Imperial College London

ProfessorAlexeiKornyshev

Faculty of Natural SciencesDepartment of Chemistry

Professor of Chemical Physics
 
 
 
//

Contact

 

+44 (0)20 7594 5786a.kornyshev Website CV

 
 
//

Assistant

 

Mr John Murrell +44 (0)20 7594 2845

 
//

Location

 

110Molecular Sciences Research HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

389 results found

Edel J, Ma Y, Kornyshev A, 2023, Electrochemical photonics: a pathway towards electrovariable optical metamaterials, Nanophotonics, Vol: 12, Pages: 2717-2744, ISSN: 2192-8606

This review article focuses on the latest achievements in the creation of a class of electrotuneable optical metamaterials for switchable mirrors/windows, variable colour mirrors, optical filters, and SERS sensors, based on the voltage-controlled self-assembly of plasmonic nanoparticles at liquid/liquid or solid/liquid electrochemical interfaces. Practically, these experimental systems were navigated by physical theory, the role of which was pivotal in defining the optimal conditions for their operation, but which itself was advanced in feedback with experiments. Progress and problems in the realisation of the demonstrated effects for building the corresponding devices are discussed. To put the main topic of the review in a wider perspective, the article also discusses a few other types of electrovariable metamaterials, as well as some of those that are controlled by chemistry.

Journal article

Goodwin ZAH, Kornyshev AA, 2022, Cracking Ion Pairs in the electrical double layer of ionic liquids, Electrochimica Acta, Vol: 434, Pages: 1-9, ISSN: 0013-4686

Here we investigate a limiting case of the theory for aggregation and gelation in the electrical double layer (EDL) of ionic liquids (ILs). The limiting case investigated only accounts for ion pairs, ignoring the possibility of larger clusters and a percolating ionic network. This simplification, permits analytical solutions for the properties of the EDL. The resulting equations demonstrate the competition between the free energy of an association and the electrostatic potential in the EDL. For small electrostatic potentials and large negative free energies of associations, ion pairs dominate in the EDL. Whereas, for electrostatic potential energies larger than the free energy of an association, electric-field-induced cracking of ion pairs occurs. The differential capacitance for this consistent ion pairing theory has a propensity to have a “double hump camel” shape. We compare this theory against previous free ion approaches, which do not consistently treat the reversible associations in the EDL.

Journal article

Verkholyak T, Kuzmak A, Kornyshev AA, Kondrat Set al., 2022, Less is more: can low quantum capacitance boost capacitive energy storage?, Journal of Physical Chemistry Letters, Vol: 13, Pages: 10976-10980, ISSN: 1948-7185

We present a theoretical analysis of charge storage in electrochemical capacitors with electrodes based on carbon nanotubes. Using exact analytical solutions supported by Monte Carlo simulations, we show how the limitations of the electron density of states in such low-dimensional electrode materials may help boost the energy stored at increased voltages. While these counterintuitive predictions await experimental verification, they suggest exciting opportunities for enhancing energy storage by rational engineering of the electronic properties of low-dimensional electrodes.

Journal article

Wang Z, Palma JL, Wang H, Liu J, Zhou G, Ajayakumar MR, Feng X, Wang W, Ulstrup J, Kornyshev AA, Li Y, Tao Net al., 2022, Electrochemically controlled rectification in symmetric single-molecule junctions., Proceedings of the National Academy of Sciences of USA, Vol: 119, Pages: 1-9, ISSN: 0027-8424

Single-molecule electrochemical science has advanced over the past decades and now extends well beyond molecular imaging, to molecular electronics functions such as rectification and amplification. Rectification is conceptually the simplest but has involved mostly challenging chemical synthesis of asymmetric molecular structures or asymmetric materials and geometry of the two enclosing electrodes. Here we propose an experimental and theoretical strategy for building and tuning in situ (in operando) rectification in two symmetric molecular structures in electrochemical environment. The molecules were designed to conduct electronically via either their lowest unoccupied molecular orbital (LUMO; electron transfer) or highest occupied molecular orbital (HOMO; "hole transfer"). We used a bipotentiostat to control separately the electrochemical potential of the tip and substrate electrodes of an electrochemical scanning tunneling microscope (EC-STM), which leads to independent energy alignment of the STM tip, the molecule, and the STM substrate. By creating an asymmetric energy alignment, we observed single-molecule rectification of each molecule within a voltage range of ±0.5 V. By varying both the dominating charge transporting LUMO or HOMO energy and the electrolyte concentration, we achieved tuning of the polarity as well as the amplitude of the rectification. We have extended an earlier proposed theory that predicts electrolyte-controlled rectification to rationalize all the observed in situ rectification features and found excellent agreement between theory and experiments. Our study thus offers a way toward building controllable single-molecule rectifying devices without involving asymmetric molecular structures.

Journal article

Goodwin ZAH, McEldrew M, Pedro de Souza J, Bazant MZ, Kornyshev AAet al., 2022, Gelation, clustering, and crowding in the electrical double layer of ionic liquids., Journal of Chemical Physics, Vol: 157, Pages: 1-16, ISSN: 0021-9606

Understanding the bulk and interfacial properties of super-concentrated electrolytes, such as ionic liquids (ILs), has attracted significant attention lately for their promising applications in supercapacitors and batteries. Recently, McEldrew et al. [J. Phys. Chem. B 125, 2677 (2021)] developed a theory for reversible ion associations in bulk ILs, which accounted for the formation of all possible (Cayley tree) clusters and a percolating ionic network (gel). Here, we adopt and develop this approach to understand the associations of ILs in the electrical double layer at electrified interfaces. With increasing charge of the electrode, the theory predicts a transition from a regime dominated by a gelled or clustered state to a crowding regime dominated by free ions. This transition from gelation to crowding is conceptually similar to the overscreening to crowding transition.

Journal article

Zagar C, Krammer FGP, Pendry JB, Kornyshev AAet al., 2022, Optical response of hyperbolic metamaterials with adsorbed nanoparticle arrays, Nanoscale Horizons, Vol: 7, Pages: 1228-1239, ISSN: 2055-6756

Experimental studies of have been recently performed to determine the optical effect of adsorption of arrays of gold nanoparticles, NPs (16 nm or 40 nm in diameter) on reflective substrates (Ma et al., ACS Photonics, 2018, 5, 4604–4616; Ma et al., ACS Nano, 2020, 14, 328–336) and on transparent interfaces (Montelongo et al., Nat. Mater., 2017, 16, 1127–1135). As predicted by the theory (Sikdar et al., Phys. Chem. Chem. Phys., 2016, 18, 20486–20498), a reflection quenching effect was observed on the reflective substrates, in the frequency domain centred around the nanoparticle localised plasmon resonance. Those results showed a broad dip in reflectivity, which was deepening and red-shifting with increasing array densities. In contrast, the second system has shown, also in accordance with the theory (Sikdar and Kornyshev, Sci. Rep., 2016, 6, 1–16), a broad reflectivity peak in the same frequency domain, increasing in intensity and shifting to the red with densification of the array. In the present paper, we develop a theory of an optical response of NP arrays adsorbed on the surface of stacked nanosheet hyperbolic substrates. The response varies between quenched and enhanced reflectivity, depending on the volume fractions of the metallic and dielectric components in the hyperbolic metamaterial. We reproduce the results of the earlier works in the two opposite limiting cases – of a pure metal and a pure dielectric substrates, while predicting novel resonances for intermediate compositions. Whereas the metal/dielectric ratio in the hyperbolic substrate cannot be changed in time – for each experiment a new substrate should be fabricated – the density of the adsorbed nanoparticle arrays can be controlled in real time in electrochemical photonic cells (Montelongo et al., Nat. Mater., 2017, 16, 1127–1135; Ma et al., ACS Photonics, 2018, 5, 4604–4616; Ma et al., ACS Nano, 2020, 14, 328–336). Therefore, we syst

Journal article

Niu L, Wu T, Chen M, Yang L, Yang J, Wang Z, Kornyshev AA, Jiang H, Bi S, Feng Get al., 2022, Conductive metal-organic frameworks for supercapacitors, Advanced Materials, Vol: 34, Pages: 1-7, ISSN: 0935-9648

As a class of porous materials with crystal lattices, metal–organic frameworks (MOFs), featuring outstanding specific surface area, tunable functionality, and versatile structures, have attracted huge attention in the past two decades. Since the first conductive MOF is successfully synthesized in 2009, considerable progress has been achieved for the development of conductive MOFs, allowing their use in diverse applications for electrochemical energy storage. Among those applications, supercapacitors have received great interest because of their high power density, fast charging ability, and excellent cycling stability. Here, the efforts hitherto devoted to the synthesis and design of conductive MOFs and their auspicious capacitive performance are summarized. Using conductive MOFs as a unique platform medium, the electronic and molecular aspects of the energy storage mechanism in supercapacitors with MOF electrodes are discussed, highlighting the advantages and limitations to inspire new ideas for the development of conductive MOFs for supercapacitors.

Journal article

Groda Y, Dudka M, Oshanin G, Kornyshev AA, Kondrat Set al., 2022, Ionic liquids in conducting nanoslits: how important is the range of the screened electrostatic interactions?, JOURNAL OF PHYSICS-CONDENSED MATTER, Vol: 34, ISSN: 0953-8984

Journal article

de Souza JP, Kornyshev AA, Bazant MZ, 2022, Polar liquids at charged interfaces: A dipolar shell theory, Journal of Chemical Physics, Vol: 156, Pages: 1-16, ISSN: 0021-9606

The structure of polar liquids and electrolytic solutions, such as water and aqueous electrolytes, at interfaces underlies numerous phenomena in physics, chemistry, biology, and engineering. In this work, we develop a continuum theory that captures the essential features of dielectric screening by polar liquids at charged interfaces, including decaying spatial oscillations in charge and mass, starting from the molecular properties of the solvent. The theory predicts an anisotropic dielectric tensor of interfacial polar liquids previously studied in molecular dynamics simulations. We explore the effect of the interfacial polar liquid properties on the capacitance of the electrode/electrolyte interface and on hydration forces between two plane-parallel polarized surfaces. In the linear response approximation, we obtain simple formulas for the characteristic decay lengths of molecular and ionic profiles at the interface.

Journal article

Bresme F, Kornyshev AA, Perkin S, Urbakh Met al., 2022, Electrotunable friction with ionic liquid lubricants, Nature Materials, Vol: 21, Pages: 848-858, ISSN: 1476-1122

Room-temperature ionic liquids and their mixtures with organic solvents as lubricants open a route to control lubricity at the nanoscale via electrical polarization of the sliding surfaces. Electronanotribology is an emerging field that has a potential to realize in situ control of friction—that is, turning the friction on and off on demand. However, fulfilling its promise needs more research. Here we provide an overview of this emerging research area, from its birth to the current state, reviewing the main achievements in non-equilibrium molecular dynamics simulations and experiments using atomic force microscopes and surface force apparatus. We also present a discussion of the challenges that need to be solved for future applications of electrotunable friction.

Journal article

de Souza JP, Pivnic K, Bazant MZ, Urbakh M, Kornyshev AAet al., 2022, Structural forces in ionic liquids: the role of ionic size asymmetry, The Journal of Physical Chemistry B: Biophysical Chemistry, Biomaterials, Liquids, and Soft Matter, Vol: 126, Pages: 1242-1253, ISSN: 1520-5207

Ionic liquids (ILs) are charged fluids composed of anions and cations of different size and shape. The ordering of charge and density in ILs confined between charged interfaces underlies numerous applications of IL electrolytes. Here, we analyze the screening behavior and the resulting structural forces of a representative IL confined between two charge-varied plates. Using both molecular dynamics simulations and a continuum theory, we contrast the screening features of a more-realistic asymmetric system and a less-realistic symmetric one. The ionic size asymmetry plays a nontrivial role in charge screening, affecting both the ionic density profiles and the disjoining pressure distance dependence. Ionic systems with size asymmetry are stronger coupled systems, and this manifests itself both in their response to the electrode polarization and spontaneous structure formation at the interface. Analytical expressions for decay lengths of the disjoining pressure are obtained in agreement with the pressure profiles computed from molecular dynamics simulations.

Journal article

McEldrew M, Goodwin ZAH, Molinari N, Kozinsky B, Kornyshev AA, Bazant MZet al., 2021, Salt-in-Ionic-Liquid electrolytes: ion network formation and negative effective charges of alkali metal cations, The Journal of Physical Chemistry B: Biophysical Chemistry, Biomaterials, Liquids, and Soft Matter, Vol: 125, Pages: 13752-13766, ISSN: 1520-5207

Salt-in-ionic liquid electrolytes have attracted significant attention as potential electrolytes for next generation batteries largely due to their safety enhancements over typical organic electrolytes. However, recent experimental and computational studies have shown that under certain conditions alkali cations can migrate in electric fields as if they carried a net negative effective charge. In particular, alkali cations were observed to have negative transference numbers at small mole fractions of alkali-metal salt that revert to the expected net positive transference numbers at large mole fractions. Simulations have provided some insights into these observations, where the formation of asymmetric ionic clusters, as well as a percolating ion network, could largely explain the anomalous transport of alkali cations. However, a thermodynamic theory that captures such phenomena has not been developed, as ionic associations were typically treated via the formation of ion pairs. The theory presented herein, based on the classical polymer theories, describes thermoreversible associations between alkali cations and anions, where the formation of large, asymmetric ionic clusters and a percolating ionic network are a natural result of the theory. Furthermore, we present several general methods to calculate the effective charge of alkali cations in ionic liquids. We note that the negative effective charge is a robust prediction with respect to the parameters of the theory and that the formation of a percolating ionic network leads to the restoration of net positive charges of the cations at large mole fractions of alkali metal salt. Overall, we find excellent qualitative agreement between our theory and molecular simulations in terms of ionic cluster statistics and the effective charges of the alkali cations.

Journal article

Haimov E, Chapman A, Bresme F, Holmes A, Reddyhoff T, Urbakh M, Kornyshev Aet al., 2021, Theoretical demonstration of a capacitive rotor for generation of alternating current from mechanical motion, Nature Communications, Vol: 12, Pages: 3678-3678, ISSN: 2041-1723

Innovative concepts and materials are enabling energy harvesters for slower motion, particularly for personal wearables or portable small-scale applications, hence contributing to a future sustainable economy. Here we propose a principle for a capacitive rotor device and analyze its operation. This device is based on a rotor containing many capacitors in parallel. The rotation of the rotor causes periodic capacitance changes and, when connected to a reservoir-of-charge capacitor, induces alternating current. The properties of this device depend on the lubricating liquid situated between the capacitor’s electrodes, be it a highly polar liquid, organic electrolyte, or ionic liquid – we consider all these scenarios. An advantage of the capacitive rotor is its scalability. Such a lightweight device, weighing tens of grams, can be implemented in a shoe sole, generating a significant power output of the order of Watts. Scaled up, such systems can be used in portable wind or water turbines.

Journal article

McEldrew M, Goodwin ZAH, Bi S, Kornyshev AA, Bazant MZet al., 2021, Ion clusters and networks in water-in-salt electrolytes, Journal of The Electrochemical Society, Vol: 168, Pages: 1-12, ISSN: 0013-4651

Water-in-salt electrolytes (WiSEs) are a class of super-concentrated electrolytes that have shown much promise in replacing organic electrolytes in lithium-ion batteries. At the extremely high salt concentrations of WiSEs, ionic association is more complicated than the simple ion pair description. In fact, large branched clusters can be present in WiSEs, and past a critical salt concentration, an infinite percolating ionic network can form spontaneously. In this work, we simplify our recently developed thermodynamic model of reversible ionic aggregation and gelation, tailoring it specifically for WiSEs. Our simplified theory only has a handful of parameters, all of which can be readily determined from simulations. Our model is able to quantitatively reproduce the populations of ionic clusters of different sizes as a function of salt concentration, the critical salt concentration for ionic gelation, and the fraction of ions incorporated into the ionic gel, as observed from molecular simulations of three different lithium-based WiSEs. The extent of ionic association and gelation greatly affects the effective ionic strength of solution, the coordination environment of active cations that is known to govern the chemistry of the solid-electrolyte interface, and the thermodynamic activity of all species in the electrolyte.

Journal article

McEldrew M, Goodwin ZAH, Zhao H, Bazant MZ, Kornyshev AAet al., 2021, Correlated ion transport and the gel phase in room temperature ionic liquids, The Journal of Physical Chemistry B: Biophysical Chemistry, Biomaterials, Liquids, and Soft Matter, Vol: 125, Pages: 2677-2689, ISSN: 1520-5207

Here we present a theory of ion aggregation and gelation of room temperature ionic liquids (RTILs). Based on it, we investigate the effect of ion aggregation on correlated ion transport—ionic conductivity and transference numbers—obtaining closed-form expressions for these quantities. The theory depends on the maximum number of associations a cation and anion can form and the strength of their association. To validate the presented theory, we perform molecular dynamics simulations on several RTILs and a range of temperatures for one RTIL. The simulations indicate the formation of large clusters, even percolating through the system under certain circumstances, thus forming a gel, with the theory accurately describing the obtained cluster distributions in all cases. However, based on the strength and lifetime of associations in the simulated RTILs, we expect free ions to dominate ionic conductivity despite the presence of clusters, and we do not expect the percolating cluster to trigger structural arrest in the RTIL.

Journal article

Groda Y, Dudka M, Kornyshev AA, Oshanin G, Kondrat Set al., 2021, Superionic Liquids in Conducting Nanoslits: Insights from Theory and Simulations, JOURNAL OF PHYSICAL CHEMISTRY C, Vol: 125, Pages: 4968-4976, ISSN: 1932-7447

Journal article

Pivnic K, Bresme F, Kornyshev AA, Urbakh Met al., 2020, Electrotunable friction in diluted room temperature ionic liquids: implications for nanotribology, ACS Applied Nano Material, Vol: 3, Pages: 10708-10719, ISSN: 2574-0970

Using nonequilibrium molecular dynamics (NEMD) simulations, we study the mechanism of electrotunable friction in the mixture of a room temperature ionic liquid (RTIL), BMIM PF6, and an organic solvent, acetonitrile. The dilution itself helps to reduce the viscosity and thereby reduce the viscous contribution to friction. At the same time, we find that under nanoscale confinement conditions, diluted RTIL solutions, of just ∼10% molar fraction, still feature a remarkable variation of the friction force with the electrode surface charge density, not weaker than had been earlier shown for nanoconfined pure RTILs. In both classes of systems the electrotunable friction response is due to accumulation of counterions at charged surfaces. For both diluted mixtures and pure RTILs, the friction force is minimal for uncharged surfaces and it increases with surface charge of either sign but only in the range of low and moderate surface charges (16–32 μC/cm2). At higher surface charges (43–55 μC/cm2), the effect is different: in the pure RTIL, the friction force continues to increase with the surface charge, while in the diluted RTIL mixture it features a maximum, with a reduction of friction with the increasing surface charge. This contrasting behavior is explained by the difference in the slip conditions found for the pure and the diluted RTIL solutions in contact with highly charged surfaces. Overall, we demonstrate that nanoscale films of diluted mixtures of RTIL provide lower friction forces than the pure RTIL films, preserving at the same time a significant electrotunable response when the liquids are confined between symmetrically charged surfaces. Nanoconfinement between asymmetrically charged surfaces leads to a reduction of friction compared to the symmetric case, with a concomitant decrease in the range of friction variation with the surface charge density. Our results highlight the potential of diluted RTIL mixtures as cost-effective electrotunab

Journal article

Di Lecce S, Kornyshev AA, Urbakh M, Bresme Fet al., 2020, Lateral ordering in nanoscale ionic liquid films between charged surfaces enhances lubricity., ACS Nano, Vol: 14, Pages: 13256-13267, ISSN: 1936-0851

Electric fields modify the structural and dynamical properties of room temperature ionic liquids (RTILs) providing a physical principle to develop tunable lubrication devices. Using nonequilibrium molecular dynamics atomistic simulations, we investigate the impact of the composition of imidazolium RTILs on the in-plane ordering of ionic layers in nanogaps. We consider imidazolium cations and widely used anions featuring different molecular structures, spherical ([BF4]-), elongated surfactant-like ([C2SO4]-), and elongated with a more delocalized charge ([NTf2]-). The interplay of surface charge, surface polarity, and anion geometry enables the formation of crystal-like structures in [BF4]- and [NTf2]- nanofilms, while [C2SO4]- nanofilms form disordered layers. We study how the ordering of the ionic liquid lubricant in the nanogap affects friction. Counterintuitively, we find that the friction force decreases with the ability of the RTILs to form crystal-like structures in the confined region. The crystallization can be activated or inhibited by changing the polarity of the surface, providing a mechanism to tune friction with electric fields.

Journal article

Ma Y, Sikdar D, He Q, Kho D, Kucernak AR, Kornyshev AA, Edel JBet al., 2020, Self-assembling two-dimensional nanophotonic arrays for reflectivity-based sensing, Chemical Science, Vol: 11, Pages: 9563-9570, ISSN: 2041-6520

We propose a nanoplasmonic platform that can be used for sensing trace levels of heavy metals in solutions via simple optical reflectivity measurements. The considered example is a lead sensor, which relies on the lead-mediated assembly of glutathione-functionalized gold nanoparticles (NPs) at a self-healing water/DCE liquid | liquid interface (LLI). Capillary forces tend to trap each NP at the LLI while the negatively charged ligands prevent the NPs settling too close to each other. In the presence of lead, due to chelation between the lead ion and glutathione ligand, the NPs assemble into a dense quasi-2D interfacial array. Such a dense assembly of plasmonic NPs can generate a remarkable broad-band reflectance signal, which is absent when NPs are adsorbed at the interface far apart from each other. The condensing effect of the LLI and the plasmonic coupling effect among the NP array gives rise to a dramatic enhancement of the reflectivity signals. Importantly, we show that our theory of the optical reflectivity from such an array of NPs works in perfect harmony with the physics and chemistry of the system with the key parameter being the interparticle distance at the interface. As a lead sensor, the system is fast, stable, and can achieve detection limits down to 14 ppb. Future alternative recognizing ligands can be used to build sister platforms for detecting other heavy metals.

Journal article

de Souza JP, Goodwin ZAH, McEldrew M, Kornyshev AA, Bazant MZet al., 2020, Interfacial layering in the electric double layer of ionic liquids, Physical Review Letters, Vol: 125, ISSN: 0031-9007

Ions in ionic liquids and concentrated electrolytes reside in a crowded, strongly interacting environment, leading to the formation of discrete layers of charges at interfaces and spin-glass structure in the bulk. Here, we propose a simple theory that captures the coupling between steric and electrostatic forces in ionic liquids. The theory predicts the formation of discrete layers of charge at charged interfaces. Further from the interface, or at low polarization of the electrode, the model outputs slowly decaying oscillations in the charge density with a wavelength of a single ion diameter, as shown by analysis of the gradient expansion. The gradient expansion suggests a new structure for partial differential equations describing the electrostatic potential at charged interfaces. We find quantitative agreement between the theory and molecular simulations in the differential capacitance and concentration profiles.

Journal article

Zagar C, Griffith R-R, Podgornik R, Kornyshev AAet al., 2020, On the voltage-controlled assembly of nanoparticle arrays at electrochemical solid/liquid interfaces, JOURNAL OF ELECTROANALYTICAL CHEMISTRY, Vol: 872, ISSN: 1572-6657

Journal article

Kornyshev AA, 2020, Electrochemical metamaterials, JOURNAL OF SOLID STATE ELECTROCHEMISTRY, Vol: 24, Pages: 2101-2111, ISSN: 1432-8488

Journal article

Zhang Y, Ye T, Chen M, Goodwin ZAH, Feng G, Huang J, Kornyshev AAet al., 2020, Enforced freedom: electric-field-induced declustering of ionic-liquid ions in the electrical double layer, Energy & Environmental Materials, Vol: 3, Pages: 414-420, ISSN: 2575-0356

Ions in the bulk of solvent‐free ionic liquids bind into ion pairs and clusters. The competition between the propensity of ions to stay in a bound state, and the reduction of the energy when unbinding in electric field, determines the portion of free ions in the electrical double layer. We present the simplest possible mean‐field theory to study this effect. “Cracking” of ion pairs into free ions in electric field is accompanied by the change of the dielectric response of the ionic liquid. The predictions from the theory are verified and further explored by molecular dynamics simulations. A particular finding of the theory is that the differential capacitance vs potential curve displays a bell shape, despite the low concentration of free charge carriers, because the dielectric response reduces the threshold concentration for the bell‐ to camel‐shape transition. The presented theory does not take into account overscreening and oscillating charge distributions in the electrical double layer. But in spite of the simplicity of the model, its findings demonstrate a clear physical effect: a preference to be a charged monopole rather than a dipole (or higher order multipole) in strong electric field.

Journal article

Sikdar D, Pendry JB, Kornyshev AA, 2020, Nanoparticle meta-grid for enhanced light extraction from light-emitting devices., Light Sci Appl, Vol: 9

Based on a developed theory, we show that introducing a meta-grid of sub-wavelength-sized plasmonic nanoparticles (NPs) into existing semiconductor light-emitting-devices (LEDs) can lead to enhanced transmission of light across the LED-chip/encapsulant interface. This results from destructive interference between light reflected from the chip/encapsulant interface and light reflected by the NP meta-grid, which conspicuously increase the efficiency of light extraction from LEDs. The "meta-grid", should be inserted on top of a conventional LED chip within its usual encapsulating packaging. As described by the theory, the nanoparticle composition, size, interparticle spacing, and distance from the LED-chip surface can be tailored to facilitate maximal transmission of light emitted from the chip into its encapsulating layer by reducing the Fresnel loss. The analysis shows that transmission across a typical LED-chip/encapsulant interface at the peak emission wavelength can be boosted up to ~99%, which is otherwise mere ~84% at normal incidence. The scheme could provide improved transmission within the photon escape cone over the entire emission spectrum of an LED. This would benefit energy saving, in addition to increasing the lifetime of LEDs by reducing heating. Potentially, the scheme will be easy to implement and adopt into existing semiconductor-device technologies, and it can be used separately or in conjunction with other methods for mitigating the critical angle loss in LEDs.

Journal article

Kornyshev A, Pendry J, Sikdar D, 2020, Nanoparticle meta-grid for enhanced light extraction from light emitting devices, Light: Science and Applications, Vol: 9, Pages: 1-11, ISSN: 2047-7538

Based on a developed theory, we show that introducing a meta-grid of sub-wavelength-sized plasmonic nanoparticles (NPs) into existing semiconductor light-emitting-devices (LEDs) can lead to enhanced transmission of light across the LED-chip/encapsulant interface. This results from destructive interference between light reflected from the chip/encapsulant interface and light reflected by the NP meta-grid, which conspicuously increase the efficiency of light extraction from LEDs. The “meta-grid”, should be inserted on top of a conventional LED chip within its usual encapsulating packaging. As described by the theory, the nanoparticle composition, size, interparticle spacing, and distance from the LED-chip surface can be tailored to facilitate maximal transmission of light emitted from the chip into its encapsulating layer by reducing the Fresnel loss. The analysis shows that transmission across a typical LED-chip/encapsulant interface at the peak emission wavelength can be boosted up to ~99%, which is otherwise mere ~84% at normal incidence. The scheme could provide improved transmission within the photon escape cone over the entire emission spectrum of an LED. This would benefit energy saving, in addition to increasing the lifetime of LEDs by reducing heating. Potentially, the scheme will be easy to implement and adopt into existing semiconductor-device technologies, and it can be used separately or in conjunction with other methods for mitigating the critical angle loss in LEDs.

Journal article

McEldrew M, Goodwin ZAH, Bi S, Bazant MZ, Kornyshev AAet al., 2020, Theory of ion aggregation and gelation in super-concentrated electrolytes, Journal of Chemical Physics, Vol: 152, Pages: 1-19, ISSN: 0021-9606

In concentrated electrolytes with asymmetric or irregular ions, such as ionic liquids and solvent-in-salt electrolytes, ion association is more complicated than simple ion-pairing. Large branched aggregates can form at significant concentrations at even moderate salt concentrations. When the extent of ion association reaches a certain threshold, a percolating ionic gel network can form spontaneously. Gelation is a phenomenon that is well known in polymer physics, but it is practically unstudied in concentrated electrolytes. However, despite this fact, the ion-pairing description is often applied to these systems for the sake of simplicity. In this work, drawing strongly from established theories in polymer physics, we develop a simple thermodynamic model of reversible ionic aggregation and gelation in concentrated electrolytes accounting for the competition between ion solvation and ion association. Our model describes, with the use of several phenomenological parameters, the populations of ionic clusters of different sizes as a function of salt concentration; it captures the onset of ionic gelation and also the post-gel partitioning of ions into the gel. We discuss the applicability of our model, as well as the implications of its predictions on thermodynamic, transport, and rheological properties.

Journal article

Bi S, Banda H, Chen M, Niu L, Chen M, Wu T, Wang J, Wang R, Feng J, Chen T, Dincă M, Kornyshev AA, Feng Get al., 2020, Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes, Nature Materials, Vol: 19, Pages: 552-558, ISSN: 1476-1122

We performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal-organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These 'computational microscopy' results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy-power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.

Journal article

Zaboronsky AO, Kornyshev AA, 2020, Ising models of charge storage in multifile metallic nanopores., Journal of Physics: Condensed Matter, Vol: 32, Pages: 1-12, ISSN: 0953-8984

Ising type models of charging of conductive nanopores with ions have already been proposed and investigated for single file cylindrical or single layer slit nanopores. In such pores, the state of ions, the coulombic interactions of which are exponentially screened by their images in pore walls, was named superionic. In the present work we extend the analysis of the superionic state to nanopores that can accommodate multiple rows of ions. By grouping multiple charges in the same row into 'supercharges', we map the arrangement of ions in polarised electrodes on a multi-row Ising model in an external field. We investigate one-, two- and three-row cases, which we solve exactly, using a purpose-built semi-numerical transfer matrix method. For pores of different radii, which can accommodate the corresponding number of ion rows, we calculate the dependence of the electrical capacitance and stored energy density on electrode potential. As in charging the single file pores, we find that in narrower pores higher energy densities can be achieved at low applied potentials, while wider pores perform better as the voltage is increased.

Journal article

Ma Y, Sikdar D, Fedosyuk A, Velleman L, Klemme DJ, Oh S-H, Kucernak ARJ, Kornyshev AA, Edel JBet al., 2020, Electrotunable nanoplasmonics for amplified surface enhanced Raman spectroscopy, ACS Nano, Vol: 14, Pages: 328-336, ISSN: 1936-0851

Tuning the properties of optical metamaterials in real time is one of the grand challenges of photonics. Being able to do so will enable a new class of photonic materials for use in applications such as surface enhanced Raman spectroscopy and reflectors/absorbers. One strategy to achieving this goal is based on the electrovariable self-assembly and disassembly of two-dimensional nanoparticle arrays at a metal liquid interface. As expected the structure results in plasmonic coupling between NPs in the array but perhaps as importantly between the array and the metal surface. In such a system the density of the nanoparticle array can be controlled by the variation of electrode potential. Due to the additive effect, we show that less than 1 V variation of electrode potential can give rise to a dramatic simultaneous change in optical reflectivity from ~93 % to ~1 % and the amplification of the SERS signal by up to 5 orders of magnitude. The process allows for reversible tunability. These concepts are demonstrated in this manuscript, using a platform based on the voltage-controlled assembly of 40 nm Au-nanoparticle arrays at a TiN/Ag electrode in contact with an aqueous electrolyte. We show that all the physics underpinning the behaviour of this platform works precisely as suggested by the proposed theory, setting the electrochemical nanoplasmonics as a promising new direction in photonics research.

Journal article

Di Lecce S, Kornyshev AA, Urbakh M, Bresme Fet al., 2020, Electrotunable lubrication with ionic liquids: the effects of cation chain length and substrate polarity., ACS Applied Materials and Interfaces, Vol: 12, Pages: 4105-4113, ISSN: 1944-8244

Electrotunable lubrication with ionic liquids (ILs) provides dynamic control of friction with the prospect to achieve superlubrication. We investigate the dependence of the frictional and structural forces with 1-n,2-methyl-imidazolium tetrafluoroborate [C n MIM]+[BF4]- (n = 2, 4, 6) ILs as a lubricant on the molecular structure of the liquid, normal load, and polarity of the electrodes. Using non-equilibrium molecular dynamics simulations and coarse-grained force-fields, we show that the friction force depends significantly on the chain length of the cation. ILs containing cations with shorter aliphatic chains show lower friction forces, ∼40% for n = 2 as compared to the n = 6 case, and more resistance to squeeze-out by external loads. The normal load defines the dynamic regime of friction, and it determines maxima in the friction force at specific surface charges. At relatively low normal loads, ∼10 MPa, the velocity profile in the confined region resembles a Couette type flow, whereas at high loads, >200 MPa, the motion of the ions is highly correlated and the velocity profile resembles a "plug" flow. Different dynamic regimes result in distinctive slippage planes, located either at the IL-electrode interface or in the interior of the film, which ultimately lead, at high loads, to the observation of maxima in the friction force at specific surface charge densities. Instead, at low loads the maxima are not observed, and the friction is found to monotonously increase with the surface charge. Friction with [C n MIM]+[BF4]- as a lubricant is reduced when the liquid is confined between positively charged electrodes. This is due to better lubricating properties and enhanced resistance to squeeze out when the anion [BF4]- is in direct contact with the electrode.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00331913&limit=30&person=true