, Jarvelin M-R, Wareham N, Silverman EK, Hayward C, Morris AP, Butterworth AS, Scott RA, Walters RG, Meyers DA, Cho MH, Strachan DP, Hall IP, Tobin MD, Wain LVet al., 2018, New genetic signals for lung function highlight pathways and pleiotropy, and chronic obstructive pulmonary disease associations across multiple ancestries

<jats:title>Abstract</jats:title><jats:p>Reduced lung function predicts mortality and is key to the diagnosis of COPD. In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, one-half of which are new. In combination these variants strongly predict COPD in deeply-phenotyped patient populations. Furthermore, the combined effect of these variants showed generalisability across smokers and never-smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.</jats:p>

Journal article

Fecht D, Jones A, Hill T, Lindfield T, Thomson R, Hansell AL, Shukla Ret al., 2018, Inequalities in rural communities: Adapting national deprivation indices for rural settings, Journal of Public Health, Vol: 40, Pages: 419-425, ISSN: 2198-1833

BackgroundDeprivation indices have been widely used in healthcare research and planning in the United Kingdom. Existing indices, however, are dominated by characteristics of urban populations that may be less relevant in capturing the nature of rural deprivation. We explore if deprivation indices can be modified to make them more sensitive to displaying rural disadvantage in England.MethodsThe analysis focussed on the 2011 Carstairs Index (Carstairs2011) and the 2010 English Index of Multiple Deprivation (IMD2010). We removed all urban areas as identified by the Office for National Statistics Rural–Urban Area Classifications and mapped the Carstairs2011 and IMD2010 across the remaining rural areas using rural-specific quintiles.ResultsOur method was effective in displaying much greater heterogeneity in rural areas than was apparent in the original indices. We received positive feedback from Directors of Public Health who confirmed that the observed patterns mirror their experiences and first-hand knowledge on the ground.ConclusionsOur maps of Carstairs2011 and IMD2010 for rural areas might strengthen the evidence base for rural planning and service provision. The modified deprivation indices, however, were not specifically formulated for rural populations and further work is needed to explore alternative input variables to produce a more rural-specific measure of deprivation.

Journal article

Hansell AL, Bakolis I, Cowie CT, Belousova EG, Ng K, Weber-Chrysochoou C, Britton WJ, Leeder S, Tovey E, Webb K, Toelle B, Marks GBet al., 2018, Childhood fish oil supplementation modifies associations between traffic related air pollution and allergic sensitisation, Environmental Health, Vol: 17, ISSN: 1476-069X

BackgroundStudies of potential adverse effects of traffic related air pollution (TRAP) on allergic disease have had mixed findings. Nutritional studies to examine whether fish oil supplementation may protect against development of allergic disease through their anti-inflammatory actions have also had mixed findings. Extremely few studies to date have considered whether air pollution and dietary factors such as fish oil intake may interact, which was the rationale for this study.MethodsWe conducted a secondary analysis of the Childhood Asthma Prevention Study (CAPS) birth cohort, where children were randomised to fish oil supplementation or placebo from early life to age 5 years. We examined interactions between supplementation and TRAP (using weighted road density at place of residence as our measure of traffic related air pollution exposure) with allergic disease and lung function outcomes at age 5 and 8 years.ResultsOutcome information was available on approximately 400 children (~ 70% of the original birth cohort). Statistically significant interactions between fish oil supplementation and TRAP were seen for house dust mite (HDM), inhalant and all-allergen skin prick tests (SPTs) and for HDM-specific interleukin-5 response at age 5. Adjusting for relevant confounders, relative risks (RRs) for positive HDM SPT were RR 1.74 (95% CI 1.22–2.48) per 100 m local road or 33.3 m of motorway within 50 m of the home for those randomised to the control group and 1.03 (0.76–1.41) for those randomised to receive the fish oil supplement. The risk differential was highest in an analysis restricted to those who did not change address between ages 5 and 8 years. In this sub-group, supplementation also protected against the effect of traffic exposure on pre-bronchodilator FEV1/FVC ratio.ConclusionsResults suggest that fish oil supplementation may protect against pro-allergic sensitisation effects of TRAP exposure. Strengths of this analysis are that supplementat

Journal article

Cai Y, Hansell A, Hodgson S, Elliott P, Fecht D, Gulliver J, Key T, de Hoogh K, Hveem K, Morley D, Vienneau D, Blangiardo Met al., 2018, Road traffic noise, air pollution and incident cardiovascular disease: a joint analysis of the HUNT, EPIC-Oxford and UK Biobank cohorts, Environment International, ISSN: 0160-4120

Background: This study aimed to investigate the effects of long-term exposure to road traffic noiseand air pollutionon incident cardiovascular disease (CVD)in three large cohorts: HUNT, EPIC-Oxford and UK Biobank. Methods: In pooled complete-casesample of the three cohorts from Norway and the United Kingdom(N=355,732), 21,081 incident all CVD cases including 5,259ischemic heart disease (IHD)and 2,871cerebrovascular cases were ascertained between baseline (1993-2010)and end of follow-up (2008-2013)through medical recordlinkage. Annual mean 24-hour weighted road traffic noise(Lden) and air pollution (particulate matter with aerodynamic diameter ≤10 μm [PM10],≤2.5 μm [PM2.5]andnitrogen 39dioxide[NO2])exposure at baseline address was modelled using a simplified version of the Common Noise Assessment Methods in Europe (CNOSSOS-EU)and European-wide Land Use Regression models.Individual-level covariate data were harmonised and physically pooled across the three cohorts. Analysis was via Cox proportional hazard model with mutual adjustmentsforboth noise and air pollution andpotential confounders. Results: No significant associations were found between annual mean Ldenand incidentCVD,IHD or cerebrovascular disease in the overall populationexcept that the association withincident IHD was significantamong current-smokers.In the fully adjusted models including adjustmentfor Lden, an interquartile range (IQR) higher PM10(4.1μg/m3) or PM2.5(1.4μg/m3) was associated witha5.8% (95%CI: 2.5%-9.3%) and 3.7% (95%CI: 0.2%-7.4%) higherrisk for all incident CVD respectively. No significant associations were found between NO2and any of the CVD outcomes. Conclusions: We found suggestive evidence of a possible association between road traffic noise and incident IHD, consistent with current literature. Long-term particulate air pollution exposure, even at concentrations below current European air quality standards, w

Journal article

Gulliver J, Elliott P, Hansell A, Cai Y, McCrea A, Garwood K, Fecht D, Briggs Det al., 2018, Local- and regional-scale air pollution modelling (PM10) and exposure assessment for pregnancy trimesters, infancy, and childhood to age 15 years: Avon Longitudinal Study of Parents And Children (ALSPAC)., Environment International, Vol: 113, Pages: 10-19, ISSN: 0160-4120

We established air pollution modelling to study particle (PM10) exposures during pregnancy and infancy (1990–1993) through childhood and adolescence up to age ~15 years (1991–2008) for the Avon Longitudinal Study of Parents And Children (ALSPAC) birth cohort. For pregnancy trimesters and infancy (birth to 6 months; 7 to 12 months) we used local (ADMS-Urban) and regional/long-range (NAME-III) air pollution models, with a model constant for local, non-anthropogenic sources. For longer exposure periods (annually and the average of birth to age ~8 and to age ~15 years to coincide with relevant follow-up clinics) we assessed spatial contrasts in local sources of PM10 with a yearly-varying concentration for all background sources. We modelled PM10 (μg/m3) for 36,986 address locations over 19 years and then accounted for changes in address in calculating exposures for different periods: trimesters/infancy (n = 11,929); each year of life to age ~15 (n = 10,383). Intra-subject exposure contrasts were largest between pregnancy trimesters (5th to 95th centile: 24.4–37.3 μg/m3) and mostly related to temporal variability in regional/long-range PM10. PM10 exposures fell on average by 11.6 μg/m3 from first year of life (mean concentration = 31.2 μg/m3) to age ~15 (mean = 19.6 μg/m3), and 5.4 μg/m3 between follow-up clinics (age ~8 to age ~15). Spatial contrasts in 8-year average PM10 exposures (5th to 95th centile) were relatively low: 25.4–30.0 μg/m3 to age ~8 years and 20.7–23.9 μg/m3 from age ~8 to age ~15 years. The contribution of local sources to total PM10 was 18.5%–19.5% during pregnancy and infancy, and 14.4%–17.0% for periods leading up to follow-up clinics. Main roads within the study area contributed on average ~3.0% to total PM10 exposures in all periods; 9.5% of address locations were within 50 m of a main road. Exposure estimates will be used in a number of planned epidemiological studies.

Journal article

Smith RB, Fecht D, Gulliver J, Beevers S, Dajnak D, Blangiardo M, Ghosh R, Hansell A, Kelly F, Anderson HR, Toledano MBet al., 2017, Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study, BMJ, Vol: 359, ISSN: 1756-1833

Objective To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes.Design Retrospective population based cohort study.Setting Greater London and surrounding counties up to the M25 motorway (2317 km2), UK, from 2006 to 2010.Participants 540 365 singleton term live births.Main outcome measures Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight.Results Average air pollutant exposures across pregnancy were 41 μg/m3 nitrogen dioxide (NO2), 73 μg/m3 nitrogen oxides (NOx), 14 μg/m3 particulate matter with aerodynamic diameter <2.5 μm (PM2.5), 23 μg/m3 particulate matter with aerodynamic diameter <10 μm (PM10), and 32 μg/m3 ozone (O3). Average daytime (LAeq,16hr) and night-time (Lnight) road traffic A-weighted noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO2, NOx, PM2.5, PM10, and source specific PM2.5 from traffic exhaust (PM2.5 traffic exhaust) and traffic non-exhaust (brake or tyre wear and resuspension) (PM2.5 traffic non-exhaust) were associated with 2% to 6% increased odds of term LBW, and 1% to 3% increased odds of term SGA. Air pollutant associations were robust to adjustment for road traffic noise. Trends of decreasing birth weight across increasing road traffic noise categories were observed, but were strongly attenuated when adjusted for primary traffic related air pollutants. Only PM2.5 traffic exhaust and PM2.5 were consistently associated with increased risk of term LBW after adjustment for each of the other air pollutants. It was estimated that 3% of term LBW cases in London are directly attributable to residential exposure to PM2.5>13.8 μg/m3during pregnancy.Conclusions The findings suggest that air pollution from road traffic in London is adversely affecting fetal growth. The results suggest little evidence for an independent exposure-response effect of traffic related noise on b

Journal article

Douglas P, Robertson S, Gay R, Hansell AL, Gant TWet al., 2017, A systematic review of the public health risks of bioaerosols from intensive farming, International Journal of Hygiene and Environmental Health, Vol: 221, Pages: 134-173, ISSN: 1438-4639

BACKGROUND: Population growth, increasing food demands, and economic efficiency have been major driving forces behind farming intensification over recent decades. However, biological emissions (bioaerosols) from intensified livestock farming may have the potential to impact human health. Bioaerosols from intensive livestock farming have been reported to cause symptoms and/or illnesses in occupational-settings and there is concern about the potential health effects on people who live near the intensive farms. As well as adverse health effects, some potential beneficial effects have been attributed to farm exposures in early life. The aim of the study was to undertake a systematic review to evaluate potential for adverse health outcomes in populations living near intensive livestock farms. MATERIAL AND METHODS: Two electronic databases (PubMed and Scopus) and bibliographies were searched for studies reporting associations between health outcomes and bioaerosol emissions related to intensive farming published between January 1960 and April 2017, including both occupational and community studies. Two authors independently assessed studies for inclusion and extracted data. Risk of bias was assessed using a customized score. RESULTS: 38 health studies met the inclusion criteria (21 occupational and 1 community study measured bioaerosol concentrations, 16 community studies using a proxy measure for exposure). The majority of occupational studies found a negative impact on respiratory health outcomes and increases in inflammatory biomarkers among farm workers exposed to bioaerosols. Studies investigating the health of communities living near intensive farms had mixed findings. All four studies of asthma in children found increased reported asthma prevalence among children living or attending schools near an intensive farm. Papers principally investigated respiratory and immune system outcomes. CONCLUSIONS: The review indicated a potential impact of intensive farming on chil

Journal article

Doiron D, de Hoogh K, Probst-Hensch N, Mbatchou S, Eeftens M, Cai Y, Schindler C, Fortier I, Hodgson S, Gaye A, Stolk R, Hansell Aet al., 2017, Residential Air Pollution and Associations with Wheeze and Shortness of Breath in Adults: A Combined Analysis of Cross-Sectional Data from Two Large European Cohorts., Environmental Health Perspectives, Vol: 125, ISSN: 0091-6765

BACKGROUND: Research examining associations between air pollution exposure and respiratory symptoms in adults has generally been inconclusive. This may be related in part to sample size issues, which also preclude analysis in potentially vulnerable subgroups. OBJECTIVES: We estimated associations between air pollution exposures and the prevalence of wheeze and shortness of breath using harmonized baseline data from two very large European cohorts, Lifelines (2006-2013) and UK Biobank (2006-2010). Our aim was also to determine whether the relationship between air pollution and respiratory symptom prevalence differed between individuals with different characteristics. METHODS: Cross-sectional analyses explored associations between prevalence of self-reported wheeze and shortness of breath and annual mean particulate matter with aerodynamic diameter <2.5μm, 2.5-10μm, and <10μm (PM2.5, PMcoarse, and PM10, respectively) and nitrogen dioxide (NO2) concentrations at place of residence using logistic regression. Subgroup analyses and tests for interaction were performed for age, sex, smoking status, household income, obesity status, and asthma status. RESULTS: All PM exposures were associated with respiratory symptoms based on single-pollutant models, with the largest associations seen for PM2.5 with prevalence of wheezing {odds ratio (OR)=1.16 per 5μg/m³ [95% confidence interval (CI): 1.11, 1.21]} and shortness of breath [OR=1.61 per 5μg/m³ (95% CI: 1.45, 1.78)]. The association between shortness of breath and a 5-μg/m³ increment in PM2.5 was significantly higher for individuals from lower-[OR=1.73 (95% CI: 1.52, 1.97)] versus higher-income households [OR=1.31 (95% CI: 1.11, 1.55); p-interaction=0.005), whereas the association between PM2.5 and wheeze was limited to lower-income participants [OR=1.30 (95% CI: 1.22, 1.38) vs. OR=1.02; (95% CI: 0.96, 1.08); p-interaction<0.001]. Exposure to NO2 also showed positive associations with

Journal article

Ghosh R, Dag Berild J, Freni Sterrantino A, Toledano MB, Hansell ALet al., 2017, Birth weight trends in England and Wales (1986– 2012): babies are getting heavier, Archives of Disease in Childhood-Fetal and Neonatal Edition, Vol: 103, Pages: F264-F270, ISSN: 1468-2052

Introduction Birth weight is a strong predictor of infant mortality, morbidity and later disease risk. Previous work from the 1980s indicated a shift in the UK towards heavier births; this descriptive analysis looks at more recent trends.Methods Office for National Statistics (ONS) registration data on 17.2 million live, single births from 1986 to 2012 were investigated for temporal trends in mean birth weight, potential years of birth weight change and changes in the proportions of very low (<1500 g), low (<2500 g) and high (≥4000 g) birth weight. Analysis used multiple linear and logistic regression adjusted for maternal age, marital status, area-level deprivation and ethnicity. Additional analyses used the ONS NHS Numbers for Babies data set for 2006–2012, which has information on individual ethnicity and gestational age.Results Over 27 years there was an increase in birth weight of 43 g (95% CI 42 to 44) in females and 44 g (95% CI 43 to 45) in males, driven by birth weight increases between 1986–1990 and 2007–2012. There was a concurrent decreased risk of having low birth weight but an 8% increased risk in males and 10% increased risk in females of having high birth weight. For 2006–2012 the birth weight increase was greater in preterm as compared with term births.Conclusions Since 1986 the birth weight distribution of live, single births in England and Wales has shifted towards heavier births, partly explained by increases in maternal age and non-white ethnicity, as well as changes in deprivation levels. Other potential influences include increases in maternal obesity and reductions in smoking prevalence particularly following the introduction of legislation restricting smoking in public places in 2007.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00304259&limit=30&person=true&page=2&respub-action=search.html