Imperial College London

Asmaa Harraz

Faculty of EngineeringDepartment of Chemical Engineering

Research Postgraduate



a.harraz17 CV




B432ABCACE ExtensionSouth Kensington Campus





Publication Type

4 results found

Harraz AA, Freeman J, Wang K, Mac Dowell N, Markides CNet al., 2019, Diffusion-absorption refrigeration cycle simulations in gPROMS using SAFT-γ Mie, Energy Procedia, Vol: 158, Pages: 2360-2365, ISSN: 1876-6102

Diffusion-absorption refrigeration (DAR) is a clean thermally-powered refrigeration technology that can readily be activated by low- to medium-grade renewable heat. There is an ongoing interest in identifying or designing new working fluids for performance improvement, particularly in solar applications with non-concentrating solar collectors providing heat at temperatures < 150 °C. In this work, the state-of-the-art statistical associating fluid theory (SAFT) is adopted for predicting the thermodynamic properties of suitable DAR working fluids. A first-law thermodynamic analysis is performed in the software environment gPROMS for a DAR cycle using ammonia as the refrigerant, water as the absorbent and hydrogen as the auxiliary gas. The simulation results show good agreement with experimental data generated in a prototype DAR system with a nominal cooling capacity of 100 W. In particular, at a charge pressure of 17 bar and when delivering cooling at 5 °C, the model results agree with experimental COP data to within ± 7 % over a range of heat inputs from 150 to 500 W. The maximum coefficient of performance (COP) is estimated to be 0.24 at a heat input of 250 W. The group-contribution SAFT-γ Mie equation of state is of particular interest as it offers good agreement with experimental data and provides flexibility in extending the model to test different working fluids with a high degree of fidelity. A methodology is also presented that allows the DAR thermodynamic analysis and working-fluid modelling to be integrated into a more general technology optimisation framework.

Journal article

van Kleef LMT, Oyewunmi OA, Harraz AA, Haslam AJ, Markides CNet al., 2018, Case studies in computer-aided molecular design (CAMD) of low- and medium-grade waste-heat recovery ORC systems, ECOS 2018 - 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Publisher: ECOS

Organic Rankine cycle (ORC) engines are suitable for theconversion oflow-grade heat into useful power. While numerous substances are available asORC working-fluid candidates, computer-aided molecular design (CAMD) techniques allow the rigorous selection of an optimal working fluid during system optimisation. The aim of this present study is to extend an existing CAMD-ORC framework [1,2] by incorporating, in addition to thermodynamic performance objectives, economic objectives when determining the optimal systemdesign, while maintaining the facility of selecting optimal working fluids. The SAFT-γ Mie equation of state is used to predictthethermodynamic properties of theworking fluids(here, hydrocarbons)that are relevant to the systems’economic appraisalsand critical/transport properties are estimated using empirical group-contribution methods. System investment costs are estimated with equipment cost correlations for the key system components, andthe stochastic NSGA-II solver is used for system optimisation. From a set of NLP optimisations, it is concluded that the optimal molecular size of the working fluid is linked to the heat-source temperature. The optimal specific investment cost (SIC) values were £10,120/kW and£4,040/kW when using heat-source inlet temperatures of 150°Cand250°C (representative of low-and medium-gradeheat) respectively, andthe corresponding optimal working fluids were propane, 2-butane and 2-heptene.

Conference paper

Najjaran Kheirabadi A, Harraz AA, Freeman J, Mac Dowell N, Markides CNet al., 2018, Numerical and experimental investigations of diffusion absorption refrigeration systems for use with low temperature heat sources, ECOS 2018 - 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Publisher: ECOS

he diffusion absorption refrigeration (DAR) cycle is a technology of increasing interest thanks to its suitabilityfor providing cooling from a thermal energyinputin a range of applications. Itcan bedistinguished from other absorption refrigeration cycles by its employment of a thermally-driven bubble pump to circulate the working fluid, which gives it anability to operate entirely off-gridwithout an electricity input. In this work,we present results from an experimentalcampaign aimed atcharacterisingthe performance of aprototypeammonia-water-hydrogen DAR system with a nominal cooling capacity of 100 W,over a range of operating conditions, specifically with a view ofadaptingthe system for use in low-temperature applications. In the experiments, the heat input to the DAR generator is provided over a range of temperatures from175to215°Cby using electrical cartridge heaters. The system is charged to 22 bar, and the ammonia mass concentration of the working fluid mixture is 30%. The resulting coefficient of performance (COP) of the system is measured in the range 0.12to 0.26. A new methodology for the selection of optimal working-fluid mixtures using the state-of-the-art, statistical associating fluid theory (SAFT) approach implemented within the process modelling software gPROMS®is also presented. The experimental results will be used for futurevalidation of a thermodynamic model of the cycle. Finally,the performance of the system in a solar application is investigated, with a thermal inputprovided by an array of evacuated tube heat pipe solar collectors. The system pressure and condensation temperature are found to be key factors in determining the performance of solar-DAR systems.

Conference paper

Harraz AA, El Gheriany IA, Abdel-Aziz MH, Zewail TM, Konsowa AH, Sedahmed GHet al., 2015, Liquid–solid mass transfer behaviour of a fixed bed airlift reactor, Biochemical Engineering Journal, Vol: 103, Pages: 1-11, ISSN: 1369-703X

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01111263&limit=30&person=true