Imperial College London

Professor Andrew H Jaffe

Faculty of Natural SciencesDepartment of Physics

Professor of Astrophysics and Cosmology
 
 
 
//

Contact

 

+44 (0)20 7594 7526a.jaffe Website

 
 
//

Assistant

 

Miss Louise Hayward +44 (0)20 7594 7679

 
//

Location

 

1018BBlackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

368 results found

Eskilt JR, Akrami Y, Anselmi S, Copi CJ, Jaffe AH, Kosowsky A, Mihaylov DP, Starkman GD, Tamosiunas A, Mertens JB, Petersen P, Saha S, Taylor Q, Güngör Öet al., 2024, Cosmic topology. Part IIa. Eigenmodes, correlation matrices, and detectability of orientable Euclidean manifolds, Journal of Cosmology and Astroparticle Physics, Vol: 2024

If the Universe has non-trivial spatial topology, observables depend on both the parameters of the spatial manifold and the position and orientation of the observer. In infinite Euclidean space, most cosmological observables arise from the amplitudes of Fourier modes of primordial scalar curvature perturbations. Topological boundary conditions replace the full set of Fourier modes with specific linear combinations of selected Fourier modes as the eigenmodes of the scalar Laplacian. We present formulas for eigenmodes in orientable Euclidean manifolds with the topologies E 1-E 6, E 11, E 12, E 16, and E 18 that encompass the full range of manifold parameters and observer positions, generalizing previous treatments. Under the assumption that the amplitudes of primordial scalar curvature eigenmodes are independent random variables, for each topology we obtain the correlation matrices of Fourier-mode amplitudes (of scalar fields linearly related to the scalar curvature) and the correlation matrices of spherical-harmonic coefficients of such fields sampled on a sphere, such as the temperature of the cosmic microwave background (CMB). We evaluate the detectability of these correlations given the cosmic variance of the observed CMB sky. We find that topologies where the distance to our nearest clone is less than about 1.2 times the diameter of the last scattering surface of the CMB give a correlation signal that is larger than cosmic variance noise in the CMB. This implies that if cosmic topology is the explanation of large-angle anomalies in the CMB, then the distance to our nearest clone is not much larger than the diameter of the last scattering surface. We argue that the topological information is likely to be better preserved in three-dimensional data, such as will eventually be available from large-scale structure surveys.

Journal article

Dachlythra N, Duivenvoorden AJ, Gudmundsson JE, Hasselfield M, Coppi G, Adler AE, Alonso D, Azzoni S, Chesmore GE, Fabbian G, Ganga K, Gerras RG, Jaffe AH, Johnson BR, Keating B, Keskitalo R, Kisner TS, Krachmalnicoff N, Lungu M, Matsuda F, Naess S, Page L, Puddu R, Puglisi G, Simon SM, Teply G, Tsan T, Wollack EJ, Wolz K, Xu Zet al., 2024, The Simons Observatory: Beam Characterization for the Small Aperture Telescopes, Astrophysical Journal, Vol: 961, ISSN: 0004-637X

We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a mapmaker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the mapmaker. We test our reconstruction performance for four different frequency bands against various algorithmic parameters, atmospheric conditions, and input beams. We additionally show the reconstruction quality as a function of the number of available observations and investigate how different calibration strategies affect the beam uncertainty. For all of the cases considered, we find good agreement between the fitted results and the input beam model within an ∼1.5% error for a multipole range ℓ = 30-700 and an ∼0.5% error for a multipole range ℓ = 50-200. We conclude by using a harmonic-domain component separation algorithm to verify that the beam reconstruction errors and biases observed in our analysis do not significantly bias the Simons Observatory r-measurement

Journal article

Loureiro A, Whiteaway L, Sellentin E, Lafaurie JS, Jaffe AH, Heavens AFet al., 2023, Almanac: Weak Lensing power spectra and map inference on the masked sphere, The Open Journal of Astrophysics, Vol: 6, Pages: 1-18, ISSN: 2565-6120

We present a field-based signal extraction of weak lensing from noisy observations on the curved and masked sky. We test the analysis on a simulated Euclid-like survey, using a Euclid-like mask and noise level. To make optimal use of the information available in such a galaxy survey, we present a Bayesian method for inferring the angular power spectra of the weak lensing fields, together with an inference of the noise-cleaned tomographic weak lensing shear and convergence (projected mass) maps. The latter can be used for field-level inference with the aim of extracting cosmological parameter information including non-gaussianity of cosmic fields. We jointly infer all-sky E-mode and B-mode tomographic auto- and cross-power spectra from the masked sky, and potentially parity-violating EB-mode power spectra, up to a maximum multipole of ℓmax=2048. We use Hamiltonian Monte Carlo sampling, inferring simultaneously the power spectra and denoised maps with a total of ∼16.8 million free parameters. The main output and natural outcome is the set of samples of the posterior, which does not suffer from leakage of power from E to B unless reduced to point estimates. However, such point estimates of the power spectra, the mean and most likely maps, and their variances and covariances, can be computed if desired.

Journal article

Petersen P, COMPACT Collaboration GD, Akrami Y, Copi CJ, Jaffe AH, Kosowsky A, Starkman GD, Tamosiunas A, Eskilt JR, Gungor O, Sahaa S, Taylora Qet al., 2023, Cosmic topology. Part I. Limits on orientable Euclidean manifolds from circle searches, JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, ISSN: 1475-7516

Journal article

Abdalla E, Abellán GF, Aboubrahim A, Agnello A, Akarsu Ö, Akrami Y, Alestas G, Aloni D, Amendola L, Anchordoqui LA, Anderson RI, Arendse N, Asgari M, Ballardini M, Barger V, Basilakos S, Batista RC, Battistelli ES, Battye R, Benetti M, Benisty D, Berlin A, de Bernardis P, Berti E, Bidenko B, Birrer S, Blakeslee JP, Boddy KK, Bom CR, Bonilla A, Borghi N, Bouchet FR, Braglia M, Buchert T, Buckley-Geer E, Calabrese E, Caldwell RR, Camarena D, Capozziello S, Casertano S, Chen GC-F, Chluba J, Chen A, Chen H-Y, Chudaykin A, Cicoli M, Copi CJ, Courbin F, Cyr-Racine F-Y, Czerny B, Dainotti M, D'Amico G, Davis A-C, de Cruz Pérez J, de Haro J, Delabrouille J, Denton PB, Dhawan S, Dienes KR, Di Valentino E, Du P, Eckert D, Escamilla-Rivera C, Ferté A, Finelli F, Fosalba P, Freedman WL, Frusciante N, Gaztañaga E, Giarè W, Giusarma E, Gómez-Valent A, Handley W, Harrison I, Hart L, Hazra DK, Heavens A, Heinesen A, Hildebrandt H, Hill JC, Hogg NB, Holz DE, Hooper DC, Hosseininejad N, Huterer D, Ishak M, Ivanov MM, Jaffe AH, Jang IS, Jedamzik K, Jimenez R, Joseph M, Joudaki S, Kamionkowski M, Karwal T, Kazantzidis L, Keeley RE, Klasen M, Komatsu E, Koopmans LVE, Kumar S, Lamagna L, Lazkoz R, Lee C-C, Lesgourgues J, Levi Said J, Lewis TR, L'Huillier B, Lucca M, Maartens R, Macri LM, Marfatia D, Marra V, Martins CJAP, Masi S, Matarrese S, Mazumdar A, Melchiorri A, Mena O, Mersini-Houghton L, Mertens J, Milaković D, Minami Y, Miranda V, Moreno-Pulido C, Moresco M, Mota DF, Mottola E, Mozzon S, Muir J, Mukherjee A, Mukherjee S, Naselsky P, Nath P, Nesseris S, Niedermann F, Notari A, Nunes RC, Ó Colgáin E, Owens KA, Özülker E, Pace F, Paliathanasis A, Palmese A, Pan S, Paoletti D, Perez Bergliaffa SE, Perivolaropoulos L, Pesce DW, Pettorino V, Philcox OHE, Pogosian L, Poulin V, Poulot G, Raveri M, Reid MJ, Renzi F, Riess AG, Sabla VI, Salucci P, Salzano V, Saridakis EN, Sathyaprakash BS, Schmaltz M, Schöneberg N, Scolnic D, Sen AA, Sehgal N, Shafieloo A, Sheikh-Jabbari MM, Silk J, Silveet al., 2022, Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies, Journal of High Energy Astrophysics, Vol: 34, Pages: 49-211, ISSN: 2214-4048

The standard Cold Dark Matter (CDM) cosmological model provides a good description of a widerange of astrophysical and cosmological data. However, there are a few big open questions that make thestandard model look like an approximation to a more realistic scenario yet to be found. In this paper,we list a few important goals that need to be addressed in the next decade, taking into account thecurrent discordances between the different cosmological probes, such as the disagreement in the valueof the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. Whilethese discordances can still be in part the result of systematic errors, their persistence after several yearsof accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity fornew physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 σ tensionbetween the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements.After showing the H0 evaluations made from different teams using different methods and geometriccalibrations, we list a few interesting new physics models that could alleviate this tension and discusshow the next decade’s experiments will be crucial. Moreover, we focus on the tension of the PlanckCMB data with weak lensing measurements and redshift surveys, about the value of the matter energydensity m, and the amplitude or rate of the growth of structure (σ8, f σ8). We list a few interestingmodels proposed for alleviating this tension, and we discuss the importance of trying to fit a full arrayof data with a single model and not just one parameter at a time. Additionally, we present a wide rangeof other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions whichmay also constitute hints towards new physics, and we discuss possible generic theoretical approachesthat can collectively explain

Journal article

Farren GS, Grin D, Jaffe AH, Hlozek R, Marsh DJEet al., 2022, Ultralight axions and the kinetic Sunyaev-Zel'dovich effect, PHYSICAL REVIEW D, Vol: 105, ISSN: 2470-0010

Journal article

Mootoovaloo A, Jaffe AH, Heavens AF, Leclercq Fet al., 2022, Kernel-based emulator for the 3D matter power spectrum from CLASS, Astronomy and Computing, Vol: 38, Pages: 100508-100508, ISSN: 2213-1337

The 3D matter power spectrum, is a fundamental quantity in the analysis of cosmological data such as large-scale structure, 21 cm observations, and weak lensing. Existing computer models (Boltzmann codes) such as CLASS can provide it at the expense of immoderate computational cost. In this paper, we propose a fast Bayesian method to generate the 3D matter power spectrum, for a given set of wavenumbers, and redshifts, . Our code allows one to calculate the following quantities: the linear matter power spectrum at a given redshift (the default is set to 0); the non-linear 3D matter power spectrum with/without baryon feedback; the weak lensing power spectrum. The gradient of the 3D matter power spectrum with respect to the input cosmological parameters is also returned and this is useful for Hamiltonian Monte Carlo samplers. The derivatives are also useful for Fisher matrix calculations. In our application, the emulator is accurate when evaluated at a set of cosmological parameters, drawn from the prior, with the fractional uncertainty, centred on 0. It is also times faster compared to CLASS, hence making the emulator amenable to sampling cosmological and nuisance parameters in a Monte Carlo routine. In addition, once the 3D matter power spectrum is calculated, it can be used with a specific redshift distribution, to calculate the weak lensing and intrinsic alignment power spectra, which can then be used to derive constraints on cosmological parameters in a weak lensing data analysis problem. The software (emuPK) can be trained with any set of points and is distributed on Github, and comes with a pre-trained set of Gaussian Process (GP) models, based on 1000 Latin Hypercube (LH) samples, which follow roughly the current priors for current weak lensing analyses.

Journal article

Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Battye R, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Carron J, Challinor A, Chiang HC, Chluba J, Colombo LPL, Combet C, Contreras D, Crill BP, Cuttaia F, de Bernardis P, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Diego JM, Dore O, Douspis M, Ducout A, Dupac X, Dusini S, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fantaye Y, Farhang M, Fergusson J, Fernandez-Cobos R, Finelli F, Forastieri F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Herranz D, Hildebrandt SR, Hivon E, Huang Z, Jaffe AH, Jones WC, Karakci A, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Knox L, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Lemos P, Lesgourgues J, Levrier F, Lewis A, Liguori M, Lilje PB, Lilley M, Lindholm V, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martinelli M, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Meinhold PR, Melchiorri A, Mennella A, Migliaccio M, Millea M, Mitra S, Miville-Deschenes M-A, Molinari D, Montier L, Morgante G, Moss A, Natoli P, Norgaard-Nielsen HU, Pagano L, Paoletti D, Partridge B, Patanchon G, Peiris HV, Perrotta F, Pettorino V, Piacentini F, Polastri L, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Roudier G, Rubino-Martin JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Shellard EPS, Sirignano C, Sirri G, Spencer LD, Sunyaev R, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Trombet al., 2021, <i>Planck</i> 2018 results: VI. Cosmological parameters (vol 641, A6, 2020), ASTRONOMY & ASTROPHYSICS, Vol: 652, ISSN: 0004-6361

Journal article

Heavens A, Sellentin E, Jaffe A, 2020, Extreme data compression while searching for new physics, Monthly Notices of the Royal Astronomical Society, Vol: 498, Pages: 3440-3451, ISSN: 0035-8711

Bringing a high-dimensional dataset into science-ready shape is a formidablechallenge that often necessitates data compression. Compression has accordinglybecome a key consideration for contemporary cosmology, affecting public datareleases, and reanalyses searching for new physics. However, data compressionoptimized for a particular model can suppress signs of new physics, or evenremove them altogether. We therefore provide a solution for exploring newphysics \emph{during} data compression. In particular, we store additionalagnostic compressed data points, selected to enable precise constraints ofnon-standard physics at a later date. Our procedure is based on the maximalcompression of the MOPED algorithm, which optimally filters the data withrespect to a baseline model. We select additional filters, based on ageneralised principal component analysis, which are carefully constructed toscout for new physics at high precision and speed. We refer to the augmentedset of filters as MOPED-PC. They enable an analytic computation of Bayesianevidences that may indicate the presence of new physics, and fast analyticestimates of best-fitting parameters when adopting a specific non-standardtheory, without further expensive MCMC analysis. As there may be large numbersof non-standard theories, the speed of the method becomes essential. Should nonew physics be found, then our approach preserves the precision of the standardparameters. As a result, we achieve very rapid and maximally preciseconstraints of standard and non-standard physics, with a technique that scaleswell to large dimensional datasets.

Journal article

Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Calabrese E, Cardoso J-F, Carron J, Challinor A, Chiang HC, Colombo LPL, Combet C, Crill BP, Cuttaia F, de Bernardis P, de Zotti G, Delabrouille J, Di Valentino E, Diego JM, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fantaye Y, Fernandez-Cobos R, Finelli F, Forastieri F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Karakci A, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Knox L, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Levrier F, Lewis A, Liguori M, Lilje PB, Lindholm V, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Natoli P, Pagano L, Paoletti D, Partridge B, Patanchon G, Perrotta F, Pettorino V, Piacentini F, Polastri L, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Roudier G, Rubino-Martin JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Sirignano C, Sunyaev R, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Trombetti T, Valiviita J, Van Tent B, Vielva P, Villa F, Vittorio N, Wandelt BD, Wehus IK, White M, White SDM, Zacchei A, Zonca Aet al., 2020, <i>Planck</i> 2018 results: VIII. Gravitational lensing, ASTRONOMY & ASTROPHYSICS, Vol: 641, ISSN: 0004-6361

Journal article

Collaboration P, Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Carron J, Casaponsa B, Challinor A, Chiang HC, Colombo LPL, Combet C, Crill BP, Cuttaia F, Bernardis PD, Rosa AD, Zotti GD, Delabrouille J, Delouis J-M, Valentino ED, Diego JM, Doré O, Douspis M, Ducout A, Dupac X, Dusini S, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Fantaye Y, Fernandez-Cobos R, Finelli F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Génova-Santos RT, Gerbino M, Ghosh T, Giraud-Héraud Y, González-Nuevo J, Górski KM, Gratton S, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Keihänen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Jeune ML, Levrier F, Lewis A, Liguori M, Lilje PB, Lilley M, Lindholm V, López-Caniego M, Lubin PM, Ma Y-Z, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martínez-González E, Matarrese S, Mauri N, McEwen JD, Meinhold PR, Melchiorri A, Mennella A, Migliaccio M, Millea M, Miville-Deschênes M-A, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Natoli P, Nørgaard-Nielsen HU, Pagano L, Paoletti D, Partridge B, Patanchon G, Peiris HV, Perrotta F, Pettorino V, Piacentini F, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Roudier G, Rubiño-Martín JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Shellard EPS, Sirignano C, Sirri G, Spencer LD, Sunyaev R, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Trombetti T, Valiviita J, Tent BV, Vielva P, Villa F, Vittorio N, Wandelt BD, Wehus IK, Zacchei A, Zonca Aet al., 2020, Planck 2018 results. V. CMB power spectra and likelihoods, Astronomy and Astrophysics: a European journal, Vol: 641, ISSN: 0004-6361

This paper describes the 2018 Planck CMB likelihoods, following a hybridapproach similar to the 2015 one, with different approximations at low and highmultipoles, and implementing several methodological and analysis refinements.With more realistic simulations, and better correction and modelling ofsystematics, we can now make full use of the High Frequency Instrumentpolarization data. The low-multipole 100x143 GHz EE cross-spectrum constrainsthe reionization optical-depth parameter $\tau$ to better than 15% (incombination with with the other low- and high-$\ell$ likelihoods). We alsoupdate the 2015 baseline low-$\ell$ joint TEB likelihood based on the LowFrequency Instrument data, which provides a weaker $\tau$ constraint. At highmultipoles, a better model of the temperature-to-polarization leakage andcorrections for the effective calibrations of the polarization channels(polarization efficiency or PE) allow us to fully use the polarization spectra,improving the constraints on the $\Lambda$CDM parameters by 20 to 30% comparedto TT-only constraints. Tests on the modelling of the polarization demonstrategood consistency, with some residual modelling uncertainties, the accuracy ofthe PE modelling being the main limitation. Using our various tests,simulations, and comparison between different high-$\ell$ implementations, weestimate the consistency of the results to be better than the 0.5$\sigma$level. Minor curiosities already present before (differences between $\ell$<800and $\ell$>800 parameters or the preference for more smoothing of the $C_\ell$peaks) are shown to be driven by the TT power spectrum and are notsignificantly modified by the inclusion of polarization. Overall, the legacyPlanck CMB likelihoods provide a robust tool for constraining the cosmologicalmodel and represent a reference for future CMB observations. (Abridged)

Journal article

Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Calabrese E, Cardoso J-F, Carron J, Challinor A, Chiang HC, Colombo LPL, Combet C, Couchot F, Crill BP, Cuttaia F, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Diego JM, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Fantaye Y, Finelli F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gruppuso A, Gudmundsson JE, Handley W, Hansen FK, Henrot-Versille S, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Karakci A, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Levrier F, Liguori M, Lilje PB, Lindholm V, Lopez-Caniego M, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Mottet S, Natoli P, Pagano L, Paoletti D, Partridge B, Patanchon G, Patrizii L, Perdereau O, Perrotta F, Pettorino V, Piacentini F, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Roudier G, Salvati L, Sandri M, Savelainen M, Scott D, Sirignano C, Sirri G, Spencer LD, Sunyaev R, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Tristram M, Trombetti T, Valiviita J, Vansyngel F, Van Tent B, Vibert L, Vielva P, Villa F, Vittorio N, Wandelt BD, Wehus IK, Zonca Aet al., 2020, <i>Planck</i> 2018 results: III. High Frequency Instrument data processing and frequency maps, ASTRONOMY & ASTROPHYSICS, Vol: 641, ISSN: 0004-6361

Journal article

Akrami Y, Arroja F, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Carron J, Challinor A, Chiang HC, Colombo LPL, Combet C, Contreras D, Crill BP, Cuttaia F, de Bernardis P, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Diego JM, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Dusini S, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fantaye Y, Fergusson J, Fernandez-Cobos R, Finelli F, Forastieri F, Frailis M, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Gauthier C, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski M, Gratton S, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Herranz D, Hivon E, Hooper DC, Huang Z, Jaffe AH, Jones WC, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Lesgourgues J, Levrier F, Lewis A, Liguori M, Lilje PB, Lindholm V, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Meerburg PD, Meinhold PR, Melchiorri A, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Munchmeyer M, Natoli P, Norgaard-Nielsen HU, Pagano L, Paoletti D, Partridge B, Patanchon G, Peiris HV, Perrotta F, Pettorino V, Piacentini F, Polastri L, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Roudier G, Rubino-Martin JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Shellard EPS, Shiraishi M, Sirignano C, Sirri G, Spencer LD, Sunyaev R, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Trombetti T, Valiviita J, Van Tent B, Vielvet al., 2020, <i>Planck</i> 2018 results: X. Constraints on inflation, ASTRONOMY & ASTROPHYSICS, Vol: 641, ISSN: 0004-6361

Journal article

Collaboration P, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bersanelli M, Bielewicz P, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Casaponsa B, Chiang HC, Colombo LPL, Combet C, Contreras D, Crill BP, Bernardis PD, Zotti GD, Delabrouille J, Delouis J-M, Valentino ED, Diego JM, Doré O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Fantaye Y, Fernandez-Cobos R, Finelli F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Génova-Santos RT, Gerbino M, Ghosh T, González-Nuevo J, Górski KM, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Keihänen E, Keskitalo R, Kiiveri K, Kim J, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Jeune ML, Levrier F, Liguori M, Lilje PB, Lindholm V, López-Caniego M, Ma Y-Z, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martínez-González E, Matarrese S, Mauri N, McEwen JD, Meinhold PR, Mennella A, Migliaccio M, Miville-Deschênes M-A, Molinari D, Moneti A, Montier L, Moss A, Natoli P, Pagano L, Paoletti D, Partridge B, Perrotta F, Pettorino V, Piacentini F, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Roudier G, Rubiño-Martín JA, Ruiz-Granados B, Salvati L, Savelainen M, Scott D, Shellard EPS, Sirignano C, Sunyaev R, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Trombetti T, Valenziano L, Valiviita J, Tent BV, Vielva P, Villa F, Vittorio N, Wandelt BD, Wehus IK, Zacchei A, Zibin JP, Zonca Aet al., 2020, Planck 2018 results. VII. Isotropy and statistics of the CMB, Astronomy and Astrophysics: a European journal, Vol: 641, Pages: 1-61, ISSN: 0004-6361

Analysis of the Planck 2018 data set indicates that the statisticalproperties of the cosmic microwave background (CMB) temperature anisotropiesare in excellent agreement with previous studies using the 2013 and 2015 datareleases. In particular, they are consistent with the Gaussian predictions ofthe $\Lambda$CDM cosmological model, yet also confirm the presence of severalso-called "anomalies" on large angular scales. The novelty of the currentstudy, however, lies in being a first attempt at a comprehensive analysis ofthe statistics of the polarization signal over all angular scales, using eithermaps of the Stokes parameters, $Q$ and $U$, or the $E$-mode signal derived fromthese using a new methodology (which we describe in an appendix). Althoughremarkable progress has been made in reducing the systematic effects thatcontaminated the 2015 polarization maps on large angular scales, it is stillthe case that residual systematics (and our ability to simulate them) can limitsome tests of non-Gaussianity and isotropy. However, a detailed set of nulltests applied to the maps indicates that these issues do not dominate theanalysis on intermediate and large angular scales (i.e., $\ell \lesssim 400$).In this regime, no unambiguous detections of cosmological non-Gaussianity, orof anomalies corresponding to those seen in temperature, are claimed. Notably,the stacking of CMB polarization signals centred on the positions oftemperature hot and cold spots exhibits excellent agreement with the$\Lambda$CDM cosmological model, and also gives a clear indication of howPlanck provides state-of-the-art measurements of CMB temperature andpolarization on degree scales.

Journal article

Aghanim N, Akrami Y, Alves MIR, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Bucher M, Burigana C, Calabrese E, Cardoso J-F, Carron J, Chary R-R, Chiang HC, Colombo LPL, Combet C, Crill BP, Cuttaia F, de Bernardis P, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Dickinson C, Diego JM, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Fantaye Y, Fernandez-Cobos R, Ferriere K, Finelli F, Forastieri F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski KM, Gratton S, Green G, Gruppuso A, Gudmundsson JE, Guillet V, Handley W, Hansen FK, Helou G, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Levrier F, Liguori M, Lilje PB, Lindholm V, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Natoli P, Pagano L, Paoletti D, Patanchon G, Perrotta F, Pettorino V, Piacentini F, Polastri L, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Ristorcelli I, Rocha G, Rosset C, Roudier G, Rubino-Martin JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Sirignano C, Sunyaev R, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Trombetti T, Valiviita J, Vansyngel F, Van Tent B, Vielva P, Villa F, Vittorio N, Wandelt BD, Wehus IK, Zacchei A, Zonca Aet al., 2020, <i>Planck</i> 2018 results: XII. Galactic astrophysics using polarized dust emission, ASTRONOMY & ASTROPHYSICS, Vol: 641, ISSN: 0004-6361

Journal article

Collaboration P, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bond JR, Borrill J, Bouchet FR, Burigana C, Calabrese E, Cardoso J-F, Casaponsa B, Chiang HC, Combet C, Contreras D, Crill BP, Cuttaia F, Bernardis PD, Rosa AD, Zotti GD, Delabrouille J, Valentino ED, Diego JM, Doré O, Douspis M, Dupac X, Enßlin TA, Eriksen HK, Fernandez-Cobos R, Finelli F, Frailis M, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Génova-Santos RT, Gerbino M, González-Nuevo J, Górski KM, Gruppuso A, Gudmundsson JE, Handley W, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Keihänen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lamarre J-M, Lattanzi M, Lawrence CR, Jeune ML, Levrier F, Liguori M, Lilje PB, Lindholm V, López-Caniego M, Macías-Pérez JF, Maino D, Mandolesi N, Marcos-Caballero A, Maris M, Martin PG, Martínez-González E, Matarrese S, Mauri N, McEwen JD, Mennella A, Migliaccio M, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Natoli P, Pagano L, Paoletti D, Perrotta F, Pettorino V, Piacentini F, Polenta G, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Rubiño-Martín JA, Ruiz-Granados B, Salvati L, Savelainen M, Scott D, Sirignano C, Sirri G, Spencer LD, Sullivan RM, Sunyaev R, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Trombetti T, Valiviita J, Tent BV, Vielva P, Villa F, Vittorio N, Wehus IK, Zacchei A, Zonca Aet al., 2020, Planck intermediate results. LVI. Detection of the CMB dipole through modulation of the thermal Sunyaev-Zeldovich effect: Eppur si muove II, Publisher: arXiv

The largest temperature anisotropy in the cosmic microwave background (CMB)is the dipole, which has been measured with increasing accuracy for more thanthree decades, particularly with the Planck satellite. The simplestinterpretation of the dipole is that it is due to our motion with respect tothe rest frame of the CMB. Since current CMB experiments infer temperatureanisotropies from angular intensity variations, the dipole modulates thetemperature anisotropies with the same frequency dependence as the thermalSunyaev-Zeldovich (tSZ) effect. We present the first, and significant,detection of this signal in the tSZ maps and find that it is consistent withdirect measurements of the CMB dipole, as expected. The signal contributespower in the tSZ maps, which is modulated in a quadrupolar pattern, and weestimate its contribution to the tSZ bispectrum, noting that it contributesnegligible noise to the bispectrum at relevant scales.

Working paper

Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Battye R, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Carron J, Challinor A, Chiang HC, Chluba J, Colombo LPL, Combet C, Contreras D, Crill BP, Cuttaia F, de Bernardis P, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Diego JM, Doré O, Douspis M, Ducout A, Dupac X, Dusini S, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Fantaye Y, Farhang M, Fergusson J, Fernandez-Cobos R, Finelli F, Forastieri F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Génova-Santos RT, Gerbino M, Ghosh T, González-Nuevo J, Górski KM, Gratton S, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Herranz D, Hildebrandt SR, Hivon E, Huang Z, Jaffe AH, Jones WC, Karakci A, Keihänen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Knox L, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Lemos P, Lesgourgues J, Levrier F, Lewis A, Liguori M, Lilje PB, Lilley M, Lindholm V, López-Caniego M, Lubin PM, Ma Y-Z, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martinelli M, Martínez-González E, Matarrese S, Mauri N, McEwen JD, Meinhold PR, Melchiorri A, Mennella A, Migliaccio M, Millea M, Mitra S, Miville-Deschênes M-A, Molinari D, Montier L, Morgante G, Moss A, Natoli P, Nørgaard-Nielsen HU, Pagano L, Paoletti D, Partridge B, Patanchon G, Peiris HV, Perrotta F, Pettorino V, Piacentini F, Polastri L, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Roudier G, Rubiño-Martín JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Shellard EPS, Sirignano C, Sirri G, Spencer LD, Sunyaev R, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Trombeet al., 2020, Planck 2018 results: cosmological parameters, Astronomy & Astrophysics, Vol: 641, Pages: A6-A6, ISSN: 0004-6361

We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5σ level. We find good consistency with the standard spatially-flat 6-parameter ΛCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Ωch2 = 0.120 ± 0.001, baryon density Ωbh2 = 0.0224 ± 0.0001, scalar spectral index ns = 0.965 ± 0.004, and optical depth τ = 0.054 ± 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100θ* = 1.0411 ± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H0 = (67.4 ± 0.5)  km s−1 Mpc−1; matter density parameter Ωm = 0.315 ± 0.007; and matter fluctuation amplitude σ8 = 0.811 ± 0.006. We find no compelling evidence for extensions to the base-ΛCDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering singl

Journal article

Mootoovaloo A, Heavens AF, Jaffe AH, Leclercq Fet al., 2020, Parameter Inference for Weak Lensing using Gaussian Processes and MOPED, Monthly Notices of the Royal Astronomical Society, Vol: 497, Pages: 2213-2226, ISSN: 0035-8711

In this paper, we propose a Gaussian Process (GP) emulator for the calculation both of tomographic weak lensing band powers, and of coefficients of summary data massively compressed with the MOPED algorithm. In the former case cosmological parameter inference is accelerated by a factor of ∼10–30 compared with Boltzmann solver class applied to KiDS-450 weak lensing data. Much larger gains of order 103 will come with future data, and MOPED with GPs will be fast enough to permit the Limber approximation to be dropped, with acceleration in this case of ∼105. A potential advantage of GPs is that an error on the emulated function can be computed and this uncertainty incorporated into the likelihood. However, it is known that the GP error can be unreliable when applied to deterministic functions, and we find, using the Kullback–Leibler divergence between the emulator and class likelihoods, and from the uncertainties on the parameters, that agreement is better when the GP uncertainty is not used. In future, weak lensing surveys such as Euclid, and the Legacy Survey of Space and Time, will have up to ∼104 summary statistics, and inference will be correspondingly more challenging. However, since the speed of MOPED is determined not the number of summary data, but by the number of parameters, MOPED analysis scales almost perfectly, provided that a fast way to compute the theoretical MOPED coefficients is available. The GP provides such a fast mechanism.

Journal article

Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bersanelli M, Bielewicz P, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Calabrese E, Cardoso J-F, Carron J, Casaponsa B, Challinor A, Colombo LPL, Combet C, Crill BP, Cuttaia F, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Dickinson C, Diego JM, Donzelli S, Dore O, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Fernandez-Cobos R, Finelli F, Forastieri F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gruppuso A, Gudmundsson JE, Handley W, Hansen FK, Helou G, Herranz D, Hildebrandt SR, Huang Z, Jaffe AH, Karakci A, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Levrier F, Liguori M, Lilje PB, Lindholm V, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Meinhold PR, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Natoli P, Oppizzi F, Pagano L, Paoletti D, Partridge B, Peel M, Pettorino V, Piacentini F, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Roudier G, Rubino-Martin JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Seljebotn DS, Sirignano C, Spencer LD, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Thommesen H, Toffolatti L, Tomasi M, Trombetti T, Valiviita J, Van Tent B, Vielva P, Villa F, Vittorio N, Wandelt BD, Wehus IK, Zacchei A, Zonca Aet al., 2020, Planck 2018 results: IV. Diffuse component separation, Astronomy and Astrophysics: a European journal, Vol: 641, ISSN: 0004-6361

We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow closely those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower large-scale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available end-to-end simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3° regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of βd = 1.55  ±  0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of βs = −3.1  ±  0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased single-bolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects.

Journal article

Akrami Y, Argueso F, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Colombo LPL, Crill BP, Cuttaia F, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Di Valentino E, Dickinson C, Diego JM, Donzelli S, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fantaye Y, Finelli F, Frailis M, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gruppuso A, Gudmundsson JE, Handley W, Hansen FK, Herranz D, Hivon E, Huang Z, Jaffe AH, Jones WC, Karakci A, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leahy JP, Levrier F, Liguori M, Lilje PB, Lindholm V, Lopez-Caniego M, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Meinhold PR, Melchiorri A, Mennella A, Migliaccio M, Molinari D, Montier L, Morgante G, Moss A, Natoli P, Pagano L, Paoletti D, Partridge B, Patanchon G, Patrizii L, Peel M, Perrotta F, Pettorino V, Piacentini F, Polenta G, Puget J-L, Rachen JP, Racine B, Reinecke M, Remazeilles M, Renzi A, Rocha G, Roudier G, Rubino-Martin JA, Salvati L, Sandri M, Savelainen M, Scott D, Seljebotn DS, Sirignano C, Sirri G, Spencer LD, Suur-Uski A-S, Tauber JA, Tavagnacco D, Tenti M, Terenzi L, Toffolatti L, Tomasi M, Trombetti T, Valiviita J, Vansyngel F, Van Tent B, Vielva P, Villa F, Vittorio N, Wandelt BD, Watson R, Wehus IK, Zacchei A, Zonca Aet al., 2020, Planck 2018 results: II. Low Frequency Instrument data processing, Astronomy and Astrophysics: a European journal, Vol: 641, ISSN: 0004-6361

We present a final description of the data-processing pipeline for the Planck Low Frequency Instrument (LFI), implemented for the 2018 data release. Several improvements have been made with respect to the previous release, especially in the calibration process and in the correction of instrumental features such as the effects of nonlinearity in the response of the analogue-to-digital converters. We provide a brief pedagogical introduction to the complete pipeline, as well as a detailed description of the important changes implemented. Self-consistency of the pipeline is demonstrated using dedicated simulations and null tests. We present the final version of the LFI full sky maps at 30, 44, and 70 GHz, both in temperature and polarization, together with a refined estimate of the solar dipole and a final assessment of the main LFI instrumental parameters.

Journal article

Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Bucher M, Burigana C, Calabrese E, Cardoso J-F, Carron J, Chiang HC, Combet C, Crill BP, de Bernardis P, de Zotti G, Delabrouille J, Delouis J-M, Di Valentino E, Dickinson C, Diego JM, Ducout A, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Falgarone E, Fantaye Y, Ferrière K, Finelli F, Forastieri F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Génova-Santos RT, Ghosh T, González-Nuevo J, Górski KM, Gruppuso A, Gudmundsson JE, Guillet V, Handley W, Hansen FK, Herranz D, Huang Z, Jaffe AH, Jones WC, Keihänen E, Keskitalo R, Kiiveri K, Kim J, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lamarre J-M, Lasenby A, Le Jeune M, Levrier F, Liguori M, Lilje PB, Lindholm V, López-Caniego M, Lubin PM, Ma Y-Z, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Martin PG, Martínez-González E, Matarrese S, McEwen JD, Meinhold PR, Melchiorri A, Migliaccio M, Miville-Deschênes M-A, Molinari D, Moneti A, Montier L, Morgante G, Natoli P, Pagano L, Paoletti D, Pettorino V, Piacentini F, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Roudier G, Rubiño-Martín JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Soler JD, Spencer LD, Tauber JA, Tavagnacco D, Toffolatti L, Tomasi M, Trombetti T, Valiviita J, Vansyngel F, Van Tent B, Vielva P, Villa F, Vittorio N, Wehus IK, Zacchei A, Zonca Aet al., 2020, Planck 2018 results. XI. Polarized dust foregrounds, Astronomy & Astrophysics, Vol: 641, Pages: A11-A11, ISSN: 0004-6361

<jats:p>The study of polarized dust emission has become entwined with the analysis of the cosmic microwave background (CMB) polarization in the quest for the curl-like <jats:italic>B</jats:italic>-mode polarization from primordial gravitational waves and the low-multipole <jats:italic>E</jats:italic>-mode polarization associated with the reionization of the Universe. We used the new <jats:italic>Planck</jats:italic> PR3 maps to characterize Galactic dust emission at high latitudes as a foreground to the CMB polarization and use end-to-end simulations to compute uncertainties and assess the statistical significance of our measurements. We present <jats:italic>Planck</jats:italic> <jats:italic>EE</jats:italic>, <jats:italic>BB</jats:italic>, and <jats:italic>TE</jats:italic> power spectra of dust polarization at 353 GHz for a set of six nested high-Galactic-latitude sky regions covering from 24 to 71% of the sky. We present power-law fits to the angular power spectra, yielding evidence for statistically significant variations of the exponents over sky regions and a difference between the values for the <jats:italic>EE</jats:italic> and <jats:italic>BB</jats:italic> spectra, which for the largest sky region are <jats:italic>α</jats:italic><jats:sub><jats:italic>E</jats:italic><jats:italic>E</jats:italic></jats:sub> = −2.42 ± 0.02 and <jats:italic>α</jats:italic><jats:sub><jats:italic>B</jats:italic><jats:italic>B</jats:italic></jats:sub> = −2.54 ± 0.02, respectively. The spectra show that the <jats:italic>TE</jats:italic> correlation and <jats:italic>E/B</jats:italic> power asymmetry discovered by <jats:italic>Planck</jats:italic> extend to low multipoles that were not included in earlier &

Journal article

Aghanim N, Akrami Y, Arroja F, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Battye R, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Carron J, Casaponsa B, Challinor A, Chiang HC, Colombo LPL, Combet C, Contreras D, Crill BP, Cuttaia F, de Bernardis P, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Di Valentino E, Dickinson C, Diego JM, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Fantaye Y, Fergusson J, Fernandez-Cobos R, Finelli F, Forastieri F, Frailis M, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Gerbino M, Ghosh T, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Helou G, Herranz D, Hildebrandt SR, Hivon E, Huang Z, Jaffe AH, Jones WC, Karakci A, Keihanen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Knox L, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Langer M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Leahy JP, Lesgourgues J, Levrier F, Lewis A, Liguori M, Lilje PB, Lilley M, Lindholm V, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martinelli M, Martinez-Gonzalez E, Matarrese S, Mauri N, McEwen JD, Meerburg PD, Meinhold PR, Melchiorri A, Mennella A, Migliaccio M, Millea M, Mitra S, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Moss A, Mottet S, Munchmeyer M, Natoli P, Norgaard-Nielsen HU, Oxborrow CA, Pagano L, Paoletti D, Partridge B, Patanchon G, Pearson TJ, Peel M, Peiris HV, Perrotta F, Pettorino V, Piacentini F, Polastri L, Polenta G, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renault C, Renzi A, Rocha G, Rosset C, Roudier G, Rubino-Martin JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scottet al., 2020, Planck 2018 results: I. Overview and the cosmological legacy of Planck, Astronomy and Astrophysics: a European journal, Vol: 641, ISSN: 0004-6361

The European Space Agency’s Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter ΛCDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (θ*) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the ΛCDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.

Journal article

Collaboration P, Akrami Y, Andersen KJ, Ashdown M, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Benabed K, Bernard J-P, Bersanelli M, Bielewicz P, Bond JR, Borrill J, Burigana C, Butler RC, Calabrese E, Casaponsa B, Chiang HC, Colombo LPL, Combet C, Crill BP, Cuttaia F, Bernardis PD, Rosa AD, Zotti GD, Delabrouille J, Valentino ED, Diego JM, Doré O, Douspis M, Dupac X, Eriksen HK, Fernandez-Cobos R, Finelli F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Gerbino M, Ghosh T, González-Nuevo J, Górski KM, Gruppuso A, Gudmundsson JE, Handley W, Helou G, Herranz D, Hildebrandt SR, Hivon E, Huang Z, Jaffe AH, Jones WC, Keihänen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lasenby A, Lattanzi M, Lawrence CR, Jeune ML, Levrier F, Liguori M, Lilje PB, Lilley M, Lindholm V, López-Caniego M, Lubin PM, Macías-Pérez JF, Maino D, Mandolesi N, Marcos-Caballero A, Maris M, Martin PG, Martínez-González E, Matarrese S, Mauri N, McEwen JD, Meinhold PR, Mennella A, Migliaccio M, Mitra S, Molinari D, Montier L, Morgante G, Moss A, Natoli P, Paoletti D, Partridge B, Patanchon G, Pearson D, Pearson TJ, Perrotta F, Piacentini F, Polenta G, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Roudier G, Rubiño-Martín JA, Ruiz-Granados B, Salvati L, Savelainen M, Scott D, Sirignano C, Sirri G, Spencer LD, Suur-Uski A-S, Svalheim TL, Tauber JA, Tavagnacco D, Tenti M, Terenzi L, Thommesen H, Toffolatti L, Tomasi M, Tristram M, Trombetti T, Valiviita J, Tent BV, Vielva P, Villa F, Vittorio N, Wandelt BD, Wehus IK, Zacchei A, Zonca Aet al., 2020, Planck intermediate results. LVII. Joint Planck LFI and HFI data processing, Publisher: arXiv

We present the NPIPE processing pipeline, which produces calibrated frequencymaps in temperature and polarization from data from the Planck Low FrequencyInstrument (LFI) and High Frequency Instrument (HFI) using high-performancecomputers. NPIPE represents a natural evolution of previous Planck analysisefforts, and combines some of the most powerful features of the separate LFIand HFI analysis pipelines. The net effect of the improvements is lower levelsof noise and systematics in both frequency and component maps at essentiallyall angular scales, as well as notably improved internal consistency betweenthe various frequency channels. Based on the NPIPE maps, we present the firstestimate of the Solar dipole determined through component separation across allnine Planck frequencies. The amplitude is ($3366.6 \pm 2.7$)$\mu$K, consistentwith, albeit slightly higher than, earlier estimates. From the large-scalepolarization data, we derive an updated estimate of the optical depth ofreionization of $\tau = 0.051 \pm 0.006$, which appears robust with respect todata and sky cuts. There are 600 complete signal, noise and systematicssimulations of the full-frequency and detector-set maps. As a Planck first,these simulations include full time-domain processing of the beam-convolved CMBanisotropies. The release of NPIPE maps and simulations is accompanied with acomplete suite of raw and processed time-ordered data and the software,scripts, auxiliary data, and parameter files needed to improve further on theanalysis and to run matching simulations.

Working paper

Leclercq F, Faure B, Lavaux G, Wandelt BD, Jaffe AH, Heavens AF, Percival WJ, Noûs Cet al., 2020, Perfectly parallel cosmological simulations using spatial comoving Lagrangian acceleration, Astronomy and Astrophysics: a European journal, Vol: 639, ISSN: 0004-6361

Context. Existing cosmological simulation methods lack a high degree of parallelism due to the long-range nature of the gravitational force, which limits the size of simulations that can be run at high resolution.Aims. To solve this problem, we propose a new, perfectly parallel approach to simulate cosmic structure formation, which is based on the spatial COmoving Lagrangian Acceleration (sCOLA) framework.Methods. Building upon a hybrid analytical and numerical description of particles’ trajectories, our algorithm allows for an efficient tiling of a cosmological volume, where the dynamics within each tile is computed independently. As a consequence, the degree of parallelism is equal to the number of tiles. We optimised the accuracy of sCOLA through the use of a buffer region around tiles and of appropriate Dirichlet boundary conditions around sCOLA boxes.Results. As a result, we show that cosmological simulations at the degree of accuracy required for the analysis of the next generation of surveys can be run in drastically reduced wall-clock times and with very low memory requirements.Conclusions. The perfect scalability of our algorithm unlocks profoundly new possibilities for computing larger cosmological simulations at high resolution, taking advantage of a variety of hardware architectures.

Journal article

Hotinli SC, Kamionkowski M, Jaffe AH, 2020, The search for anisotropy in the gravitational-wave background with pulsar-timing arrays, Publisher: arXiv

Pulsar-timing arrays (PTAs) are seeking gravitational waves fromsupermassive-black-hole binaries, and there are prospects to complement thesesearches with stellar-astrometry measurements. Theorists still disagree,however, as to whether the local gravitational-wave background will bestatistically isotropic, as arises if it is the summed contributions from manySMBH binaries, or whether it exhibits the type of statistical anisotropy thatarises if the local background is dominated by a handful (or even one) brightsource. Here we derive, using bipolar spherical harmonics, the optimal PTAestimators for statistical anisotropy in the GW background and simple estimatesof the detectability of this anisotropy. We provide results on the smallestdetectable amplitude of a dipole anisotropy (and several other low-ordermultipole moments) and also the smallest detectable amplitude of a "beam" ofgravitational waves. Results are presented as a function of the signal-to-noisewith which the GW signal is detected and as a function of the number of pulsars(assuming uniform distribution on the sky and equal sensitivity per pulsar). Weprovide results first for measurements with a single time-domain windowfunction and then show how the results are augmented with the inclusion oftime-domain information. The approach here is intended to be conceptuallystraightforward and to complement the results of more detailed (butcorrespondingly less intuitive) modeling of the actual measurements.

Working paper

Adachi S, Faúndez MAOA, Arnold K, Baccigalupi C, Barron D, Beck D, Bianchini F, Chapman S, Cheung K, Chinone Y, Crowley K, Dobbs M, Bouhargani HE, Elleflot T, Errard J, Fabbian G, Feng C, Fujino T, Galitzki N, Goeckner-Wald N, Groh J, Hall G, Hasegawa M, Hazumi M, Hirose H, Jaffe AH, Jeong O, Kaneko D, Katayama N, Keating B, Kikuchi S, Kisner T, Kusaka A, Lee AT, Leon D, Linder E, Lowry LN, Matsuda F, Matsumura T, Minami Y, Navaroli M, Nishino H, Pham ATP, Poletti D, Reichardt CL, Segawa Y, Siritanasak P, Tajima O, Takakura S, Takatori S, Tanabe D, Teply GP, Tsai C, Vergès C, Westbrook B, Zhou Yet al., 2020, A measurement of the CMB E-mode angular power spectrum at subdegree scales from 670 square degrees of POLARBEAR data, Publisher: arXiv

We report a measurement of the E-mode polarization power spectrum of thecosmic microwave background (CMB) using 150 GHz data taken from July 2014 toDecember 2016 with the POLARBEAR experiment. We reach an effective polarizationmap noise level of $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ across an observationarea of 670 square degrees. We measure the EE power spectrum over the angularmultipole range $500 \leq \ell <3000$, tracing the third to seventh acousticpeaks with high sensitivity. The statistical uncertainty on E-mode bandpowersis $\sim 2.3 \mu {\rm K}^2$ at $\ell \sim 1000$ with a systematic uncertaintyof 0.5$\mu {\rm K}^2$. The data are consistent with the standard $\Lambda$CDMcosmological model with a probability-to-exceed of 0.38. We combine recent CMBE-mode measurements and make inferences about cosmological parameters in$\Lambda$CDM as well as in extensions to $\Lambda$CDM. Adding the ground-basedCMB polarization measurements to the Planck dataset reduces the uncertainty onthe Hubble constant by a factor of 1.2 to $H_0 = 67.20 \pm 0.57 {\rm km\,s^{-1}\,Mpc^{-1}}$. When allowing the number of relativistic species ($N_{eff}$) tovary, we find $N_{eff} = 2.94 \pm 0.16$, which is in good agreement with thestandard value of 3.046. Instead allowing the primordial helium abundance($Y_{He}$) to vary, the data favor $Y_{He} = 0.248 \pm 0.012$. This is veryclose to the expectation of 0.2467 from Big Bang Nucleosynthesis. When varyingboth $Y_{He}$ and $N_{eff}$, we find $N_{eff} = 2.70 \pm 0.26$ and $Y_{He} =0.262 \pm 0.015$.

Working paper

Beck D, Ade PAR, Aguilar M, Akiba Y, Ali A, Arnold K, Ashton P, Baccigalupi C, Barron D, Beck D, Beckman S, Bender AN, Bianchini F, Boettger D, Borrill J, Carron J, Chapman S, Chinone Y, Coppi G, Crowley K, Cukierman A, Haan TDE, Dobbs M, Dünner R, Elleflot T, Errard J, Fabbian G, Feeney SM, Feng C, Fuller G, Galitzki N, Gilbert A, Goeckner-Wald N, Groh J, Halverson NW, Hamada T, Hasegawa M, Hazumi M, Hill CA, Holzapfel W, Howe L, Inoue Y, Ito J, Jaehnig G, Jaffe A, Jeong O, Kaneko D, Katayama N, Keating B, Keskitalo R, Kisner T, Krachmalnicoff N, Kusaka A, Jeune MLE, Lee AT, Leon D, Linder E, Lowry L, Madurowicz A, Mak D, Matsuda F, Matsumara T, May A, Miller NJ, Minami Y, Montgomery J, Navaroli M, Nishino H, Okamura T, Peloton J, Pham A, Piccirillo L, Plambeck D, Poletti D, Puglisi G, Raum C, Rebeiz G, Reichardt CL, Richards PL, Roberts H, Ross C, Rotermund KM, Segawa Y, Sherwin B, Silva-Feaver M, Siritanasak P, Steinmetz L, Stompor R, Suzuki A, Suzuki J, Tajima O, Takakura S, Takatori S, Tanabe D, Tat R, Teply GP, Tikhomirov A, Tomaru T, Tsai C, Vergès Cet al., 2020, Latest results, current data-analysis and upcoming upgrades of the polarbear/simons array experiments, Pages: 125-132

Since May 2012 the Polarbear experiment is observing the cosmic microwave background (CMB) polarization in the 150 GHz band from the Huan Tran Telescope at the Atacama Desert in Chile. It houses 1,274 transition edge sensor (TES) bolometers producing high quality data constraining the lensing-induced, small-scale B-mode polarization and permitting testing novel technologies. In this talk I will present the latest results and the current status of the data-analysis for Polarbear-1 and give an update on the development of Polarbear-2/Simons Array.

Conference paper

Chinone Y, Adachi S, Ade PAR, Aguilar M, Akiba Y, Arnold K, Baccigalupi C, Barron D, Beck D, Beckman S, Bianchini F, Boettger D, Borrill J, ElBouhargani H, Carron J, Chapman S, Cheung K, Crowley K, Cukierman A, Dunner R, Dobbs M, Ducout A, Elleflot T, Errard J, Fabbian G, Feeney SM, Feng C, Fujino T, Galitzki N, Gilbert A, Goeckner-Wald N, Groh J, Groh JC, Hal G, Halverson N, Hamada T, Hasegawa M, Hazumi M, Hill CA, Howe L, Inoue Y, Jaehnig G, Jaffe AH, Jeong O, LeJeune M, Kaneko D, Katayama N, Keating B, Keskitalo R, Kikuchi S, Kisner T, Krachmalnicoff N, Kusaka A, Lee AT, Leitch EM, Leon D, Linder E, Lowry LN, Mangu A, Matsuda F, Matsumura T, Minami Y, Montgomery J, Navaroli M, Nishino H, Paar H, Peloton J, Pham ATP, Poletti D, Puglisi G, Reichardt CL, Richards PL, Ross C, Segawa Y, Sherwin BD, Silva-Feaver M, Siritanasak P, Stebor N, Stompor R, Suzuki A, Tajima O, Takakura S, Takatori S, Tanabe D, Teply GP, Tomaru T, Tsai C, Tucker C, Verges C, Westbrook B, Whitehorn N, Zahn A, Zhou Yet al., 2020, Results of gravitational lensing and primordial gravitational waves from the POLARBEAR experiment, 16TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2019), Vol: 1468, ISSN: 1742-6588

Journal article

Hotinli SC, Kamionkowski M, Jaffe AH, 2019, The search for statistical anisotropy in the gravitational-wave background with pulsar timing arrays, The Open Journal of Astrophysics, Vol: 2, Pages: 1-11

Pulsar-timing arrays (PTAs) are seeking gravitational waves from supermassive-black-hole binaries, and there are prospects to complement these searches with stellar-astrometry measurements. Theorists still disagree, however, as to whether the local gravitational-wave background will be statistically isotropic, as arises if it is the summed contributions from many SMBH binaries, or whether it exhibits the type of statistical anisotropy that arises if the local background is dominated by a handful (or even one) bright source. Here we derive, using bipolar spherical harmonics, the optimal PTA estimators for statistical anisotropy in the GW background and simple estimates of the detectability of this anisotropy. We provide results on the smallest detectable amplitude of a dipole anisotropy (and several other low-order multipole moments) and also the smallest detectable amplitude of a "beam’’ of gravitational waves. Results are presented as a function of the signal-to-noise with which the GW signal is detected and as a function of the number of pulsars (assuming uniform distribution on the sky and equal sensitivity per pulsar). We provide results first for measurements with a single time-domain window function and then show how the results are augmented with the inclusion of time-domain information. The approach here is intended to be conceptually straightforward and to complement the results of more detailed (but correspondingly less intuitive) modeling of the actual measurements.

Journal article

Hotinli SC, Meyers J, Dalal N, Jaffe AH, Johnson MC, Mertens JB, Munchmeyer M, Smith KM, van Engelen Aet al., 2019, Transverse velocities with the moving lens effect, Physical Review Letters, Vol: 123, ISSN: 0031-9007

Gravitational potentials that change in time induce fluctuations in the observed cosmic microwave background (CMB) temperature. Cosmological structure moving transverse to our line of sight provides a specific example known as the moving lens effect. Here, we explore how the observed CMB temperature fluctuations, combined with the observed matter overdensity, can be used to infer the transverse velocity of cosmological structures on large scales. We show that near-future CMB surveys and galaxy surveys will have the statistical power to make a first detection of the moving lens effect, and we discuss applications for the reconstructed transverse velocity.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00307999&limit=30&person=true