Imperial College London

Professor Andrew H Jaffe

Faculty of Natural SciencesDepartment of Physics

Professor of Astrophysics and Cosmology
 
 
 
//

Contact

 

+44 (0)20 7594 7526a.jaffe Website

 
 
//

Assistant

 

Miss Louise Hayward +44 (0)20 7594 7679

 
//

Location

 

1018BBlackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

347 results found

Mootoovaloo A, Heavens AF, Jaffe AH, Leclercq Fet al., 2020, Parameter Inference for Weak Lensing using Gaussian Processes and MOPED, Monthly Notices of the Royal Astronomical Society, ISSN: 0035-8711

In this paper, we propose a Gaussian Process (GP) emulator for the calculationboth of tomographic weak lensing band-powers, and of coefficients of summary datamassively compressed with the MOPED algorithm. In the former case cosmologicalparameter inference is accelerated by a factor of ∼ 10-30 compared with Boltzmannsolver CLASS applied to KiDS-450 weak lensing data. Much larger gains of order 103will come with future data, and MOPED with GPs will be fast enough to permit5 the Limber approximation to be dropped, with acceleration in this case of ∼ 10 . Apotential advantage of GPs is that an error on the emulated function can be computed and this uncertainty incorporated into the likelihood. However, it is known that the GP error can be unreliable when applied to deterministic functions, and we find, using the Kullback-Leibler divergence between the emulator and CLASS likelihoods, and from the uncertainties on the parameters, that agreement is better when the GP uncertainty is not used. In future, weak lensing surveys such as Euclid, and the Legacy Survey of Space and Time (LSST), will have up to ∼ 104 summary statistics, and inference will be correspondingly more challenging. However, since the speed of MOPED is determined not the number of summary data, but by the number of parameters, MOPED analysis scales almost perfectly, provided that a fast way to compute the theoretical MOPED coefficients is available. The GP provides such a fast mechanism.

Journal article

Leclercq F, Faure B, Lavaux G, Wandelt BD, Jaffe AH, Heavens AF, Percival WJ, Noûs Cet al., 2020, Perfectly parallel cosmological simulations using spatial comoving Lagrangian acceleration, Astronomy and Astrophysics: a European journal, Vol: 639, ISSN: 0004-6361

Context. Existing cosmological simulation methods lack a high degree of parallelism due to the long-range nature of the gravitational force, which limits the size of simulations that can be run at high resolution.Aims. To solve this problem, we propose a new, perfectly parallel approach to simulate cosmic structure formation, which is based on the spatial COmoving Lagrangian Acceleration (sCOLA) framework.Methods. Building upon a hybrid analytical and numerical description of particles’ trajectories, our algorithm allows for an efficient tiling of a cosmological volume, where the dynamics within each tile is computed independently. As a consequence, the degree of parallelism is equal to the number of tiles. We optimised the accuracy of sCOLA through the use of a buffer region around tiles and of appropriate Dirichlet boundary conditions around sCOLA boxes.Results. As a result, we show that cosmological simulations at the degree of accuracy required for the analysis of the next generation of surveys can be run in drastically reduced wall-clock times and with very low memory requirements.Conclusions. The perfect scalability of our algorithm unlocks profoundly new possibilities for computing larger cosmological simulations at high resolution, taking advantage of a variety of hardware architectures.

Journal article

Chinone Y, Adachi S, Ade PAR, Aguilar M, Akiba Y, Arnold K, Baccigalupi C, Barron D, Beck D, Beckman S, Bianchini F, Boettger D, Borrill J, ElBouhargani H, Carron J, Chapman S, Cheung K, Crowley K, Cukierman A, Dunner R, Dobbs M, Ducout A, Elleflot T, Errard J, Fabbian G, Feeney SM, Feng C, Fujino T, Galitzki N, Gilbert A, Goeckner-Wald N, Groh J, Groh JC, Hal G, Halverson N, Hamada T, Hasegawa M, Hazumi M, Hill CA, Howe L, Inoue Y, Jaehnig G, Jaffe AH, Jeong O, LeJeune M, Kaneko D, Katayama N, Keating B, Keskitalo R, Kikuchi S, Kisner T, Krachmalnicoff N, Kusaka A, Lee AT, Leitch EM, Leon D, Linder E, Lowry LN, Mangu A, Matsuda F, Matsumura T, Minami Y, Montgomery J, Navaroli M, Nishino H, Paar H, Peloton J, Pham ATP, Poletti D, Puglisi G, Reichardt CL, Richards PL, Ross C, Segawa Y, Sherwin BD, Silva-Feaver M, Siritanasak P, Stebor N, Stompor R, Suzuki A, Tajima O, Takakura S, Takatori S, Tanabe D, Teply GP, Tomaru T, Tsai C, Tucker C, Verges C, Westbrook B, Whitehorn N, Zahn A, Zhou Yet al., 2020, Results of gravitational lensing and primordial gravitational waves from the POLARBEAR experiment, 16TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2019), Vol: 1468, ISSN: 1742-6588

Journal article

Hotinli SC, Kamionkowski M, Jaffe AH, 2019, The search for statistical anisotropy in the gravitational-wave background with pulsar timing arrays, The Open Journal of Astrophysics, Vol: 2

Journal article

Hotinli SC, Meyers J, Dalal N, Jaffe AH, Johnson MC, Mertens JB, Munchmeyer M, Smith KM, van Engelen Aet al., 2019, Transverse velocities with the moving lens effect, Physical Review Letters, Vol: 123, ISSN: 0031-9007

Gravitational potentials that change in time induce fluctuations in the observed cosmic microwave background (CMB) temperature. Cosmological structure moving transverse to our line of sight provides a specific example known as the moving lens effect. Here, we explore how the observed CMB temperature fluctuations, combined with the observed matter overdensity, can be used to infer the transverse velocity of cosmological structures on large scales. We show that near-future CMB surveys and galaxy surveys will have the statistical power to make a first detection of the moving lens effect, and we discuss applications for the reconstructed transverse velocity.

Journal article

Collaboration TSO, Abitbol MH, Adachi S, Ade P, Aguirre J, Ahmed Z, Aiola S, Ali A, Alonso D, Alvarez MA, Arnold K, Ashton P, Atkins Z, Austermann J, Awan H, Baccigalupi C, Baildon T, Lizancos AB, Barron D, Battaglia N, Battye R, Baxter E, Bazarko A, Beall JA, Bean R, Beck D, Beckman S, Beringue B, Bhandarkar T, Bhimani S, Bianchini F, Boada S, Boettger D, Bolliet B, Bond JR, Borrill J, Brown ML, Bruno SM, Bryan S, Calabrese E, Calafut V, Calisse P, Carron J, Carl FM, Cayuso J, Challinor A, Chesmore G, Chinone Y, Chluba J, Cho H-MS, Choi S, Clark S, Clarke P, Contaldi C, Coppi G, Cothard NF, Coughlin K, Coulton W, Crichton D, Crowley KD, Crowley KT, Cukierman A, D'Ewart JM, Dünner R, Haan TD, Devlin M, Dicker S, Dober B, Duell CJ, Duff S, Duivenvoorden A, Dunkley J, Bouhargani HE, Errard J, Fabbian G, Feeney S, Fergusson J, Ferraro S, Fluxà P, Freese K, Frisch JC, Frolov A, Fuller G, Galitzki N, Gallardo PA, Ghersi JTG, Gao J, Gawiser E, Gerbino M, Gluscevic V, Goeckner-Wald N, Golec J, Gordon S, Gralla M, Green D, Grigorian A, Groh J, Groppi C, Guan Y, Gudmundsson JE, Halpern M, Han D, Hargrave P, Harrington K, Hasegawa M, Hasselfield M, Hattori M, Haynes V, Hazumi M, Healy E, Henderson SW, Hensley B, Hervias-Caimapo C, Hill CA, Hill JC, Hilton G, Hilton M, Hincks AD, Hinshaw G, Hložek R, Ho S, Ho S-PP, Hoang TD, Hoh J, Hotinli SC, Huang Z, Hubmayr J, Huffenberger K, Hughes JP, Ijjas A, Ikape M, Irwin K, Jaffe AH, Jain B, Jeong O, Johnson M, Kaneko D, Karpel ED, Katayama N, Keating B, Keskitalo R, Kisner T, Kiuchi K, Klein J, Knowles K, Kofman A, Koopman B, Kosowsky A, Krachmalnicoff N, Kusaka A, LaPlante P, Lashner J, Lee A, Lee E, Lewis A, Li Y, Li Z, Limon M, Linder E, Liu J, Lopez-Caraballo C, Louis T, Lungu M, Madhavacheril M, Mak D, Maldonado F, Mani H, Mates B, Matsuda F, Maurin L, Mauskopf P, May A, McCallum N, McCarrick H, McKenney C, McMahon J, Meerburg PD, Mertens J, Meyers J, Miller A, Mirmelstein M, Moodley K, Moore J, Munchmeyer M, Munson C, Murata Met al., 2019, The Simons observatory: Astro2020 decadal project whitepaper, Publisher: arXiv

The Simons Observatory (SO) is a ground-based cosmic microwave background(CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile thatpromises to provide breakthrough discoveries in fundamental physics, cosmology,and astrophysics. Supported by the Simons Foundation, the Heising-SimonsFoundation, and with contributions from collaborating institutions, SO will seefirst light in 2021 and start a five year survey in 2022. SO has 287collaborators from 12 countries and 53 institutions, including 85 students and90 postdocs. The SO experiment in its currently funded form ('SO-Nominal') consists ofthree 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large ApertureTelescope (LAT). Optimized for minimizing systematic errors in polarizationmeasurements at large angular scales, the SATs will perform a deep,degree-scale survey of 10% of the sky to search for the signature of primordialgravitational waves. The LAT will survey 40% of the sky with arc-minuteresolution. These observations will measure (or limit) the sum of neutrinomasses, search for light relics, measure the early behavior of Dark Energy, andrefine our understanding of the intergalactic medium, clusters and the role offeedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution ofthe Planck satellite, and roughly an order of magnitude increase in mappingspeed over currently operating ("Stage 3") experiments, SO will measure the CMBtemperature and polarization fluctuations to exquisite precision in sixfrequency bands from 27 to 280 GHz. SO will rapidly advance CMB science whileinforming the design of future observatories such as CMB-S4.

Working paper

Didier J, Miller AD, Araujo D, Aubin F, Geach C, Johnson B, Korotkov A, Raach K, Westbrook B, Young K, Aboobaker AM, Ade P, Baccigalupi C, Bao C, Chapman D, Dobbs M, Grainger W, Hanany S, Helson K, Hillbrand S, Hubmayr J, Jaffe A, Jones T, Klein J, Lee A, Limon M, MacDermid K, Milligan M, Pascale E, Reichborn-Kjennerud B, Sagiv I, Tucker C, Tucker GS, Zilic Ket al., 2019, Intensity-Coupled-Polarization in Instruments with a Continuously Rotating Half-Wave Plate, Astrophysical Journal, ISSN: 0004-637X

We discuss a systematic effect associated with measuring polarization with acontinuously rotating half-wave plate. The effect was identified with the datafrom the E and B Experiment (EBEX), which was a balloon-borne instrumentdesigned to measure the polarization of the CMB as well as that from Galacticdust. The data show polarization fraction larger than 10\% while less than 3\%were expected from instrumental polarization. We give evidence that the excesspolarization is due to detector non-linearity in the presence of a continuouslyrotating HWP. The non-linearity couples intensity signals into polarization. Wedevelop a map-based method to remove the excess polarization. Applying thismethod for the 150 (250) GHz bands data we find that 81\% (92\%) of the excesspolarization was removed. Characterization and mitigation of this effect isimportant for future experiments aiming to measure the CMB B-modes with acontinuously rotating HWP.

Journal article

Conneely C, Jaffe AH, Mingarelli CMF, 2019, On the Amplitude and Stokes Parameters of a Stochastic Gravitational-Wave Background, Monthly Notices of the Royal Astronomical Society, ISSN: 0035-8711

Journal article

Ade P, Aguirre J, Ahmed Z, Aiola S, Ali A, Alonso D, Alvarez MA, Arnold K, Ashton P, Austermann J, Awan H, Baccigalupi C, Baildon T, Barron D, Battaglia N, Battye R, Baxter E, Bazarko A, Beall JA, Bean R, Beck D, Beckman S, Beringue B, Bianchini F, Boada S, Boettger D, Bond JR, Borrill J, Brown ML, Bruno SM, Bryan S, Calabrese E, Calafut V, Calisse P, Carron J, Challinor A, Chesmore G, Chinone Y, Chluba J, Cho H-MS, Choi S, Coppi G, Cothard NF, Coughlin K, Crichton D, Crowley KD, Crowley KT, Cukierman A, D'Ewart JM, Dunner R, de Haan T, Devlin M, Dicker S, Didier J, Dobbs M, Dober B, Duell CJ, Duff S, Duivenvoorden A, Dunkley J, Dusatko J, Errard J, Fabbian G, Feeney S, Ferraro S, Fluxa P, Freese K, Frisch JC, Frolov A, Fuller G, Fuzia B, Galitzki N, Gallardo PA, Ghersi JTG, Gao J, Gawiser E, Gerbino M, Gluscevic V, Goeckner-Wald N, Golec J, Gordon S, Gralla M, Green D, Grigorian A, Groh J, Groppi C, Guan Y, Gudmundsson JE, Han D, Hargrave P, Hasegawa M, Hasselfield M, Hattori M, Haynes V, Hazumi M, He Y, Healy E, Henderson SW, Hervias-Caimapo C, Hill CA, Hill JC, Hilton G, Hilton M, Hincks AD, Hinshaw G, Hlozek R, Ho S, Ho S-PP, Howe L, Huang Z, Hubmayr J, Huffenberger K, Hughes JP, Ijjas A, Ikape M, Irwin K, Jaffe AH, Jain B, Jeong O, Kaneko D, Karpel ED, Katayama N, Keating B, Kernasovskiy SS, Keskitalo R, Kisner T, Kiuchi K, Klein J, Knowles K, Koopman B, Kosowsky A, Krachmalnicoff N, Kuenstner SE, Kuo C-L, Kusaka A, Lashner J, Lee A, Lee E, Leon D, Leung JS-Y, Lewis A, Li Y, Li Z, Limon M, Linder E, Lopez-Caraballo C, Louis T, Lowry L, Lungu M, Madhavacheril M, Mak D, Maldonado F, Mani H, Mates B, Matsuda F, Maurin L, Mauskopf P, May A, McCallum N, McKenney C, McMahon J, Meerburg PD, Meyers J, Miller A, Mirmelstein M, Moodley K, Munchmeyer M, Munson C, Naess S, Nati F, Navaroli M, Newburgh L, Ho NN, Niemack M, Nishino H, Orlowski-Scherer J, Page L, Partridge B, Peloton J, Perrotta F, Piccirillo L, Pisano G, Poletti D, Puddu R, Puglisi G, Raum C, Reichardt CL Ret al., 2019, The Simons Observatory: science goals and forecasts, JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, ISSN: 1475-7516

Journal article

Westbrook B, Ade PAR, Aguilar M, Akiba Y, Arnold K, Baccigalupi C, Barron D, Beck D, Beckman S, Bender AN, Bianchini F, Boettger D, Borrill J, Chapman S, Chinone Y, Coppi G, Crowley K, Cukierman A, de Haan T, Dunner R, Dobbs M, Elleflot T, Errard J, Fabbian G, Feeney SM, Feng C, Fuller G, Galitzki N, Gilbert A, Goeckner-Wald N, Groh J, Halverson NW, Hamada T, Hasegawa M, Hazumi M, Hill CA, Holzapfel W, Howe L, Inoue Y, Jaehnig G, Jaffe A, Jeong O, Kaneko D, Katayama N, Keating B, Keskitalo R, Kisner T, Krachmalnicoff N, Kusaka A, Le Jeune M, Lee AT, Leon D, Linder E, Lowry L, Madurowicz A, Mak D, Matsuda F, May A, Miller NJ, Minami Y, Montgomery J, Navaroli M, Nishino H, Peloton J, Pham A, Piccirillo L, Plambeck D, Poletti D, Puglisi G, Raum C, Rebeiz G, Reichardt CL, Richards PL, Roberts H, Ross C, Rotermund KM, Segawa Y, Sherwin B, Silva-Feaver M, Siritanasak P, Stompor R, Suzuki A, Tajima O, Takakura S, Takatori S, Tanabe D, Tat R, Teply GP, Tikhomirov A, Tomaru T, Tsai C, Whitehorn N, Zahn Aet al., 2018, The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status, JOURNAL OF LOW TEMPERATURE PHYSICS, Vol: 193, Pages: 758-770, ISSN: 0022-2291

Journal article

Aboobaker A, Ade P, Araujo D, Aubin F, Baccigalupi C, Bao C, Chapman D, Didier J, Dobbs M, Grainger W, Hanany S, Helson K, Hillbrand S, Hubmayr J, Jaffe A, Johnson B, Jones T, Klein J, Korotkov A, Lee A, Levinson L, Limon M, MacDermid K, Miller AD, Milligan M, Moncelsi L, Pascale E, Raach K, Reichborn-Kjennerud B, Sagiv I, Tucker C, Tucker GS, Westbrook B, Young K, Zilic Ket al., 2018, The EBEX Balloon-borne Experiment-Gondola, Attitude Control, and Control Software, ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, Vol: 239, ISSN: 0067-0049

Journal article

Abitbol M, Aboobaker AM, Ade P, Araujo D, Aubin F, Baccigalupi C, Bao C, Chapman D, Didier J, Dobbs M, Feeney SM, Geach C, Grainger W, Hanany S, Helson K, Hillbrand S, Hilton G, Hubmayr J, Irwin K, Jaffe A, Johnson B, Jones T, Klein J, Korotkov A, Lee A, Levinson L, Limon M, MacDermid K, Miller AD, Milligan M, Raach K, Reichborn-Kjennerud B, Reintsema C, Sagiv I, Smecher G, Tucker GS, Westbrook B, Young K, Zilic Ket al., 2018, The EBEX Balloon-borne Experiment-Detectors and Readout, ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, Vol: 239, ISSN: 0067-0049

Journal article

Aboobaker AM, Ade P, Araujo D, Aubin F, Baccigalupi C, Bao C, Chapman D, Didier J, Dobbs M, Geach C, Grainger W, Hanany S, Helson K, Hillbrand S, Hubmayr J, Jaffe A, Johnson B, Jones T, Klein J, Korotkov A, Lee A, Levinson L, Limon M, MacDermid K, Matsumura T, Miller AD, Milligan M, Raach K, Reichborn-Kjennerud B, Sagiv I, Savini G, Spencer L, Tucker C, Tucker GS, Westbrook B, Young K, Zilic Ket al., 2018, The EBEX Balloon-borne Experiment-Optics, Receiver, and Polarimetry, ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, Vol: 239, ISSN: 0067-0049

Journal article

Akrami Y, Argueso F, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bonavera L, Bond JR, Borrill J, Bouchet FR, Burigana C, Butler RC, Calabrese E, Carron J, Chiang HC, Combet C, Crill BP, Cuttaia F, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Dickinson C, Diego JM, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fantaye Y, Finelli F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gruppuso A, Gudmundsson JE, Handley W, Hansen FK, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Levrier F, Liguori M, Lilje PB, Lindholm V, Lopez-Caniego M, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, McEwen JD, Meinhold PR, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Natoli P, Oxborrow CA, Pagano L, Paoletti D, Partridge B, Patanchon G, Pearson TJ, Pettorino V, Piacentini F, Polenta G, Puget J-L, Rachen JP, Racine B, Reinecke M, Remazeilles M, Renzi A, Rocha G, Roudier G, Rubino-Martin JA, Salvati L, Sandri M, Savelainen M, Scott D, Suur-Uski A-S, Tauber JA, Tavagnacco D, Toffolatti L, Tomasi M, Trombetti T, Tucci M, Valiviita J, Van Tent B, Vielva P, Villa F, Vittorio N, Wehus IK, Zacchei A, Zonca Aet al., 2018, Planck intermediate results LIV. The Planck multi-frequency catalogue of non-thermal sources, ASTRONOMY & ASTROPHYSICS, Vol: 619, ISSN: 1432-0746

Journal article

Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Battye R, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bond JR, Borrill J, Bouchet FR, Burigana C, Calabrese E, Carron J, Chiang HC, Comis B, Contreras D, Crill BP, Curto A, Cuttaia F, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Di Valentino E, Dickinson C, Diego JM, Dore O, Ducout A, Dupac X, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Fantaye Y, Finelli F, Forastieri F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Gerbino M, Gorski KM, Gruppuso A, Gudmundsson JE, Handley W, Hansen FK, Herranz D, Hivon E, Huang Z, Jaffe AH, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Levrier F, Liguori M, Lilje PB, Lindholm V, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Natoli P, Oxborrow CA, Pagano L, Paoletti D, Partridge B, Perdereau O, Perotto L, Pettorino V, Piacentini F, Plaszczynski S, Polastri L, Polenta G, Rachen JP, Racine B, Reinecke M, Remazeilles M, Renzi A, Rocha G, Roudier G, Ruiz-Granados B, Sandri M, Savelainen M, Scott D, Sirignano C, Sirri G, Spencer LD, Stanco L, Sunyaev R, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Tristram M, Trombetti T, Valiviita J, Van Tent F, Vielva P, Villa F, Vittorio N, Wandele BD, Wehus IK, Zacchei A, Zonca Aet al., 2018, Planck intermediate results LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect, ASTRONOMY & ASTROPHYSICS, Vol: 617, ISSN: 1432-0746

Journal article

Jaffe A, Jackson F, Yale E, Rome A, Rohn J, Radford T, Haslam A, Coyle Det al., 2018, Summer reads: Darwin’s dilemma on sexual selection, ecology versus empire, and the dark side of the greater good, Nature, Vol: 559, Pages: 328-330, ISSN: 0028-0836

Journal article

Jaffe A, 2018, The illusion of time, Nature, Vol: 556, Pages: 304-305, ISSN: 0028-0836

Journal article

Ade PAR, Aghanim N, Alves MIR, Arnaud M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Boulanger F, Burigana C, Cardoso J-F, Casassus S, Catalano A, Chamballu A, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Clements DL, Colombi S, Colombo LPL, Couchot F, Crill BP, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Desert F-X, Dickinson C, Diego JM, Donzelli S, Dore O, Dupac X, Ensslin TA, Eriksen HK, Finelli F, Forni O, Franceschi E, Galeotta S, Ganga K, Genova-Santos RT, Ghosh T, Giard M, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Hansen FK, Harrison DL, Helou G, Hernandez-Monteagudo C, Hildebrandt SR, Hivon E, Hobson M, Hornstrup A, Jaffe AH, Jaffe TR, Jones WC, Keihanen E, Keskitalo R, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lahteenmaki A, Lamarre J-M, Lasenby A, Lawrence CR, Leonardi R, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Naselsky P, Nati F, Natoli P, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paladini R, Paoletti D, Patanchon G, Pearson TJ, Peel M, Perdereau O, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Popa L, Pratt GW, Prunet S, Puget J-L, Rachen JP, Rebolo R, Reich W, Reinecke M, Remazeilles M, Renault C, Ricciardi S, Riller T, Ristorcelli I, Rocha G, Rosset C, Roudier G, Rubino-Martin JA, Rusholme B, Sandri M, Savini G, Scott D, Spencer LD, Stolyarov V, Sutton D, Suur-Uski A-S, Sygnet J-F, Tauber JA, Tavagnacco D, Terenzi L, Tibbs CT, Tofet al., 2018, Planck intermediate results XV. A study of anomalous microwave emission in Galactic clouds (vol 565, A103, 2014), Astronomy and Astrophysics: a European journal, Vol: 610, ISSN: 0004-6361

This article is an erratum for: https://doi.org/10.1051/0004-6361/201322612

Journal article

Ade PAR, Aghanim N, Alves MIR, Arnaud M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit-Lévy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Boulanger F, Burigana C, Cardoso J-F, Casassus S, Catalano A, Chamballu A, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Clements DL, Colombi S, Colombo LPL, Couchot F, Crill BP, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Désert F-X, Dickinson C, Diego JM, Donzelli S, Doré O, Dupac X, Enßlin TA, Eriksen HK, Finelli F, Forni O, Franceschi E, Galeotta S, Ganga K, Génova-Santos RT, Ghosh T, Giard M, González-Nuevo J, Górski KM, Gregorio A, Gruppuso A, Hansen FK, Harrison DL, Helou G, Hernández-Monteagudo C, Hildebrandt SR, Hivon E, Hobson M, Hornstrup A, Jaffe AH, Jaffe TR, Jones WC, Keihänen E, Keskitalo R, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lähteenmäki A, Lamarre J-M, Lasenby A, Lawrence CR, Leonardi R, Liguori M, Lilje PB, Linden-Vrnle M, López-Caniego M, Macías-Pérez JF, Maffei B, Maino D, Mandolesi N, Marshall DJ, Martin PG, Martínez-González E, Masi S, Massardi M, Matarrese S, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Miville-Deschênes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Naselsky P, Nati F, Natoli P, Nrgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paladini R, Paoletti D, Patanchon G, Pearson TJ, Peel M, Perdereau O, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Popa L, Pratt GW, Prunet S, Puget J-L, Rachen JP, Rebolo R, Reich W, Reinecke M, Remazeilles M, Renault C, Ricciardi S, Riller T, Ristorcelli I, Rocha G, Rosset C, Roudier G, Rubiño-Martín JA, Rusholme B, Sandri M, Savini G, Scott D, Spencer LD, Stolyarov V, Sutton D, Suur-Uski A-S, Sygnet J-F, Tauber JA, Tavagnacco D, Terenzi L, Tibbs CT, Toffet al., 2018, Planck intermediate results, Astronomy & Astrophysics, Vol: 610, Pages: C1-C1, ISSN: 0004-6361

Journal article

Hotinli SC, Frazer J, Jaffe AH, Meyers J, Price LC, Tarrant ERMet al., 2018, Effect of reheating on predictions following multiple-field inflation, PHYSICAL REVIEW D, Vol: 97, ISSN: 2470-0010

Journal article

Aubin F, Aboobaker AM, Bao C, Geach C, Hanany S, Jones T, Klein J, Milligan M, Raach K, Young K, Zilic K, Helson K, Korotkov A, Marchenko V, Tucker GS, Ade P, Pascale E, Araujo D, Chapman D, Didier J, Hillbrand S, Johnson B, Limon M, Miller AD, Reichborn-Kjennerud B, Feeney S, Jaffe A, Stompor R, Tristram M, Dobbs M, Macdermid K, Smecher G, Borrill J, Kisner T, Hilton G, Hubmayr J, Reintsema C, Baccigalupi C, Puglisi G, Lee A, Westbrook B, Levinson L, Sagiv Iet al., 2018, Temperature calibration of the E and B experiment, Fourteenth Marcel Grossmann Meeting - MG14, Pages: 2084-2089

Copyright © 2018 by the Editors.All rights reserved. The E and B Experiment (EBEX) is a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation and to characterize the polarization of galactic dust. EBEX was launched December 29, 2012 and circumnavigated Antarctica observing ∼6,000 square degrees of sky during 11 days at three frequency bands centered around 150, 250 and 410 GHz. EBEX was the first experiment to operate a kilo-pixel array of transition-edge sensor bolometers and a continuously rotating achromatic half-wave plate aboard a balloon platform. It also pioneered the use of detector readout based on digital frequency domain multiplexing. We describe the temperature calibration of the experiment. The gain response of the experiment is calibrated using a two-step iterative process. We use signals measured on passes across the Galactic plane to convert from readout-system counts to power. The effective smoothing scale of the EBEX optics and the star camera-to-detector offset angles are determined through χ2 minimization using the compact HII region RCW 38. This two-step process is initially performed with parameters measured before the EBEX 2013 flight and then repeated until the calibration factor and parameters converge.

Conference paper

Heavens A, Alsing J, Jaffe A, Hoffmann T, Kiessling A, Wandelt Bet al., 2017, Bayesian hierarchical modelling of weak lensing - the golden goal, MG14 Meeting on General Relativity, Publisher: World Scientific, Pages: 3005-3010

To accomplish correct Bayesian inference from weak lensing shear datarequires a complete statistical description of the data. The natural frameworkto do this is a Bayesian Hierarchical Model, which divides the chain ofreasoning into component steps. Starting with a catalogue of shear estimates intomographic bins, we build a model that allows us to sample simultaneously fromthe the underlying tomographic shear fields and the relevant power spectra(E-mode, B-mode, and E-B, for auto- and cross-power spectra). The proceduredeals easily with masked data and intrinsic alignments. Using Gibbs samplingand messenger fields, we show with simulated data that the large (over67000-)dimensional parameter space can be efficiently sampled and the fulljoint posterior probability density function for the parameters can feasibly beobtained. The method correctly recovers the underlying shear fields and all ofthe power spectra, including at levels well below the shot noise.

Conference paper

Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Carron J, Chiang HC, Colombo LPL, Comis B, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Di Valentino E, Dickinson C, Diego JM, Dore O, Ducout A, Dupac X, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Fantaye Y, Finelli F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Gonzalez-Nuevo J, Gorski KM, Gruppuso A, Gudmundsson JE, Hansen FK, Helou G, Henrot-Versille S, Herranz D, Hivon E, Jaffe AH, Jones WC, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Lellouch E, Levrier F, Liguori M, Lilje PB, Lindholm V, Lopez-Caniego M, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Moreno R, Morgante G, Natoli P, Oxborrow CA, Paoletti D, Partridge B, Patanchon G, Patrizii L, Perdereau O, Piacentini F, Plaszczynski S, Polenta G, Rachen JP, Racine B, Reinecke M, Remazeilles M, Renzi A, Rocha G, Romelli E, Rosset C, Roudier G, Rubino-Martin JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Sirri G, Spencer LD, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Tristram M, Trombetti T, Valiviita J, Van Tent F, Vielva P, Villa F, Wehus IK, Zacchei Aet al., 2017, Planck intermediate results LII. Planet flux densities, Astronomy and Astrophysics, Vol: 607, ISSN: 0004-6361

Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100–857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn’s rings to the planet’s total flux density suggests a best fit value for the spectral index of Saturn’s ring system of βring = 2.30 ± 0.03 over the 30–1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100–353 GHz); this analysis provides a 95% confidence level upper limit on Mars’s polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured

Journal article

Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Burigana C, Calabrese E, Cardoso J-F, Challinor A, Chiang HC, Colombo LPL, Combet C, Crill BP, Curto A, Cuttaia F, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Di Valentino E, Dickinson C, Diego JM, Dore O, Ducout A, Dupac X, Dusini S, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fantaye Y, Finelli F, Forastieri F, Frailis M, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gruppuso A, Gudmundsson JE, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Knox L, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Levrier F, Lewis A, Liguori M, Lilje PB, Lilley M, Lindholm V, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Meinhold PR, Mennella A, Migliaccio M, Millea M, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Narimani A, Natoli P, Oxborrow CA, Pagano L, Paoletti D, Partridge B, Patanchon G, Patrizii L, Pettorino V, Piacentini F, Polastri L, Polenta G, Puget J-L, Rachen JP, Racine B, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rossetti M, Roudier G, Rubino-Martin JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Sirignano C, Sirri G, Stanco L, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolati L, Tomasi M, Tristram M, Trombetti T, Valiviita J, Van Tent F, Vielva P, Villa F, Vittorio N, Wandelt BD, Wehus IK, White M, Zacchei A, Zonca Aet al., 2017, Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters, Astronomy and Astrophysics, Vol: 607, ISSN: 0004-6361

The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shiftedsomewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum atangular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whetherthey are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionizedintergalactic medium τ, the baryon density ωb, the matter density ωm, the angular size of the sound horizon θ∗, the spectral index of the primordialpower spectrum, ns, and Ase−2τ(where Asis the amplitude of the primordial power spectrum), we have examined the change in best-fit valuesbetween a WMAP-like large angular-scale data set (with multipole moment ` < 800 in the Planck temperature power spectrum) and an all angularscaledata set (` < 2500 Planck temperature power spectrum), each with a prior on τ of 0.07 ± 0.02. We find that the shifts, in units of the 1σexpected dispersion for each parameter, are {∆τ, ∆Ase−2τ, ∆ns, ∆ωm, ∆ωb, ∆θ∗} = {−1.7, −2.2, 1.2, −2.0, 1.1, 0.9}, with a χ2 value of 8.0. We findthat this χ2 value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2σ in 9% of simulated data sets,meaning that the shifts are not unusually large. Comparing ` < 800 instead to ` > 800, or splitting at a different multipole, yields similar results.We examined the ` < 800 model residuals in the ` > 800 power spectrum data and find that the features there that drive these shifts are a set ofoscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing

Journal article

Ade PAR, Aguilar M, Akiba Y, Arnold K, Baccigalupi C, Barron D, Beck D, Bianchini F, Boettger D, Borrill J, Chapman S, Chinone Y, Crowley K, Cukierman A, Dunner R, Dobbs M, Ducout A, Elleflot T, Errard J, Fabbian G, Feeney SM, Feng C, Fujino T, Galitzki N, Gilbert A, Goeckner-Wald N, Groh JC, Hall G, Halverson N, Hamada T, Hasegawa M, Hazumi M, Hill CA, Howe L, Inoue Y, Jaehnig G, Jaffe AH, Jeong O, Kaneko D, Katayama N, Keating B, Keskitalo R, Kisner T, Krachmalnicoff N, Kusaka A, Le Jeune M, Lee AT, Leitch EM, Leon D, Linder E, Lowry L, Matsuda F, Matsumura T, Minami Y, Montgomery J, Navaroli M, Nishino H, Paar H, Peloton J, Pham ATP, Poletti D, Puglisi G, Reichardt CL, Richards PL, Ross C, Segawa Y, Sherwin BD, Silva-Feaver M, Siritanasak P, Stebor N, Stompor R, Suzuki A, Tajima O, Takakura S, Takatori S, Tanabe D, Teply GP, Tomaru T, Tucker C, Whitehorn N, Zahn Aet al., 2017, A measurement of the cosmic microwave background B-mode polarization power spectrum at subdegree scales from two years of POLARBEAR data, Astrophysical Journal, Vol: 848, ISSN: 0004-637X

We report an improved measurement of the cosmic microwave background B-mode polarization power spectrum with the Polarbear experiment at 150 GHz. By adding new data collected during the second season of observations (2013–2014) to re-analyzed data from the first season (2012–2013), we have reduced twofold the band-power uncertainties. The band powers are reported over angular multipoles $500\leqslant {\ell }\leqslant 2100$, where the dominant B-mode signal is expected to be due to the gravitational lensing of E-modes. We reject the null hypothesis of no B-mode polarization at a confidence of 3.1σ including both statistical and systematic uncertainties. We test the consistency of the measured B-modes with the Λ Cold Dark Matter (ΛCDM) framework by fitting for a single lensing amplitude parameter A L relative to the Planck 2015 best-fit model prediction. We obtain ${A}_{L}={0.60}_{-0.24}^{+0.26}(\mathrm{stat}{)}_{-0.04}^{+0.00}(\mathrm{inst})$ ± 0.14(foreground) ± 0.04(multi), where ${A}_{L}=1$ is the fiducial ΛCDM value.

Journal article

Ade PAR, Akiba Y, Anthony AE, Arnold K, Atlas M, Barron D, Boettger D, Borrill J, Chapman S, Chinone Y, Dobbs M, Elleflot T, Errard J, Fabbian G, Feng C, Flanigan D, Gilbert A, Grainger W, Halverson NW, Hasegawa M, Hattori K, Hazumi M, Holzapfel WL, Hori Y, Howard J, Hyland P, Inoue Y, Jaehnig GC, Jaffe AH, Keating B, Kermish Z, Keskitalo R, Kisner T, Le Jeune M, Lee AT, Leitch EM, Linder E, Lungu M, Matsuda F, Matsumura T, Meng X, Miller NJ, Morii H, Moyerman S, Myers MJ, Navaroli M, Nishino H, Orlando A, Paar H, Peloton J, Poletti D, Quealy E, Rebeiz G, Reichardt CL, Richards PL, Ross C, Schanning I, Schenck DE, Sherwin BD, Shimizu A, Shimmin C, Shimon M, Siritanasak P, Smecher G, Spieler H, Stebor N, Steinbach B, Stompor R, Suzuki A, Takakura S, Tomaru T, Wilson B, Yadav A, Zahn Oet al., 2017, Erratum: "A measurement of the cosmic microwave background B-Mode polarization power spectrum at sub-degree scales with POLARBEAR (2014, ApJ, 794, 171), Astrophysical Journal, Vol: 848, ISSN: 0004-637X

Journal article

Takakura S, Aguilar M, Akiba Y, Arnold K, Baccigalupi C, Barron D, Beckman S, Boettger D, Borrill J, Chapman S, Chinone Y, Cukierman A, Ducout A, Elleflot T, Errard J, Fabbian G, Fujino T, Galitzki N, Goeckner-Wald N, Halverson NW, Hasegawa M, Hattori K, Hazumi M, Hill C, Howe L, Inoue Y, Jaffe AH, Jeong O, Kaneko D, Katayama N, Keating B, Keskitalo R, Kisner T, Krachmalnicoff N, Kusaka A, Lee AT, Leon D, Lowry L, Matsuda F, Matsumura T, Navaroli M, Nishino H, Paar H, Peloton J, Poletti D, Puglisi G, Reichardt CL, Ross C, Siritanasak P, Suzuki A, Tajima O, Takatori S, Teply Get al., 2017, Performance of a continuously rotating half-wave plate on the POLARBEAR telescope, JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, ISSN: 1475-7516

Journal article

Poletti D, Fabbian G, Le Jeune M, Peloton J, Arnold K, Baccigalupi C, Barron D, Beckman S, Borrill J, Chapman S, Chinone Y, Cukierman A, Ducout A, Elleflot T, Errard J, Feeney S, Goeckner-Wald N, Groh J, Hall G, Hasegawa M, Hazumi M, Hill C, Howe L, Inoue Y, Jaffe AH, Jeong O, Katayama N, Keating B, Keskitalo R, Kisner T, Kusaka A, Lee AT, Leon D, Linder E, Lowry L, Matsuda F, Navaroli M, Paar H, Puglisi G, Richardt CL, Ross C, Siritanasak P, Stebor N, Steinbach B, Stompor R, Suzuki A, Tajima O, Teply G, Whitehorn Net al., 2017, Making maps of cosmic microwave background polarization for B-mode studies: the POLARBEAR example, Astronomy and Astrophysics, Vol: 600, ISSN: 0004-6361

Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in thecontext of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/orscan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguouslyremove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We showthat such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimatedsimultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can renderan unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice ofmap-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects oftime-domain filtering on the noise correlation structure in the map domain, as well as impact it may have on the performance of the popular pseudospectrumestimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation ofthe sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal andspecial care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domainfiltering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused onpolarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulationsbased on

Journal article

Aghanim N, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Burigana C, Calabrese E, Cardoso J-F, Chiang HC, Colombo LPL, Combet C, Comis B, Crill BP, Curto A, Cuttaia F, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Dickinson C, Diego JM, Dore O, Douspis M, Ducout A, Dupac X, Dusini S, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Fantaye Y, Finelli F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Giard M, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Helou G, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Keihanen E, Keskitalo R, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Levrier F, Liguori M, Lilje PB, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Melchiorri A, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Naselsky P, Norgaard-Nielsen HU, Oxborrow CA, Pagano L, Paoletti D, Partridge B, Patrizii L, Perdereau O, Perotto L, Pettorino V, Piacentini F, Plaszczynski S, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rossetti M, Roudier G, Rubino-Martin JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Sirignano C, Sirri G, Stanco L, Suur-Uski A-S, Tauber JA, Tenti M, Toffolatti L, Tomasi M, Tristram M, Trombetti T, Valiviita J, Vansyngel F, Van Tent F, Vielva P, Wandelt BD, Wehus IK, Zacchei A, Zonca Aet al., 2017, Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis, Astronomy and Astrophysics, Vol: 599, ISSN: 0004-6361

The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the CBBℓ angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.

Journal article

Aghanim N, Alves MIR, Arzoumanian D, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Bucher M, Burigana C, Calabrese E, Cardoso J-F, Chiang HC, Colombo LPL, Combet C, Comis B, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Dickinson C, Diego JM, Dore O, Douspis M, Ducout A, Dupac X, Dusini S, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Fantaye Y, Ferriere K, Finelli F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Guillet V, Hansen FK, Helou G, Henrot-Versille S, Herranz D, Hivon E, Huang Z, Jaffe AH, Jaffe TR, Jones WC, Keihanen E, Keskitalo R, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Langer M, Lasenby A, Lattanzi M, Le Jeune M, Levrier F, Liguori M, Lilje PB, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Naselsky P, Natoli P, Neveu J, Norgaard-Nielsen HU, Oppermann N, Oxborrow CA, Pagano L, Paoletti D, Partridge B, Perdereau O, Perotto L, Pettorino V, Piacentini F, Plaszczynski S, Polenta G, Rachen JP, Rebolo R, Reinecke M, Remazeilles M, Renzi A, Ristorcelli I, Rocha G, Rossetti M, Roudier G, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Sirignano C, Soler JD, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Tristram M, Trombetti T, Valiviita J, Vansyngel F, Van Tent F, Vielva P, Villa F, Wandelt BD, Wehus IK, Zacchei A, Zonca Aet al., 2016, Planck intermediate results XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap, Astronomy & Astrophysics, Vol: 596, ISSN: 1432-0746

Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < −60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (ψ), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l0,b0) = (70° ± 5°,24° ± 5°). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram of ψ has a standard deviation of 12° about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and ψ to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p0) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and ψ distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 ± 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along th

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00307999&limit=30&person=true