Imperial College London

Professor Andrew H Jaffe

Faculty of Natural SciencesDepartment of Physics

Professor of Astrophysics and Cosmology
 
 
 
//

Contact

 

+44 (0)20 7594 7526a.jaffe Website

 
 
//

Assistant

 

Miss Louise Hayward +44 (0)20 7594 7679

 
//

Location

 

1018BBlackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

368 results found

Adam R, Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoît A, Benoit-Lévy A, Bernard J-P, Bersanelli M, Bertincourt B, Bielewicz P, Bock JJ, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Christensen PR, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Désert F-X, Diego JM, Dole H, Donzelli S, Doré O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Falgarone E, Fergusson J, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Giraud-Héraud Y, Gjerløw E, González-Nuevo J, Górski KM, Gratton S, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison DL, Henrot-Versillé S, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihänen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Leahy JP, Lellouch E, Leonardi R, Lesgourgues J, Levrier F, Liguori M, Lilje PB, Linden-Vørnle M, López-Caniego M, Lubin PM, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martínez-González E, Masi S, Matarrese S, McGehee P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschênes M-A, Moneti A, Montier L, Moreno R, Morgante G, Mortlock D, Moss A, Mottet S, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Nørgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Pearson TJ, Perdereau O, Perotto L, Perrotta F, Pettorino V, Piacentini F, Piat Met al., 2016, Planck 2015 results VIII. High Frequency Instrument data processing: Calibration and maps, Astronomy & Astrophysics, Vol: 594, Pages: 1-28, ISSN: 0004-6361

This paper describes the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5-year HFI mission include almost five full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of TCMB = 2.7255 ± 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 ± 1.5 μK), which is approximatively 1σ higher than the WMAP measurement with a direction that is consistent between the two experiments. We describe the pipeline used to produce the maps ofintensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal.

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Castex G, Catalano A, Challinor A, Chamballu A, Chiang HC, Christensen PR, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fergusson J, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Karakei A, Keihanen E, Keskitalo R, Kiiveri K, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Lesgourgues J, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lindholm V, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, McGehee P, Meinhold PR, Melchiorri A, Melin J-B, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Pearson TJet al., 2016, Planck 2015 results XII. Full focal plane simulations, Astronomy and Astrophysics, Vol: 594, ISSN: 0004-6361

We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 104 mission realizations reduced to about 106 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.

Journal article

Ade PAR, Aghanim N, Arnaud M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Burigana C, Butler RC, Calabrese E, Catalano A, Chamballu A, Chiang HC, Christensen PR, Churazov E, Clements DL, Colombo LPL, Combet C, Comis B, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Finelli F, Flores-Cacho I, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Giard M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Harrison DL, Helou G, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Langer M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Levrier F, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maggio G, Maino D, Mak DSY, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Melchiorri A, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Nati F, Natoli P, Noviello F, Novikov D, Novikov I, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Partridge B, Pasian F, Pearson TJ, Perdereau O, Perotto L, Pettorino V, Piacentini F, Piat M, Pierpaoli E, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Pratt GW, Prunet S, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renault C, Renzi A, Ristorcelli I, Rocha G, Rosset C, Rossetti M, Roudier G, Rubino-Martiet al., 2016, Planck 2015 results XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation, ASTRONOMY & ASTROPHYSICS, Vol: 594, ISSN: 0004-6361

We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ−CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.

Journal article

Errard J, Feeney SM, Peiris HV, Jaffe AHet al., 2016, Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization, Journal of Cosmology and Astroparticle Physics, Vol: 2016, ISSN: 1475-7516

Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)~1.3×10−4, σ(nt)~0.03

Journal article

Bao C, Baccigalupi C, Gold B, Hanany S, Jaffe A, Stompor Ret al., 2016, Maximum likelihood foreground cleaning for cosmic microwave background polarimeters in the presence of systematic effects, Astrophysical Journal, Vol: 819, ISSN: 0004-637X

We extend a general maximum likelihood foreground estimation for cosmic microwave background (CMB) polarization data to include estimation of instrumental systematic effects. We focus on two particular effects: frequency band measurement uncertainty and instrumentally induced frequency dependent polarization rotation. We assess the bias induced on the estimation of the B-mode polarization signal by these two systematic effects in the presence of instrumental noise and uncertainties in the polarization and spectral index of Galactic dust. Degeneracies between uncertainties in the band and polarization angle calibration measurements and in the dust spectral index and polarization increase the uncertainty in the extracted CMB B-mode power, and may give rise to a biased estimate. We provide a quantitative assessment of the potential bias and increased uncertainty in an example experimental configuration. For example, we find that with 10% polarized dust, a tensor to scalar ratio of r = 0.05, and the instrumental configuration of the E and B experiment balloon payload, the estimated CMB B-mode power spectrum is recovered without bias when the frequency band measurement has 5% uncertainty or less, and the polarization angle calibration has an uncertainty of up to 4°.

Journal article

Bao C, Gold B, Baccigalupi C, Didier J, Hanany S, Jaffe A, Johnson BR, Leach S, Matsumura T, Miller A, O'Dea Det al., 2016, THE IMPACT OF THE SPECTRAL RESPONSE OF AN ACHROMATIC HALF-WAVE PLATE ON THE MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION (vol 747, 97, 2012), ASTROPHYSICAL JOURNAL, Vol: 818, ISSN: 0004-637X

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Barrena R, Bartolo N, Battaner E, Benabed K, Benoit-Lévy A, Bernard J-P, Bersanelli M, Bielewicz P, Bikmaev I, Böhringer H, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Burenin R, Burigana C, Calabrese E, Cardoso J-F, Catalano A, Chamballu A, Chary R-R, Chiang HC, Chon G, Christensen PR, Clements DL, Colombo LPL, Combet C, Comis B, Crill BP, Curto A, Cuttaia F, Dahle H, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Diego JM, Dole H, Donzelli S, Doré O, Douspis M, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Ferragamo A, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Fromenteau S, Galeotta S, Galli S, Ganga K, Génova-Santos RT, Giard M, Gjerløw E, González-Nuevo J, Górski KM, Gruppuso A, Hansen FK, Harrison DL, Hempel A, Hernández-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe TR, Keihänen E, Keskitalo R, Khamitov I, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, León-Tavares J, Levrier F, Lietzen H, Liguori M, Lilje PB, Linden-Vørnle M, López-Caniego M, Lubin PM, Macías-Pérez JF, Maffei B, Maino D, Mandolesi N, Maris M, Martin PG, Martínez-González E, Masi S, Matarrese S, McGehee P, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschênes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paoletti D, Pasian F, Perdereau O, Pettorino V, Piacentini F, Piat M, Pierpaoli E, Plaszczynski S, Pointecouteau E, Polenta G, Pratt GW, Prunet S, Puget J-L, Rachen JP, Rebolo R, Reinecke M, Remazeilles M, Renault C, Renzi A, Ristorcelli I, Rocha G, Rosset C, Rossetti M, Roudier G, Rubiño-Martín JA, Rusholme B, Sandri M, Santos D, Savelainen M, Savini G, Scott D, Stolyarov V, Streblyanska A, Suet al., 2016, Planck Intermediate Results. XXXVI. Optical identification andredshifts of Planck SZ sources with telescopes at the CanaryIslands Observatories, Astronomy & Astrophysics, Vol: 586, Pages: A139-A139, ISSN: 1432-0746

We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the CanaryIslands observatories as part of the general optical follow-up programme undertaken by the Planck collaboration. In total, 78 SZ sources arediscussed. Deep-imaging observations were obtained for most of these sources; spectroscopic observations in either in long-slit or multi-objectmodes were obtained for many. We effectively used 37.5 clear nights. We found optical counterparts for 73 of the 78 candidates. This sampleincludes 53 spectroscopic redshift determinations, 20 of them obtained with a multi-object spectroscopic mode. The sample contains new redshiftsfor 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1).

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aubourg E, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoit-Levy A, Bersanelli M, Bielewicz P, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Burigana C, Calabrese E, Cardoso J-F, Catalano A, Chamballu A, Chiang HC, Christensen PR, Clements DL, Colombo LPL, Combet C, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Dolag K, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Genova-Santos RT, Giard M, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Hansen FK, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Hornstrup A, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kitaura F, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Leon-Tavares J, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Ma Y-Z, Macias-Perez JF, Maffei B, Maino D, Mak DSY, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, McGehee P, Melchiorri A, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Noviello F, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paoletti D, Perdereau O, Perotto L, Pettorino V, Piacentini F, Piat M, Pierpaoli E, Pointecouteau E, Polenta G, Pontineu N, Pratt GW, Puget J-L, Puisieux S, Rachen JP, Racine B, Reach WT, Reinecke M, Remazeilles M, Renault C, Renzi A, Ristorcelli I, Rocha G, Rosset C, Rossetti M, Roudier G, Rubino-Martin JA, Rusholme B, Sandri M, Santos D, Savelainen M, Savini G, Scott D, Spencer LD, Stolyaroet al., 2016, Planck intermediate results XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect, Astronomy & Astrophysics, Vol: 586, ISSN: 1432-0746

By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z ≈ 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8–2.5σ detections of the kSZ signal, which are consistent with the kSZ evidence found in individualPlanck raw frequency maps, although lower than found in the WMAP-9yr W-band (3.3σ). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0–3.7σ detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80–100 h-1 Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find τT = (1.4 ± 0.5) × 10-4; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observ

Journal article

Ade PAR, Aghanim N, Alves MIR, Arnaud M, Arzoumanian D, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bock JJ, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Burigana C, Calabrese E, Cardoso J-F, Catalano A, Chiang HC, Christensen PR, Colombo LPL, Combet C, Couchot F, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falceta-Goncalves D, Falgarone E, Ferriere K, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Gudmundsson JE, Guillet V, Harrison DL, Helou G, Hennebelle P, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Holmes WA, Hornstrup A, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Netterfield CB, Noviello F, Novikov D, Novikov I, Oppermann N, Oxborrow CA, Pagano L, Pajot F, Paladini R, Paoletti D, Pasian F, Perotto L, Pettorino V, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Pratt GW, Prunet S, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renault C, Renzi A, Ristorcelli I, Rocha G, Rossetti M, Roudier G, Rubino-Martet al., 2016, Planck intermediate results XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds, Astronomy & Astrophysics, Vol: 586, ISSN: 1432-0746

Within ten nearby (d <  450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10′ FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called “histogram of relative orientations”. Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

Journal article

Aghanim N, Alves MIR, Arnaud M, Arzoumanian D, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Burigana C, Calabrese E, Cardoso J-F, Catalano A, Chamballu A, Chiang HC, Christensen PR, Colombi S, Colombo LPL, Combet C, Couchot F, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Ferriere K, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Guillet V, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jewell J, Juvela M, Keskitalo R, Kisner TS, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Noviello F, Novikov D, Novikov I, Oppermann N, Pagano L, Pajot F, Paladini R, Paoletti D, Pasian F, Patanchon G, Perdereau O, Pettorino V, Piacentini F, Piat M, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Pratt GW, Prezeau G, Prunet S, Puget J-L, Rebolo R, Reinecke M, Remazeilles M, Renault C, Renzi A, Ristorcelli I, Rocha G, Rosset C, Rossetti M, Roudier G, Rubino-Martin JA, Rusholme B, Sanet al., 2016, Planck intermediate results XXXIV. The magnetic field structure in the Rosette Nebula, ASTRONOMY & ASTROPHYSICS, Vol: 586, ISSN: 1432-0746

Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). We combine polarization data from Planck with rotation measure (RM) observations towards a massive star-forming region, the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding H ii region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion of ionized gas and the formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about 3 μG (towards the observer) in the Rosette Nebula, for a uniform electron density of about 12 cm-3. The dust shell that surrounds the Rosette H ii region is clearly observed in the Planck intensity map at 353 GHz, with a polarization signal significantly different from that of the local background when considered asa whole. The Planck observations constrain the plane-of-the-sky orientation of the magnetic field in the Rosette’s parent molecular cloud to be mostly aligned with the large-scale field along the Galactic plane. The Planck data are compared with the analytical model, which predicts the mean polarization properties of a spherical and uniform dust shell for a given orientation of the field. This comparison leads to an upper limit of about 45° on the angle between the line of sight and the magnetic field in the Rosette complex, for an assumed intrinsic dust polarization fraction of 4%. This field direction can reproduce the RM values detected in the ionized region if the magnetic field strength in the Monoceros molecular cloud is in the range 6.5–9 μG. The present analytical model is able to reproduce the RM distribution across the ionized neb

Journal article

Ade PAR, Aghanim N, Alves MIR, Arnaud M, Arzoumanian D, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Berne O, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Burigana C, Calabrese E, Cardoso J-F, Catalano A, Chamballu A, Chiang HC, Christensen PR, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Ferriere K, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejse A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Guillet V, Hansen FK, Hanson D, Harrison DL, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keskitalo R, Kisner TS, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lawrence CR, Leonardi R, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Melchiorri A, mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Nirgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oppermann N, Pagano L, Pajot F, Paladini R, Paoletti D, Pasian F, Perrotta F, Pettorino V, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Pratt GW, Puget J-L, Rachen JP, Rebolo R, Reinecke M, Remazeilles M, Renault C, Renzi A, Ricciardi S, Ristorcelli I, Rocha G, Rosset C, Rossetti M, Roudier G, Rubino-Martin JA, Rusholme B, Sandri Met al., 2016, Planck intermediate results XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps, Astronomy & Astrophysics, Vol: 586, ISSN: 1432-0746

Planck observations at 353 GHz provide the first fully sampled maps of the polarized dust emission towards interstellar filaments and their backgrounds (i.e., the emission observed in the surroundings of the filaments). The data allow us to determine the intrinsic polarization properties of the filaments and therefore to provide insight into the structure of their magnetic field (B). We present the polarization maps of three nearby (several parsecs long) star-forming filaments of moderate column density (NH about 1022 cm-2): Musca, B211, and L1506. These three filaments are detected above the background in dust total and polarized emission. We use the spatial information to separate Stokes I, Q, and U of the filaments from those of their backgrounds, an essential step in measuring the intrinsic polarization fraction (p) and angle (ψ) of each emission component. We find that the polarization angles in the three filaments (ψfil) are coherent along their lengths and not the same as in their backgrounds (ψbg). The differences between ψfil and ψbg are 12° and 54° for Musca and L1506, respectively, and only 6° in the case of B211. These differences forMusca and L1506 are larger than the dispersions of ψ, both along the filaments and in their backgrounds. The observed changes of ψ are direct evidence of variations of the orientation of the plane of the sky (POS) projection of the magnetic field. As in previous studies, we find a decrease of several per cent in p with NH from the backgrounds to the crest of the filaments. We show that the bulk of the drop in p within the filaments cannot be explained by random fluctuations of the orientation of the magnetic field because they are too small (σψ< 10°). We recognize the degeneracy between the dust alignment efficiency (by, e.g., radiative torques) and the structure of the B-field in causing variations in p, but we argue that the decrease in p from the backg

Journal article

Adam R, Ade PAR, Aghanim N, Alves MIR, Arnaud M, Arzoumanian D, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Chamballu A, Chiang HC, Christensen PR, Colombi S, Colombo LPL, Combet C, Couchot F, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouillel J, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Ferriere K, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejse A, Galeotta S, Gai S, Ganga K, Ghosh T, Giard M, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Guillet V, Hansen K, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneiss R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshal DJ, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Miville-Descheness M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Natoli P, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oppermann N, Oxborrow CA, Pagano L, Pajot F, Paoletti D, Pasian F, Perdereau O, Perotto L, Perrotta F, Pettorino V, Piacentini F, Piat M, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Popa L, Pratt GW, Prunet S, Puget J-L, Rachen JP, Reach WT, Reinecke M, Remazeilles M, Renault C, Ristorcelli I, Rocha Get al., 2016, Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust, Astronomy & Astrophysics, Vol: 586, ISSN: 1432-0746

The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This fi

Journal article

Adam R, Ade PAR, Aghanim N, Arnaud M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang HC, Christensen PR, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dunkley J, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Guillet V, Hansen FK, Hanson D, Harrison DL, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hivon E, Hobson M, Holmes WA, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Keihaenen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leahy JP, Leonardi R, Lesgourgues J, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Mangilli A, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Pagano L, Pajot F, Paladini R, Paoletti D, Partridge B, Pasian F, Patanchon G, Pearson TJ, Perdereau O, Perotto L, Perrotta F Pet al., 2016, Planck intermediate results XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, Astronomy & Astrophysics, Vol: 586, ISSN: 1432-0746

The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = −2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no “clean” windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power ℓBB ≡ ℓ(ℓ+1)CℓBB/(2&pi

Journal article

Ade PAR, Aghanim N, Alves MIR, Aniano G, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoit-Lévy A, Bernard J-P, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Chamballu A, Chiang HC, Christensen PR, Clements DL, Colombi S, Colombo LPL, Couchot F, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Dole H, Donzelli S, Doré O, Douspis M, Draine BT, Ducout A, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Falgarone E, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Gjerløw E, González-Nuevo J, Górski KM, Gregorio A, Gruppuso A, Guillet V, Hansen FK, Hanson D, Harrison DL, Henrot-Versillé S, Hernández-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Holmes WA, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Keihänen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Levrier F, Liguori M, Lilje PB, Linden-Vørnle M, López-Caniego M, Lubin PM, Macías-Pérez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martínez-González E, Masi S, Matarrese S, Mazzotta P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Miville-Deschênes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Natoli P, Nørgaard-Nielsen HU, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paladini R, Paoletti D, Pasian F, Perdereau O, Perotto L, Perrotta F, Pettorino V, Piacentini F, Piat M, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Popa L, Pratt GW, Prunet S, Puget J-L, Rachen JP, Reach WT, Rebolo R, Reinecke M, Remazeilles M, Renault C, Ristorcelli I, Rocha G, Roudier G, Rubiño-Martín JA, Rusholme Bet al., 2016, Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations, Astronomy & Astrophysics, Vol: 586, ISSN: 0004-6361

We present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density ΣMd, the dust optical extinction AV, and the starlight intensity heating the bulk of the dust, parametrized by Umin. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction AV for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 105 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL AV estimates are larger than those determined towards QSOs by a factor of about 2, which depends on Umin. The DL fitting parameter Umin, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit AV, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL AV estimate, dependent of Umin, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the AV estimates towards QSOs, also brings into agreement the DL AV estimates with those

Journal article

Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bond JR, Borrill J, Bouchet FR, Brogan CL, Burigana C, Cardoso J-F, Catalano A, Chamballu A, Chiang HC, Christensen PR, Colombi S, Colombo LPL, Crill BP, Curto A, Cuttaia F, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Desert F-X, Dickinson C, Diego JM, Donzelli S, Dore O, Dupac X, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Hansen FK, Harrison DL, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hobson M, Holmes WA, Huffenberger KM, Jaffe AH, Jaffe TR, Keihaenen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lahteenmaki A, Lamarre J-M, Lasenby A, Lawrence CR, Leonardi R, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Maino D, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Noviello E, Novikov D, Novikov I, Oppermann N, Oxborrow CA, Pagano L, Pajot F, Paladini R, Pasian F, Peel M, Perdereau O, Perrotta F, Piacentini F, Piat M, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Popa L, Pratt GW, Puget J-L, Rachen JP, Reach WT, Reich W, Reinecke M, Remazeilles M, Renault C, Rho J, Ricciardi S, Riller T, Ristorcelli I, Rocha G, Rosset C, Roudier G, Rusholme B, Sandri M, Savini G, Scott D, Stolyarov V, Sutton D, Suur-Uski A-S, Sygnet J-F, Tauber JA, Terenzi L, Toffolatti L, Tomasi M, Tristram M, Tucci M, Umana G, Valenziano L, Valiviita J, Van Tent B, Vielva P, Villa F, Wade LA, Yvon D, Zacchei A, Zonca Aet al., 2016, Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants, Astronomy & Astrophysics, Vol: 586, ISSN: 1432-0746

The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, Sν ∝ ν−α, with the spectral index, α, increasing by 0.5–1 above a break frequency in the range 10–60 GHz. The break could be due to synchrotron losses.

Journal article

Suzuki A, Ade P, Akiba Y, Aleman C, Arnold K, Baccigalupi C, Barch B, Barron D, Bender A, Boettger D, Borrill J, Chapman S, Chinone Y, Cukierman A, Dobbs M, Ducout A, Dunner R, Elleflot T, Errard J, Fabbian G, Feeney S, Feng C, Fujino T, Fuller G, Gilbert A, Goeckner-Wald N, Groh J, Haan TD, Hall G, Halverson N, Hamada T, Hasegawa M, Hattori K, Hazumi M, Hill C, Holzapfel W, Hori Y, Howe L, Inoue Y, Irie F, Jaehnig G, Jaffe A, Jeong O, Katayama N, Kaufman J, Kazemzadeh K, Keating B, Kermish Z, Keskitalo R, Kisner T, Kusaka A, Jeune ML, Lee A, Leon D, Linder E, Lowry L, Matsuda F, Matsumura T, Miller N, Mizukami K, Montgomery J, Navaroli M, Nishino H, Peloton J, Poletti D, Puglisi G, Rebeiz G, Raum C, Reichardt C, Richards P, Ross C, Rotermund K, Segawa Y, Sherwin B, Shirley I, Siritanasak P, Stebor N, Stompor R, Suzuki J, Tajima O, Takada S, Takakura S, Takatori S, Tikhomirov A, Tomaru T, Westbrook B, Whitehorn N, Yamashita T, Zahn A, Zahn Oet al., 2016, The POLARBEAR-2 and the Simons Array Experiments, Journal of Low Temperature Physics, Vol: 184, Pages: 805-810, ISSN: 0022-2291

We present an overview of the design and status of the Polarbear-2 and the Simons Array experiments. Polarbear-2 is a cosmic microwave background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 mK. The focal plane is filled with 7588 dichroic lenslet–antenna-coupled polarization sensitive transition edge sensor (TES) bolometric pixels that are sensitive to 95 and 150 GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high-purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 μμ K CMBs√CMBs in each frequency band. Polarbear-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three Polarbear-2 type receivers. The Simons Array will cover 95, 150, and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r)=6×10−3σ(r)=6×10−3 at r=0.1r=0.1 and ∑mν(σ=1)∑mν(σ=1) to 40 meV.

Journal article

Adam R, Ade PAR, Aghanim N, Alves MIR, Arnaud M, Arzoumanian D, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoit-Lévy A, Bernard JP, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bracco A, Burigana C, Butler RC, Calabrese E, Cardoso JF, Catalano A, Chamballu A, Chiang HC, Christensen PR, Colombi S, Colombo LPL, Combet C, Couchot F, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, De Bernardis P, De Rosa A, De Zotti G, Delabrouille J, Dickinson C, Diego JM, Dole H, Donzelli S, Doré O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Falgarone E, Ferrière K, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Gjerløw E, González-Nuevo J, Górski KM, Gregorio A, Gruppuso A, Guillet V, Hansen FK, Hanson D, Harrison DL, Henrot-Versillé S, Hernández-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, KeihÄnen E, Keskitalo R, Kisner TS, Kneissl R, Knoche Jet al., 2016, Planck intermediate results. XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust, Astronomy and Astrophysics, Vol: 586, Pages: 1-25, ISSN: 0004-6361

The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm2. We measure the magnetic field orientation on the plane of the sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and o the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This firs

Journal article

Inoue Y, Ade P, Akiba Y, Aleman C, Arnold K, Baccigalupi C, Barch B, Barron D, Bender A, Boettger D, Borrill J, Chapman S, Chinone Y, Cukierman A, de Haan T, Dobbs MA, Ducout A, Dunner R, Elleflot T, Errard J, Fabbian G, Feeney S, Feng C, Fuller G, Gilbert AJ, Goeckner-Wald N, Groh J, Hall G, Halverson N, Hamada T, Hasegawab M, Hattori K, Hazumi M, Hill C, Holzapfel WL, Hori Y, Howe L, Irie F, Jaehnig G, Jaffe A, Jeong O, Katayama N, Kaufman JP, Kazemzadeh K, Keating BG, Kermish Z, Keskital R, Kisner T, Kusaka A, Le Jeune M, Lee AT, Leon D, Linder EV, Lowry L, Matsuda F, Matsumura T, Miller N, Mizukami K, Montgomery J, Navaroli M, Nishino H, Paare H, Peloton J, Poletti D, Puglisi G, Raum CR, Rebeiz GM, Reichardt CL, Richards PL, Ross C, Rotermund KM, Segawa Y, Sherwin BD, Shirley I, Siritanasak P, Stebor N, Stompor R, Suzuki A, Tajima O, Takada S, Takatori S, Teply GP, Tikhomirov A, Tomaru T, Whitehorn N, Zahn A, Zahn Oet al., 2016, POLARBEAR-2: an instrument for CMB polarization measurements, Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Publisher: SPIE-INT SOC OPTICAL ENGINEERING, ISSN: 0277-786X

Conference paper

Stebor N, Ade P, Akiba Y, Aleman C, Arnold K, Baccigalupi C, Barch B, Barron D, Beckman S, Bender A, Boettger D, Borrill J, Chapman S, Chinone Y, Cukierman A, de Haan T, Dobbs MA, Ducout A, Dunner R, Elleflot T, Errard J, Fabbian G, Feeney S, Feng C, Fujino T, Fuller G, Gilbert AJ, Goeckner-Wald N, Groh J, Hall G, Halverson N, Hamada T, Hasegawa M, Hattori K, Hazumi M, Hill C, Holzapfel WL, Hori Y, Howe L, Inoue Y, Irie F, Jaehnig G, Jaffe A, Jeong O, Katayama N, Kaufman JP, Kazemzadeh K, Keating BG, Kermish Z, Keskitalo R, Kisner T, Kusaka A, Le Jeune M, Lee AT, Leon D, Linder EV, Lowry L, Matsuda F, Matsumura T, Miller N, Montgomery J, Navaroli M, Nishino H, Paar H, Pelotonh J, Poletti D, Puglisi G, Raum CR, Rebeiz GM, Reichardt CL, Richard PL, Ross C, Rotermund KM, Segawa Y, Sherwin BD, Shirley I, Siritanasak P, Steinmetz L, Stompor R, Suzuki A, Tajima O, Takadav S, Takatori S, Teply GP, Tikhomirov A, Tomaru T, Westbrook B, Whitehorn N, Zahn A, Zahn Oet al., 2016, The Simons Array CMB Polarization Experiment, Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Publisher: SPIE-INT SOC OPTICAL ENGINEERING, ISSN: 0277-786X

Conference paper

Alsing J, Heavens A, Jaffe AH, Kiessling A, Wandelt B, Hoffmann Tet al., 2015, Hierarchical cosmic shear power spectrum inference, Monthly Notices of the Royal Astronomical Society, Vol: 455, Pages: 4452-4466, ISSN: 1365-2966

We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E- and B-modes.

Journal article

Ade PAR, Arnold K, Atlas M, Baccigalupi C, Barron D, Boettger D, Borrill J, Chapman S, Chinone Y, Cukierman A, Dobbs M, Ducout A, Dunner R, Elleflot T, Errard J, Fabbian G, Feeney S, Feng C, Gilbert A, Goeckner-Wald N, Groh J, Hall G, Halverson NW, Hasegawa M, Hattori K, Hazumi M, Hill C, Holzapfel WL, Hori Y, Howe L, Inoue Y, Jaehnig GC, Jaffe AH, Jeong O, Katayama N, Kaufman JP, Keating B, Kermish Z, Keskitalo R, Kisner T, Kusaka A, Le Jeune M, Lee AT, Leitch EM, Leon D, Li Y, Linder E, Lowry L, Matsuda F, Matsumura T, Miller N, Montgomery J, Myers MJ, Navaroli M, Nishino H, Okamura T, Paar H, Peloton J, Pogosian L, Poletti D, Puglisi G, Raum C, Rebeiz G, Reichardt CL, Richards PL, Ross C, Rotermund KM, Schenck DE, Sherwin BD, Shimon M, Shirley I, Siritanasak P, Smecher G, Stebor N, Steinbach B, Suzuki A, Suzuki J-I, Tajima O, Takakura S, Tikhomirov A, Tomaru T, Whitehorn N, Wilson B, Yadav A, Zahn A, Zahn Oet al., 2015, POLARBEAR constraints on cosmic birefringence and primordial magnetic fields, Physical Review D, Vol: 92, ISSN: 1550-7998

We constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. We perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.

Journal article

Ade PAR, Aghanim N, Aniano G, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Casandjian JM, Catalano A, Chamballu A, Chiang HC, Christensen PR, Colombo LPL, Combet C, Couchot F, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Desert F-X, Dickinson C, Diego JM, Digel SW, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Falgarone E, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Fukui Y, Galeotta S, Galli S, Ganga K, Ghosh T, Giard M, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Grenier IA, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Henrot-Versill S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihaenen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Natoli P, Norgaard-Nielsen HU, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paladini R, Paoletti D, Pasian F, Perdereau O, Perotto L, Perrotta F, Pettorino V, Piacentini F, Piat M, Plaszczynski S, Pointecouteau E, Polenta G, Popa L, Pratt GW, Prunet S, Puget J-L, Rachen JP, Reach WT, Rebolo R, Reinecke M, Remazeilles M, Renault C, Ristorcelli I, Rocha G, Roudier G, Rusholmeet al., 2015, Planck intermediate results XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck, ASTRONOMY & ASTROPHYSICS, Vol: 582, ISSN: 1432-0746

The nearby Chamaeleon clouds have been observed in γ rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the H i and 12CO radio data to (i) map the hydrogen column densities, NH, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the H i-bright and CO-bright media; (ii) constrain the CO-to-H2 conversion factor, XCO; and (iii) probe the dust properties per gas nucleon in each phase and map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in H i and 12CO line emission to model in parallel the γ-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, τ353; the thermal radiance of the large grains; and an estimate of the dust extinction, AVQ, empirically corrected for the starlight intensity. The dust and γ-ray models have been coupled to account for the DNM gas. The consistent γ-ray emissivity spectra recorded in the different phases confirm that the GeV–TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the 12CO cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the H i-DNM-CO transitions for five separate clouds. CO-dark H2 dominates the molecular columns up to AV ≃ 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected AVQ extinction largely provides the best fit to the total gas traced by the γ rays. Nevertheless, we find evidence for a marked rise in AVQ/NH with increasing NH and molecular fraction, and with decreasing dust temperature. The rise in τ353/NH is even steeper. We observe variations of lesser amplitude and orderlines

Journal article

Aghanim N, Altieri B, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Beelen A, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bethermin M, Bielewicz P, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Burigana C, Calabrese E, Canameras R, Cardoso J-F, Catalano A, Chamballu A, Chary R-R, Chiang HC, Christensen PR, Clements DL, Colombi S, Couchot F, Crill BP, Curto A, Danese L, Dassas K, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Falgarone E, Flores-Cacho I, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Frye B, Galeotta S, Galli S, Ganga K, Giard M, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Guery D, Hansen FK, Hanson D, Harrison DL, Helou G, Hernandez-Monteagudo C, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Keihaenen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Le Floc'h E, Leonardi R, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, MacKenzie T, Maffei B, Mandolesi N, Maris M, Martin PG, Martinache C, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Melchiorri A, Mennella A, Migliaccio M, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Natoli P, Negrello M, Nesvadba NPH, Novikov D, Novikov I, Omont A, Pagano L, Pajot F, Pasian F, Perdereau O, Perotto L, Perrotta F, Pettorino V, Piacentini F, Piat M, Plaszczynski S, Pointecouteau E, Polenta G, Popa L, Pratt GW, Prunet S, Puget J-L, Rachen JP, Reach WT, Reinecke M, Remazeilles M, Renault C, Ristorcelli I, Rocha G, Roudier G, Rusholme B, Sandri M, Santos D, Savini G, Scott D, Spencer LD, Stolyarov V, Sunyaev R, Sutton D, Sygnet J-F, Tauber JA, Terenzi L, Toffolatti L, Tomasi M, Tristret al., 2015, Planck intermediate results XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE, Astronomy & Astrophysics, Vol: 582, ISSN: 1432-0746

We have used the Planck all-sky submillimetre and millimetre maps to search for rare sources distinguished by extreme brightness, a few hundred millijanskies, and their potential for being situated at high redshift. These “cold” Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353–857 GHz. This colour-selection favours galaxies in the redshift range z = 2–4, which we consider as cold peaks in the cosmic infrared background. With a beam at the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. We perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500μm sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350μm, with 3% peaking at 500μm, and none peaking at 250μm. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z> 2.2. Only four targets are Galactic cirrus, yielding a success rate in our search strategy for identifying extragalactic sources within the Planck beam of better than 98%. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10σ. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z ≃ 2, assuming a single common dust temperature for the sources of Td = 35 K. Under this assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4 × 1012L⊙, yielding star formation rates of typically 700 M⊙ yr-1. If the observed overdensities are actual gr

Journal article

ADE PAR, AKIBA Y, ANTHONY AE, ARNOLD K, ATLAS M, BARRON D, BOETTGER D, BORRILL J, CHAPMAN S, CHINONE Y, DOBBS M, ELLEFLOT T, ERRARD J, FABBIAN G, FENG C, FLANIGAN D, GILBERT A, GRAINGER W, HALVERSON NW, HASEGAWA M, HATTORI K, HAZUMI M, HOLZAPFEL WL, HORI Y, HOWARD J, HYLAND P, INOUE Y, JAEHNIG GC, JAFFE AH, KEATING B, KERMISH Z, KESKITALO R, KISNER T, JEUNE ML, LEE AT, LEITCH EM, LINDER E, LUNGU M, MATSUDA F, MATSUMURA T, MENG X, MILLER NJ, MORII H, MOYERMAN S, MYERS MJ, NAVAROLI M, NISHINO H, ORLANDO A, PAAR H, PELOTON J, POLETTI D, QUEALY E, REBEIZ Get al., 2015, A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION WITH POLARBEAR, Publications of The Korean Astronomical Society, Vol: 30, Pages: 625-628, ISSN: 1225-1534

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Barrena R, Bartolo N, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bikmaev I, Boehringer H, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Burenin R, Burigana C, Butler RC, Calabrese E, Carvalho P, Catalano A, Chamballu A, Chiang HC, Chon G, Christensen PR, Churazov E, Clements DL, Colombo LPL, Comis B, Couchot F, Curto A, Cuttaia F, Dahle H, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Diego JM, Dole H, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Finelli F, Flores-Cacho I, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Fromenteau S, Galeotta S, Ganga K, Genova-Santos RT, Giard M, Gilfanov M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Hempel A, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Khamitov I, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maino D, Mandolesi N, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Melin J-B, Mendes L, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Norgaard-Nielsen HU, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paoletti D, Pasian F, Perdereau O, Perotto L, Perrotta F, Pettorino V, Piacentini F, Piat M, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Popa L, Pratt GW, Prunet S, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renault C, Ricciardi S, Ristorcelli I, Rocha G, Roman M, Rosset al., 2015, Planck intermediate results. XXVI. Optical identification and redshifts of Planck clusters with the RTT150 telescope, Astronomy & Astrophysics, Vol: 582, ISSN: 1432-0746

We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartolo N, Battaner E, Battye R, Benabed K, Bendo GJ, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Chamballu A, Chary R-R, Chen X, Chiang HC, Christensen PR, Clements DL, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Frejsel A, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Israel FP, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Lawrence CR, Leonardi R, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Madden S, Maffei B, Maino D, Mandolesi N, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Mendes L, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paladini R, Paoletti D, Partridge B, Pasian F, Pearson TJ, Peel M, Perdereau O, Perrotta F, Pettorino V, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Popa L, Pratt GW, Prunet S, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renault C, Ricciet al., 2015, Planck intermediate results XXV. The Andromeda galaxy as seen by Planck, Astronomy & Astrophysics, Vol: 582, ISSN: 1432-0746

The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiralarms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (≳0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 μm emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 μm emission). We also fit spectral energy distributions for individual 5′ pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 ± 1.0) K with a spectral index of 1.62 ± 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20–60 GHz, which corresponds to a star formation rate of around 0.12 M⊙ yr-1. We find a 2.3σ detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 ± 0.3 Jy, which is in line with expectations from our Galaxy.

Journal article

Paykari P, Pires S, Starck J-L, Jaffe AHet al., 2015, Sparsely sampling the sky: regular vs. random sampling, Astronomy & Astrophysics, Vol: 581, ISSN: 1432-0746

Aims. The next generation of galaxy surveys, aiming to observe millions of galaxies, are expensive both in time and money. This raises questions regarding the optimal investment of this time and money for future surveys. In a previous work, we have shown that a sparse sampling strategy could be a powerful substitute for the – usually favoured – contiguous observation of the sky. In our previous paper, regular sparse sampling was investigated, where the sparse observed patches were regularly distributed on the sky. The regularity of the mask introduces a periodic pattern in the window function, which induces periodic correlations at specific scales.Methods. In this paper, we use a Bayesian experimental design to investigate a “random” sparse sampling approach, where the observed patches are randomly distributed over the total sparsely sampled area.Results. We find that in this setting, the induced correlation is evenly distributed amongst all scales as there is no preferred scale in the window function.Conclusions. This is desirable when we are interested in any specific scale in the galaxy power spectrum, such as the matter-radiation equality scale. As the figure of merit shows, however, there is no preference between regular and random sampling to constrain the overall galaxy power spectrum and the cosmological parameters.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Aussel H, Baccigalupi C, Banday AJ, Barreiro RB, Barrena R, Bartelmann M, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bikmaev I, Bobin J, Bock JJ, Boehringer H, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burenin R, Burigana C, Butler RC, Cardoso J-F, Carvalho P, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Chon G, Christensen PR, Churazov E, Church S, Clements DL, Colombi S, Colombo LPL, Comis B, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Da Silva A, Dahle H, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Democles J, Desert F-X, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Feroz F, Ferragamo A, Finelli F, Flores-Cacho I, Forni O, Frailis M, Franceschi E, Fromenteau S, Galeotta S, Ganga K, Genova-Santos RT, Giard M, Giardino G, Gilfanov M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Grainge KJB, Gratton S, Gregorio A, Groeneboom NE, Gruppuso A, Hansen FK, Hanson D, Harrison D, Hempel A, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Hurley-Walker N, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Khamitov I, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Li C, Liddle A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, MacTavish CJ, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Mei S, Meinhold PR, Melchiorri A, Melin J-B, Mendes L, Mennella A, Migliet al., 2015, Planck 2013 results. XXXII. The updated Planck catalogue of Sunyaev-Zeldovich sources, Astronomy & Astrophysics, Vol: 581, ISSN: 1432-0746

We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev–Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~ 80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections.

Journal article

Errard J, Ade PAR, Akiba Y, Arnold K, Atlas M, Baccigalupi C, Barron D, Boettger D, Borrill J, Chapman S, Chinone Y, Cukierman A, Delabrouille J, Dobbs M, Ducout A, Elleflot T, Fabbian G, Feng C, Feeney S, Gilbert A, Goeckner-Wald N, Halverson NW, Hasegawa M, Hattori K, Hazumi M, Hill C, Holzapfel WL, Hori Y, Inoue Y, Jaehnig GC, Jaffe AH, Jeong O, Katayama N, Kaufman J, Keating B, Kermish Z, Keskitalo R, Kisner T, Le Jeune M, Lee AT, Leitch EM, Leon D, Linder E, Matsuda F, Matsumura T, Miller NJ, Myers MJ, Navaroli M, Nishino H, Okamura T, Paar H, Peloton J, Poletti D, Puglisi G, Rebeiz G, Reichardt CL, Richards PL, Ross C, Rotermund KM, Schenck DE, Sherwin BD, Siritanasak P, Smecher G, Stebor N, Steinbach B, Stompor R, Suzuki A, Tajima O, Takakura S, Tikhomirov A, Tomaru T, Whitehorn N, Wilson B, Yadav A, Zahn Oet al., 2015, Modeling atmospheric emission for CMB ground-based observations, Astrophysical Journal, Vol: 809, ISSN: 0004-637X

Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

Journal article

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bond JR, Borrill J, Bouchet FR, Burigana C, Butler RC, Calabrese E, Chamballu A, Chiang HC, Christensen PR, Clements DL, Colombo LPL, Couchot F, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Diego JM, Dole H, Dore O, Dupac X, Ensslin TA, Eriksen HK, Fabre O, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Galli S, Ganga K, Giard M, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jones WC, Keihaenen E, Keskitalo R, Kneissl R, Knoche J, Kunz M, Kurki-Suonio H, Lamarre J-M, Lasenby A, Lawrence CR, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Mandolesi N, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Menegoni E, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Perdereau O, Perotto L, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Popa L, Pratt GW, Prunet S, Rachen JP, Rebolo R, Reinecke M, Remazeilles M, Renault C, Ricciardi S, Ristorcelli I, Rocha G, Roudier G, Rusholme B, Sandri M, Savini G, Scott D, Spencer LD, Stolyarov V, Sudiwala R, Sutton D, Suur-Uski A-S, Sygnet J-F, Tauber JA, Tavagnacco D, Terenzi L, Toffolatti L, Tomasi M, Tristram M, Tucci M, Uzan J-P, Valenziano L, Valiviita J, Van Tent B, Vielva P, Villa F, Wade LA, Yvon D, Zacchei Aet al., 2015, Planck intermediate results XXIV. Constraints on variations in fundamental constants, Astronomy & Astrophysics, Vol: 580, ISSN: 1432-0746

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00307999&limit=30&person=true&page=4&respub-action=search.html