Imperial College London

Aidan O. T. Hogg

Faculty of EngineeringDyson School of Design Engineering

Research Associate in Spatial Audio and Virtual Reality
 
 
 
//

Contact

 

a.hogg Website

 
 
//

Location

 

RCS1 214Royal College of ScienceSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

8 results found

McKnight S, Hogg A, Neo V, Naylor Pet al., 2021, A study of salient modulation domain features for speaker identification, Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Publisher: IEEE

This paper studies the ranges of acoustic andmodulation frequencies of speech most relevant for identifyingspeakers and compares the speaker-specific information presentin the temporal envelope against that present in the temporalfine structure. This study uses correlation and feature importancemeasures, random forest and convolutional neural network mod-els, and reconstructed speech signals with specific acoustic and/ormodulation frequencies removed to identify the salient points. Itis shown that the range of modulation frequencies associated withthe fundamental frequency is more important than the 1-16 Hzrange most commonly used in automatic speech recognition, andthat the 0 Hz modulation frequency band contains significantspeaker information. It is also shown that the temporal envelopeis more discriminative among speakers than the temporal finestructure, but that the temporal fine structure still contains usefuladditional information for speaker identification. This researchaims to provide a timely addition to the literature by identifyingspecific aspects of speech relevant for speaker identification thatcould be used to enhance the discriminant capabilities of machinelearning models.

Conference paper

Hogg A, Neo V, Weiss S, Evers C, Naylor Pet al., 2021, A polynomial eigenvalue decomposition MUSIC approach for broadband sound source localization, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Publisher: IEEE

Direction of arrival (DoA) estimation for sound source localization is increasingly prevalent in modern devices. In this paper, we explore a polynomial extension to the multiple signal classification (MUSIC) algorithm, spatio-spectral polynomial (SSP)-MUSIC, and evaluate its performance when using speech sound sources. In addition, we also propose three essential enhancements for SSP-MUSIC to work with noisy reverberant audio data. This paper includes an analysis of SSP-MUSIC using speech signals in a simulated room for different noise and reverberation conditions and the first task of the LOCATA challenge. We show that SSP-MUSIC is more robust to noise and reverberation compared to independent frequency bin (IFB) approaches and improvements can be seen for single sound source localization at signal-to-noise ratios (SNRs) below 5 dB and reverberation times (T60s) larger than 0.7 s.

Conference paper

Hogg AOT, Evers C, Naylor PA, 2021, Multichannel Overlapping Speaker Segmentation Using Multiple Hypothesis Tracking Of Acoustic And Spatial Features, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Publisher: IEEE

Conference paper

Hogg A, Evers C, Moore A, Naylor Pet al., 2021, Overlapping speaker segmentation using multiple hypothesis tracking of fundamental frequency, IEEE/ACM Transactions on Audio, Speech and Language Processing, Vol: 29, Pages: 1479-1490, ISSN: 2329-9290

This paper demonstrates how the harmonic structure of voiced speech can be exploited to segment multiple overlapping speakers in a speaker diarization task. We explore how a change in the speaker can be inferred from a change in pitch. We show that voiced harmonics can be useful in detecting when more than one speaker is talking, such as during overlapping speaker activity. A novel system is proposed to track multiple harmonics simultaneously, allowing for the determination of onsets and end-points of a speaker’s utterance in the presence of an additional active speaker. This system is bench-marked against a segmentation system from the literature that employs a bidirectional long short term memory network (BLSTM) approach and requires training. Experimental results highlight that the proposed approach outperforms the BLSTM baseline approach by 12.9% in terms of HIT rate for speaker segmentation. We also show that the estimated pitch tracks of our system can be used as features to the BLSTM to achieve further improvements of 1.21% in terms of coverage and 2.45% in terms of purity

Journal article

McKnight SW, Hogg AOT, Naylor PA, 2021, Analysis of Phonetic Dependence of Segmentation Errors in Speaker Diarization, 2020 28th European Signal Processing Conference (EUSIPCO), Publisher: IEEE

Conference paper

Hogg AOT, Evers C, Naylor PA, 2019, Multiple Hypothesis Tracking for Overlapping Speaker Segmentation, 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Publisher: IEEE

Conference paper

Sharma D, Hogg AOT, Wang Y, Nour-Eldin A, Naylor PAet al., 2019, Non-Intrusive POLQA Estimation of Speech Quality using Recurrent Neural Networks, 2019 27th European Signal Processing Conference (EUSIPCO), Publisher: IEEE

Conference paper

Hogg AOT, Evers C, Naylor PA, 2019, Speaker Change Detection Using Fundamental Frequency with Application to Multi-talker Segmentation, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Publisher: IEEE

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00817908&limit=30&person=true