Imperial College London


Faculty of EngineeringDepartment of Mechanical Engineering

Reader in Mechanical Engineering



a.kadiric Website




Mrs Chrissy Stevens +44 (0)20 7594 7064




672City and Guilds BuildingSouth Kensington Campus






BibTex format

author = {Morales-Espejel, GE and Rycerz, P and Kadiric, A},
doi = {10.1016/j.wear.2017.11.016},
journal = {Wear},
pages = {99--115},
title = {Prediction of micropitting damage in gear teeth contacts considering the concurrent effects of surface fatigue and mild wear},
url = {},
volume = {398-399},
year = {2018}

RIS format (EndNote, RefMan)

AB - © 2017 The Authors The present paper studies the occurrence of micropitting damage in gear teeth contacts. An existing general micropitting model, which accounts for mixed lubrication conditions, stress history, and fatigue damage accumulation, is adapted here to deal with transient contact conditions that exist during meshing of gear teeth. The model considers the concurrent effects of surface fatigue and mild wear on the evolution of tooth surface roughness and therefore captures the complexities of damage accumulation on tooth flanks in a more realistic manner than hitherto possible. Applicability of the model to gear contact conditions is first confirmed by comparing its predictions to relevant experiments carried out on a triple-disc contact fatigue rig. Application of the model to a pair of meshing spur gears shows that under low specific oil film thickness conditions, the continuous competition between surface fatigue and mild wear determines the overall level as well as the distribution of micropitting damage along the tooth flanks. The outcome of this competition in terms of the final damage level is dependent on contact sliding speed, pressure and specific film thickness. In general, with no surface wear, micropitting damage increases with decreasing film thickness as may be expected, but when some wear is present micropitting damage may reduce as film thickness is lowered to the point where wear takes over and removes the asperity peaks and hence reduces asperity interactions. Similarly, when wear is negligible, increased sliding can increase the level of micropitting by increasing the number of asperity stress cycles, but when wear is present, an increase in sliding may lead to a reduction in micropitting due to faster removal of asperity peaks. The results suggest that an ideal situation in terms of surface damage prevention is that in which some mild wear at the start of gear pair operation adequately wears-in the tooth surfaces, thus reducing sub
AU - Morales-Espejel,GE
AU - Rycerz,P
AU - Kadiric,A
DO - 10.1016/j.wear.2017.11.016
EP - 115
PY - 2018///
SN - 0043-1648
SP - 99
TI - Prediction of micropitting damage in gear teeth contacts considering the concurrent effects of surface fatigue and mild wear
T2 - Wear
UR -
UR -
VL - 398-399
ER -