Publications
160 results found
Caputo C, Cardin MA, Ge P, et al., 2023, Design and planning of flexible mobile Micro-Grids using Deep Reinforcement Learning, Applied Energy, Vol: 335, ISSN: 0306-2619
Ongoing risks from climate change have significantly impacted the livelihood of global nomadic communities and are likely to lead to increased migratory movements in coming years. As a result, mobility considerations are becoming increasingly important in energy systems planning, particularly to achieve energy access in developing countries. Advanced “Plug and Play” control strategies have been recently developed with such a decentralized framework in mind, allowing easier interconnection of nomadic communities, both to each other and to the main grid. Considering the above, the design and planning strategy of a mobile multi-energy supply system for a nomadic community is investigated in this work. Motivated by the scale and dimensionality of the associated uncertainties, impacting all major design and decision variables over the 30-year planning horizon, Deep Reinforcement Learning (DRL) Flexibility Analysis is implemented for the design and planning problem. DRL based solutions are benchmarked against several rigid baseline design options to compare expected performance under uncertainty. The results on a case study for ger communities in Mongolia suggest that mobile nomadic energy systems can be both technically and economically feasible, particularly when considering flexibility, although the degree of spatial dispersion among households is an important limiting factor. Additionally, the DRL based policies lead to the development of dynamic evolution and adaptability strategies, which can be used by the targeted communities under a very wide range of potential scenarios. Key economic, sustainability and resilience indicators such as Cost, Equivalent Emissions and Total Unmet Load are measured, suggesting potential improvements compared to available baselines of up to 25%, 67% and 76%, respectively. Finally, the decomposition of values of flexibility and plug and play operation is presented using a variation of real options theory, with important impl
Ge P, Caputo C, Teng F, et al., 2022, A Wireless-Assisted Hierarchical Framework to Accommodate Mobile Energy Resources, Singapore, IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)
Cao W, Durucan S, Cai W, et al., 2022, Probabilistic evaluation of susceptibility to fluid injection-induced seismicity based on statistics of fracture criticality, Rock Mechanics and Rock Engineering, Pages: 1-23, ISSN: 0723-2632
Fault reactivation and associated microseismicity pose a potential threat to industrial processes involving fluid injection into the subsurface. In this research, fracture criticality, defined as the gradient of critical fluid pressure change to trigger seismicity (Δpc/h), is proposed as a novel reservoir depth-independent metric of fault slip susceptibility. Based on statistics of the fracture criticality, a probabilistic evaluation framework for susceptibility to injection-induced seismicity was developed by integrating seismic observations and hydrogeological modelling of fluid injection operations for faulted reservoirs. The proposed seismic susceptibility evaluation method considers the injection-driven fluid pressure increase, the variability of fracture criticality, and regional fracture density. Utilising this methodology, the probabilistic distribution of fracture criticality was obtained to evaluate the potential for injection-induced seismicity in both fault and off-fault zones at the Hellisheiði geothermal site, Iceland. It has been found that the fracture criticality within both fault and off-fault zones shows natural variability (mostly ranging between 0.001-2.0 bar/km), and that fault zones tend to be characterised by larger fracture criticality values than the off-faut zones. Fracture criticality values estimated within each zone roughly follow a Gaussian distribution. Fault zones around five geothermal fluid re-injection wells at the site were estimated to have relatively high probability of seismic event occurrence, and these regions experienced high levels of induced seismicity over the microseismic monitoring period. The seismotectonic state estimated for each zone is generally consistent with the forecasted susceptibility to seismicity based on statistics of fracture criticality.
Agrawal H, Durucan S, Cao W, et al., 2022, Rockburst and gas outburst forecasting using a probabilistic risk assessment framework in longwall top coal caving faces, Rock Mechanics and Rock Engineering, Pages: 1-30, ISSN: 0723-2632
A probabilistic risk assessment framework was developed to mathematically represent the complex engineering phenomena of rock bursts and gas outbursts for a heterogeneous coal seam. An innovative object-based non-conditional simulation approach was used to distribute lithological heterogeneity present in the coal seam to respect their geological origin. The changing mining conditions during longwall top coal caving mining (LTCC) were extracted from a coupled numerical model to provide statistically sufficient data for probabilistic analysis. The complex interdependencies among abutment stress, pore pressure, the volume of total gas emission and incremental energy release rate, their stochastic variations and uncertainty were realistically implemented in the GoldSim software, and 100,000 equally likely scenarios were simulated using the Monte Carlo method to determine the probability of rock bursts and gas outbursts. The results obtained from the analysis incorporate the variability in mechanical, elastic and reservoir properties of coal due to lithological heterogeneity and result in the probability of the occurrence of rock bursts, coal and gas outbursts, and safe mining conditions. The framework realistically represents the complex mining environment, is resilient and results are reliable. The framework is generic and can be suitably modified to be used in different underground mining scenarios, overcoming the limitations of earlier empirical indices used.
Kallitsis E, Korre A, Kelsall G, 2022, Life cycle assessment of recycling options for automotive Li-ion battery packs, Journal of Cleaner Production, Vol: 371
Ramping up automotive lithium-ion battery (LIB) production volumes creates an imperative need for the establishment of end-of-life treatment chains for spent automotive traction battery packs. Life Cycle Assessment (LCA) is an essential tool in evaluating the environmental performance of such chains and options. This work synthesises publicly-available data to expand upon previously reported LCA studies for LIB recycling and holistically model end-of-life treatment chains for spent automotive traction battery packs with lithium nickel cobalt manganese oxide positive electrodes. The study provides an in-depth analysis of unit process contributions to the environmental benefits and burdens of battery recycling options and integrates these with the battery production impacts to estimate the net environmental benefit achieved by the introduction of recycling in the value chain. The attributional LCA model accounts for the whole recycling chain, from the point of end-of-life LIB collection to the provision of secondary materials for battery manufacturing. Pyrometallurgical processing of spent automotive traction battery cells is predicted to have a larger Global Warming Potential (GWP), due to its higher energy intensity, while hydrometallurgical processing is shown to be more environmentally beneficial, due to the additional recovery of lithium as hydroxide. The majority of the environmental benefits arise from the recovery of aluminium and copper fractions of battery packs, with important contributions also arising from the recovery of nickel and cobalt from the battery cells. Overall, the LCA model presented estimates a net benefit in 11 out of 13 environmental impact categories based on the ReCiPe characterisation method, as compared to battery production without recycling. An investigation of the effect of geographic specificity on the combined production and recycling indicates that it is as a key source of GWP impact variability and that the more climate burdening
Caputo C, Cardin M-A, Korre A, et al., 2022, Energy System Evolution Strategies for Mobile Micro-grids using Deep Reinforcement Learning Flexibility Analysis, Espoo, Finland, 32nd European Conference on Operational Research (EURO 2022)
Cao W, Durucan S, Shi J-Q, et al., 2022, Induced seismicity associated with geothermal fluids re-injection: Poroelastic stressing, thermoelastic stressing, or transient cooling-induced permeability enhancement?, Geothermics, Vol: 102, Pages: 1-18, ISSN: 0375-6505
Both field injectivity and induced seismicity were reported to be inversely correlated with the temperature of re-injected fluids at the Hellisheiði geothermal field in Iceland. This observation has led to a hypothesis that transient cooling-induced permeability enhancement is a novel mechanism for induced seismicity, in addition to elevated fluid pressure, poroelastic stressing, and thermoelastic stressing in geothermal environments. In this work, a 3D calibrated coupled THM model was developed to model the colder fluids re-injection process over a 1-year period and evaluate the potential for induced seismicity in terms of Coulomb stress changes at the Hellisheiði geothermal field. Three modelling scenarios taking into account respectively the poroelastic effect, thermoporoelastic effect, and thermoporoelastic effect with permeability enhancement, were examined and compared to identify the dominant mechanism for the recorded seismicity and examine the contribution from each individual mechanism. Results have shown that, under normal fluid re-injection pressure and temperature conditions, the permeability enhancement effect is the dominant mechanism for induced seismicity at the Hellisheiði geothermal field. Specifically, the contribution to Coulomb stress changes from the permeability enhancement effect is almost twice of that from the thermoelastic stressing, which is in turn two orders of magnitude larger than that from the poroelastic stressing. It has also been noted that, when reducing temperature of re-injected fluids from 120°C to 20°C, the temperature change is increased by 2.1 times at 1,000 m depth, while the amount of mass flow by around 4 times. Thus, the amount of heat transferred can be increased 8.4 times by lowering temperature of the injected fluids, which explains the high sensitivity of induced seismicity to temperature. Outcomes of this work suggest temperature control of injected fluids as a feasible regulation method to mit
Kallitsis E, Lander L, Edge J, et al., 2022, Safe and sustainable lithium-ion batteries, Safe and Sustainable Lithium-ion Batteries, Publisher: Imperial College London - Energy Futures Lab
The transition to clean energy and electric mobility is driving unprecedented demand for lithium-ion batteries (LIBs). This paper investigates the safety and sustainability of LIBs, exploring ways of reducing their impact on the environment and ensuring they do not pose a danger to health of workers or users.
Cao W, Durucan S, Shi JQ, et al., 2022, Coupled THM modelling of induced seismicity associated with geothermal fluids re-injection: the role of transient cooling-induced permeability enhancement
Seismicity induced by injection of energy depleted geothermal fluid, as well as field injectivity, has been observed to be inversely correlated with the temperature of re-injected fluids at the Hellisheiði geothermal field, Iceland. Using the Hellisheiði field injection data, transient cooling-induced permeability enhancement as a distinctive mechanism for induced seismicity in geothermal reservoirs was investigated. A 3D coupled THM model was developed to model the colder fluids re-injection process over a 1-year period and evaluate the potential for induced seismicity at Hellisheiði. Three modelling scenarios considering respectively the poroelastic effect, thermoporoelastic effect, and thermoporoelastic effect with permeability enhancement, were examined and compared to identify the dominant mechanism for induced seismicity and examine the contribution from each individual mechanism. Results have shown that, under normal fluid re-injection pressure and temperature conditions, the permeability enhancement effect is the dominant mechanism for induced seismicity at Hellisheiði. In addition, by reducing temperature of re-injected fluids from 120 °C to 20 °C, the amount of heat transferred can be increased by 8.4 times, which explains the high sensitivity of induced seismicity to temperature. The findings of this work suggest that temperature control of injected fluids can be a feasible regulation method to mitigate injection-induced seismic risk.
Fraga DM, Skagestad R, Eldrup NH, et al., 2021, Design of a multi-user CO2 intermediate storage facility in the Grenland region of Norway, INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, Vol: 112, ISSN: 1750-5836
Lander L, Kallitsis E, Hales A, et al., 2021, Cost and Carbon Footprint Reduction of Electric Vehicle Lithium-Ion Batteries through Efficient Thermal Management, ECS Meeting Abstracts, Vol: MA2021-02, Pages: 743-743
Jahanbakhsh A, Liu Q, Mosleh MH, et al., 2021, An investigation into co2–brine–cement–reservoir rock interactions for wellbore integrity in co2 geological storage, Energies, Vol: 14, Pages: 1-20, ISSN: 1996-1073
Geological storage of CO2 in saline aquifers and depleted oil and gas reservoirs can help mitigate CO2 emissions. However, CO2 leakage over a long storage period represents a potential concern. Therefore, it is critical to establish a good understanding of the interactions between CO2–brine and cement–caprock/reservoir rock to ascertain the potential for CO2 leakage. Accordingly, in this work, we prepared a unique set of composite samples to resemble the cement–reservoir rock inter-face. A series of experiments simulating deep wellbore environments were performed to investigate changes in chemical, physical, mechanical, and petrophysical properties of the composite samples. Here, we present the characterisation of composite core samples, including porosity, permeability, and mechanical properties, determined before and after long‐term exposure to CO2‐rich brine. Some of the composite samples were further analysed by X‐ray microcomputed tomography (X‐ray μ‐CT), X‐ray diffraction (XRD), and scanning electron microscopy–energy‐dispersive X‐ray (SEM–EDX). Moreover, the variation of ions concentration in brine at different timescales was studied by per-forming inductively coupled plasma (ICP) analysis. Although no significant changes were observed in the porosity, permeability of the treated composite samples increased by an order of magnitude, due mainly to an increase in the permeability of the sandstone component of the composite samples, rather than the cement or the cement/sandstone interface. Mechanical properties, including Young’s modulus and Poisson’s ratio, were also reduced.
Santibanez-Borda E, Korre A, Nie Z, et al., 2021, A multi-objective optimisation model to reduce greenhouse gas emissions and costs in offshore natural gas upstream chains, Journal of Cleaner Production, Vol: 297, Pages: 1-14, ISSN: 0959-6526
The urgency of climate change, while the world economy is projected to depend on fossil fuels for some time, requires substantial reduction of greenhouse gas emissions in the oil and gas industry. This study proposes a methodology for the decarbonisation of offshore natural gas production networks through progressive electrification, either by connecting offshore platforms with nearby renewable energy sources, e.g. offshore wind farms, or by sharing resources so as to improve their energy generation efficiency. In this context, a novel multi-objective mixed-integer linear programming model is proposed to simultaneously minimise greenhouse gas emissions and associated costs from a determined offshore platform network, considering technical constraints, such as maintaining the energy balance of the network, ensuring that cables are installed to enable energy flows, and respecting the maximum generation capacities and minimum operating loads of turbines. For demonstration purposes, the proposed methodology was applied to a UK Southern North Sea network and optimised using the augmented -constraint method. The Pareto front approximation obtained suggests that the studied network’s cumulative greenhouse gas emissions can be reduced by 25% over the next 10 years at an average cost of US$370.9 per tonne CO2e. This study also explores the impact that uncertainties and postponing investment decisions may have in the set context.
Cao W, Shi J-Q, Durucan S, et al., 2021, Evaluation of shear slip stress transfer mechanism for induced microseismicity at In Salah CO2 storage site, International Journal of Greenhouse Gas Control, Vol: 107, Pages: 1-20, ISSN: 1750-5836
Stress transfer caused by injection-induced fault reactivation plays a significant role in triggering induced seismicity. This work aims to investigate to which extent the shear slip stress transfer mechanism might have contributed to a 4-month period of heightened microseismicity around one of the horizontal injection wells (KB-502) at the In Salah CO2 storage site. Building upon previous reservoir modelling and history matching work by the authors, coupled geomechanical and reservoir modelling of CO2 injection at KB-502 was carried out, featuring the explicit simulation of injection-induced fault reactivation and stress transfer, and the implementation of a strain-dependent permeability model to represent the fault hydrological behaviour. This approach allows a much-improved overall match to the field bottomhole pressures at KB-502 over the previous results, where fault zone reactivation and associated dynamic permeability behaviour were not considered, especially over the 4-month period of interest. Based upon the coupled modelling results, Coulomb stress changes were used to evaluate the potential for enhanced microseismicity related to CO2 injection-induced fault reactivation at KB-502. Analyses on the potential for microseismicity have shown that seismic events are likely to take place in both hydraulically connected regions and stress transfer influenced regions. The variation of computed Coulomb stress changes in near-fault areas compares favourably with the heightened field recorded seismicity during the period modelled. The integrated interpretation of microseismic monitoring and coupled geomechanics and reservoir modelling have suggested that the shear slip stress transfer mechanism was active and contributed to the occurrence of induced seismicity at In Salah.
Lander L, Kallitsis E, Hales A, et al., 2021, Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management, Applied Energy, Vol: 289, Pages: 1-10, ISSN: 0306-2619
Electric vehicles using lithium-ion batteries are currently the most promising technology to decarbonise the transport sector from fossil-fuels. It is thus imperative to reduce battery life cycle costs and greenhouse gas emissions to make this transition both economically and environmentally beneficial. In this study, it is shown that battery lifetime extension through effective thermal management significantly decreases the battery life cycle cost and carbon footprint. The battery lifetime simulated for each thermal management system is implemented in techno-economic and life cycle assessment models to calculate the life cycle costs and carbon footprint for the production and use phase of an electric vehicles. It is demonstrated that by optimising the battery thermal management system, the battery life cycle cost and carbon footprint can be reduced by 27% (from 0.22 $·km−1 for air cooling to 0.16 $·km−1 for surface cooling) and 25% (from 0.141 kg CO2 eq·km−1 to 0.104 kg CO2 eq·km−1), respectively. Moreover, the importance of cell design for cost and environmental impact are revealed and an improved cell design is proposed, which reduces the carbon footprint and life cycle cost by 35% to 0.0913 kg CO2 eq·km−1 and 40% to 0.133 $·km−1, respectively, compared with conventional cell designs combined with air cooling systems.
Durucan S, Korre A, Parlaktuna M, et al., 2021, SUCCEED: A CO2 storage and utilisation project aimed at mitigating against greenhouse gas emissions from geothermal power production, 15th Greenhouse Gas Control Technologies 2021 (GHGT-15)
The non-condensable gases in most geothermal resources include CO2 and smaller amounts of other gases. Currently, the worldwide geothermal power is a small sector within the energy industry, and CO2 emissions related to the utilisation of geothermal resources are consequently small. In some countries, however, geothermal energy production contributes significantly to their energy budget and their CO2 emissions are relatively significant. SUCCEED is a targeted innovation and research project which aims to investigate the reinjection of CO2 produced at geothermal power production sites and develop, test and demonstrate at field scale innovative measurement, monitoring and verification (MMV) technologies that can be used in most CO2 geological storage projects. The project is carried out at two operating geothermal energy production sites, the Kızıldere geothermal field in Turkey and the CarbFix project site at the Hellisheiði geothermal field. Together with a brief description of the seismic monitoring technologies proposed in the project, this paper presents the details of the two field sites and the progress made in installing and testing of the surface fibre-optic cables at the Hellisheiði geothermal field in Iceland.
Cao W, Durucan S, Cai W, et al., 2021, Combining Microseismic Observations and Reservoir Simulation to Interpret Fracture Criticality in Faults at the Hellisheiði Geothermal Field, Iceland, Pages: 418-427
Fault reactivation and associated microseismicity induced by fluid injection into the subsurface pose a potential threat in geothermal power generation. In this research, the gradient of critical pore pressure change to trigger seismicity (Δpc/h), referred to as the fracture criticality, has been proposed to represent the critical state of subsurface fractures. The fracture criticality is subjected to variability due to heterogeneous fracture attributes and rock properties. The statistics of fracture criticality could be applied to the probabilistic evaluation of fluid injection-induced seismic risk, which considers the injection-driven pore pressure increase, the variability of fracture criticality, and local fracture density. The seismic risk evaluation based on statistics of fracture criticality was applied to the Hellisheiði geothermal site, where microseismic observations and reservoir simulation over a half-year fluid injection period were integrated to achieve the probabilistic distribution of fracture criticality and evaluate the injection-induced seismic risk in both fault and off-fault zones. It has been found that the fracture criticality within both fault and off-fault zones shows natural variability (mostly ranging between 0-1.0 bar/km), and the values estimated roughly follow Gaussian distributions. Relatively high probability of seismic event occurrence was estimated for fault zones around five geothermal fluid re-injection wells at the site, which were consistent with seismically-active areas over the microseismic monitoring period.
Cai W, Durucan S, Cao W, et al., 2021, Seismic Response to Fluid Injection in Faulted Geothermal Reservoirs: A Case Example from Iceland
Seismic response to fluid injection at the Húsmúli area within the Hellisheiði geothermal field in Iceland was investigated by correlating induced seismicity with fault structures and fluid injection rates. Induced seismicity recorded around five injection wells over a half-year fluid injection period was first analysed using the k-means clustering model, which identified two clusters associated with the injection wells studied. Based on the clustered seismic events, the geometry of the injected fluid flow was estimated using the spatial density of seismic events. A statistical approach, using locations of three seismic events to identify one fracture plane, was utilised to identify the dominant fault structures, which spatially correlate well with local fault structures dominating the fluid flow. In the temporal domain, the fluid injection rate and wellhead pressure for the five wells were separately analysed against the seismic response, which shows that the seismic frequency and the b value increased along with local fluctuations of injection rate and pressure in the controlling system. It can be concluded that the integrated analysis of induced seismicity, fault structures and fluid injection in spatial-temporal domains is crucial to understand the seismic response to fluid injection in faulted/fractured geothermal reservoirs.
Agrawal H, Durucan S, Cao W, et al., 2021, Probabilistic Risk Assessment of Rock Bursts and Excessive Gas Emissions in Longwall Top Coal Caving Mining
Despite many years of research, rock bursts and excessive gas emissions remain a longstanding cause for concern and a major hazard in underground coal mining. There are several traditional approaches to forecast rock bursts in underground mining, but it is difficult to use a single criterion for this purpose due to variations in mining conditions worldwide. This paper presents a generic probabilistic risk assessment (PRA) framework developed to estimate the probability of rock bursts and excessive gas emissions by incorporating the inherent uncertainty involved in a typical longwall coal mining scenario. The vertical stress, total volume of gas emission, and incremental energy release rate (ERR) were determined from a coupled geomechanical and gas flow model to represent longwall top coal caving mining practiced at Coal Mine Velenje. The values were fed into the PRA framework and the probability of rock bursts, gas emissions and safe mining conditions were estimated. The probability of rock burst occurrence was calculated to be 0.138, excessive gas emission to be 0.353 and safe mining conditions to be 0.565. This paper offers a new approach to overcome the limitations of traditional approaches for rock burst and excessive gas emissions forecasting.
Cao W, Durucan S, Cai W, et al., 2020, A physics-based probabilistic forecasting methodology for hazardous microseismicity associated with longwall coal mining, International Journal of Coal Geology, Vol: 232, Pages: 1-14, ISSN: 0166-5162
Mining-induced microseismicity is widely considered as a result of slippage of pre-existing critically stressed fractures caused by stress perturbations around an advancing face. An in-depth analysis of the recorded microseismicity associated with longwall top coal caving mining at Coal Mine Velenje in Slovenia has been previously carried out and reported by the authors. It has been concluded that while microseismic event rate is affected by mining intensity (longwall face daily advance rate) as well as local abundance of pre-existing fractures, spatial and magnitude characteristics of microseismicity are predominantly influenced by the latter. Based upon this improved understanding of fracture-slip seismic-generation mechanism, the current work aimed at establishing a data-driven yet physics-based probabilistic forecasting methodology for hazardous microseismicity using microseismic monitoring data with concurrent face advance records. Through performing statistical analyses and probability distribution fitting for temporal, magnitude and spatial characteristics of microseismicity within a time window, a short-term forecasting model is developed to estimate the probability of potentially hazardous microseismicity over the next time interval in the form of a joint probability. The real time forecasting of hazardous microseismicity during longwall coal mining is realised through regularly updating the statistical model using the most recent microseismic sequence datasets and face advance records. This forecasting methodology is featured by the physical basis which provides a good explicability of forecasting results, and the probabilistic perspective which accounts for the stochastic nature of mining-induced microseismicity. This model has been employed to make time-varying forecasts of hazardous microseismicity around two longwall panels over a one-year coal production period at Coal Mine Velenje, and satisfactory results at both panels were achieved. In addition, t
Kallitsis E, Korre A, Mousamas D, et al., 2020, Environmental life cycle assessment of Mediterranean sea bass and sea bream, Sustainability, Vol: 12, ISSN: 2071-1050
The aquaculture sector is the fastest growing food production industry, with sea bass and sea bream consisting important exporting goods in the Mediterranean region. This work presents results of a life cycle assessment of Mediterranean sea bass and sea bream, based on primary data collected from a Greek producer. The system boundary included fish feed production and the rearing operation, as well as the packaging and delivery processes, which were neglected in preceding literature studies. The life cycle inventory developed addressed previous data gaps in the production of Mediterranean aquaculture species. Comparison to preceding studies revealed differences on the production inventories and identified methodological choices leading to variability. Packaging and delivery processes were found to contribute approximately 40% towards the global warming score. The production of both sea bass and sea bream was shown to come with high eutrophication impacts occurring from the rearing stage. The feed production was identified as the most environmental impact intensive process throughout the life cycle. Sea bass came with lower environmental impacts per unit live mass, which was reversed when the species were compared on a protein basis. The replicable and transparent model presented here, contributes towards the more accurate quantification of the environmental impacts associated with Mediterranean aquaculture species and supports efforts aiming to promote environmental protection through dietary change.
Cao W, Yildirim B, Durucan S, et al., 2020, Fracture behaviour and seismic response of naturally fractured coal subjected to true triaxial stresses and hydraulic fracturing, Fuel: the science and technology of fuel and energy, Vol: 288, Pages: 1-15, ISSN: 0016-2361
Hydraulic fracturing of coalbed methane wells has been widely practised as an effective method to increase drainage efficiency in low-permeability, low-pressure and low-saturated coal seams. To investigate hydraulic fracture performance and associated seismic response in coal, hydraulic fracturing experiments were carried out on two cubic coal blocks containing a host of natural fractures using a true triaxial rock testing machine equipped with loading, injection and acoustic systems. The acoustic system uses transducers with active sources to repetitively generate and receive ultrasonic P/S wave pulses for characterising mechanical properties of the coal blocks and revealing fracture growth. Silicon oil was injected into the middle of coal blocks to create hydraulic fractures under deviatoric stress conditions, and the stress and displacement, borehole pressure and volume, and seismic response were recorded over the injection process. X-ray computed tomography (CT) was conducted before and after the experiments to identify the location and geometry of hydraulic and natural fractures. Results have shown that the fracturing behaviour, the drawdown period of borehole pressure and the intrusion of fracturing fluid are dominated by the complexity and insulation offered by internal natural fracture networks of coal blocks. In addition, seismic spectrograms captured both fracture initiation and its subsequent interaction with natural fractures, which indicates that the induced fracture and fracturing fluid interfere with the propagation of seismic waves and influence ultrasonic seismic characteristics. Seismic velocity tomography of ultrasonic acoustic signals recorded also provided the spatial information of fractures, such as approximate locations of pre-existing fractures and injection-disturbed regions.
Stork AL, Chalari A, Durucan S, et al., 2020, Fibre-optic monitoring for high-temperature Carbon Capture, Utilization and Storage (CCUS) projects at geothermal energy sites, First Break, Vol: 38, Pages: 61-67, ISSN: 0263-5046
It is often assumed that geothermal energy provides a clean source of renewable energy without emissions of carbon dioxide (CO2) or other greenhouse gases. In fact, most geothermal energy plants emit CO2 and small amounts of other gases, typically up to 5% of by weight. Reinjection of produced CO2 back into the geothermal fields has been proposed by several researchers in the past. The EU funded CarbFix and CarbFix2 projects have successfully demonstrated that CO2 reinjection into basaltic rocks can provide a safe and efficient geological storage method. The ACT Programme funded SUCCEED project is focused on understanding the effects of and developing technologies to enable reinjection of produced CO2 at geothermal plants in different geological settings. Monitoring the process is vital to understand the effects, possibilities and limitations of injection but the availability of suitable sensors is limited in high-temperature and harsh environments. This problem can be overcome with the use of distributed fibre-optic sensors which are able to withstand such harsh environments and record temperature, seismic and strain signals. This article describes actual and planned deployments of Distributed Acoustic Sensing (DAS) technology at the Hellisheidi and Kizildere geothermal fields in Iceland and Turkey, respectively, and outlines the practical considerations for such deployments.
Cao W, Durucan S, Cai W, et al., 2020, The role of mining intensity and pre-existing fracture attributes on spatial, temporal and magnitude characteristics of microseismicity in longwall coal mining, Rock Mechanics and Rock Engineering, Vol: 53, Pages: 4139-4162, ISSN: 0723-2632
Knowledge regarding microseismic characteristics associated with longwall coal mining is crucial in evaluating the potential for underground mining hazards. Although microseismicity is induced by mining activities, it still remains uncertain as to what extent mining activities influence the spatial, temporal, and magnitude characteristics of microseismicity. To establish a thorough understanding of the relationship between microseismic characteristics and mining activities, a 27-month long microseismic monitoring campaign was conducted around a highly stressed coal zone and eight producing longwall panels at Coal Mine Velenje in Slovenia. Each microseismic event was classified to be associated with the producing longwall panel that triggered it, and the microseismic response to multi-panel longwall top coal caving face advance was analysed. Monitoring data have shown that locations of microseismic events coincided with stress concentrated regions. It was established that both seismic count and energy-intensive regions associated with coal mining in different panels are spatially connected, but they do not fully overlap with mined-out or stress concentrated areas. In addition, microseismic event counts frequency was found to be well correlated with mining intensity, while seismic energy magnitude and spatial distribution are poorly correlated with the same. Therefore, microseismic characteristics could not be explained solely by the mining-induced stress transfer and mining intensity, but are believed to be dominated by pre-existing natural fractures throughout the coal seam. Analyses of these observations helped the development of a conceptual seismic-generation model, which provides new insights into the causes of microseismicity in coal mining.
Cao W, Shi J-Q, Durucan S, et al., 2020, Gas-driven rapid fracture propagation under unloading conditions in coal and gas outbursts, International Journal of Rock Mechanics and Mining Sciences, Vol: 130, ISSN: 1365-1609
Coal and gas outbursts have long posed a serious risk to safe and efficient production in coal mines. It is recognised that coal and gas outbursts are triggered by excavation unloading followed by gas-driven rapid propagation of a system of pre-existing or mining-induced fractures. Gas-filled fractures parallel to a working face are likely to experience opening first, then expansion and rapid propagation stages under unloading conditions. The fracture opening is driven by the effective stress inside the fracture, while the fracture expansion and rapid propagation is propelled by the pressure build-up of desorbed gas in the vicinity of the fracture. Based upon this understanding, this research aimed to identify the key factors affecting outburst initiation and its temporal evolution during roadway developments. Specifically, the response of pre-set fractures in a thin coal seam sandwiched between rock layers to roadway development is simulated using a geomechanical model coupled with fracture mechanics for fracture opening and propagation. In addition, kinetic gas desorption and its migration into open fractures is considered. During simulations outburst is deemed to occur when the fracture length exceeds the dimension of a host element. The findings of this research suggest that the simulated coal and gas outburst caused by roadway development may be considered as a dynamic gas desorption-driven fracture propagation process. The occurrence of coal and gas outbursts is found to be influenced mainly by the coal properties, fracture attributes, and initial gas pressure and the in situ stress conditions. Furthermore, the model predictions in terms of dome-shaped erupted-zone and layer-by-layer coal breakage are consistent with the field reports. In addition, the model results suggest that delayed occurrence of coal and gas outbursts, especially after sudden exposure of a coal seam or after blasting disturbance, reported in the literature may be related to the gas desorp
Kallitsis E, Korre A, Kelsall G, et al., 2020, Environmental life cycle assessment of the production in China of lithium-ion batteries with nickel-cobalt-manganese cathodes utilising novel electrode chemistries, Journal of Cleaner Production, Vol: 254, Pages: 1-9, ISSN: 0959-6526
Advances in lithium-ion battery (LIB) technology, offering higher mass specific energies, volumetric energy densities, potential differences and energy efficiencies, are key enablers of the large-scale uptake of electric vehicles (EVs). Nickel-cobalt-manganese oxide (NCM) cathode formulations have emerged as the dominant choice in the battery industry. Further performance improvements are expected from the introduction of silicon-graphite composite anodes and nickel-rich cathodes alongside cost reductions achieved through upscaling the battery manufacturing. This work presents results of life cycle assessments concerning the environmental burdens associated with the production of novel electrode batteries and the impacts of the Chinese domination in lithium-ion battery manufacturing. The production of LIBs in China was shown to come at a high environmental cost of 40% higher Global Warming Potential (GWP) than earlier literature suggests. The novel batteries were shown to exhibit similar threats to humans and ecosystems as the commercialised ones, occurring mainly from the metals used in the battery cells; environmental impact reductions are shown to occur as a result of the increased nominal storage capacities of novel battery technologies. The replicable model presented provides the means to quantify the environmental impacts of production of LIBs including those with novel electrode chemistries and offers robust means of decision making that complement scientific and engineering developments targeting LIB performance improvements and cost reductions.
Agrawal H, Cao W, Durucan S, et al., 2020, Development of a probabilistic risk assessment methodology to evaluate the effect of lithological heterogeneity on rock bursts and gas outbursts in longwall coal mining
A coupled geomechanical and gas flow model was developed to analyse rock burst and gas outburst risk associated with retreating longwall coal mining in heterogeneous coal seams. Mechanical, elastic and reservoir properties of a heterogeneous coal seam were attributed consistently for several realisations to analyse their influence on rock burst and gas outburst potential. Several scenarios were developed by varying the degree of lithological heterogeneity caused by xylite within a mostly detritic lignite coal seam in the modelled heterogeneous zone. Model results have shown that, as the longwall face approaches the heterogeneous zone, the changes in vertical stress along the face, as well as ahead of it, are affected strongly by the degree of heterogeneity. The potential for a rapid increase in gas emission rate and outburst risk, which may occur as the face cuts through the heterogeneous zone, was also found to depend largely on the degree of heterogeneity implemented.
Cao W, Shi J-Q, Durucan S, et al., 2019, Numerical modelling of anomalous microseismicity influenced by lithological heterogeneity in longwall top coal caving mining, International Journal of Coal Geology, Vol: 216, ISSN: 0166-5162
Mining-induced microseismicity has been extensively used to evaluate the potential for rock bursts and coal and gas outbursts in underground coal mines. In a research project completed a few years ago, it was observed that characteristics of microseismicity around a working longwall panel were fairly consistent over the monitoring period until a lithological heterogeneity zone with a relatively high coal strength was reached. The current research presented in this paper aims at achieving a better understanding of the effect of lithological heterogeneity on microseismic activity in longwall coal mining. The heterogeneous zone inferred from the tomography measurements was first digitalised and implemented into a 3D geomechanical model. A microseismicity modelling approach which combines deterministic stress and failure analysis together with a stochastic fracture slip evaluation was used to simulate the evolution of microseismicity induced by the progressive face advance passing through the heterogeneous zone. The heterogeneity was taken into account by varying the material strength and the fracture attributes of the elements within the high strength zone. Results have shown that both the high rock strength of coal lithotype and low power law scaling exponent of fractures within this zone contribute to the reduction in fitted b values from frequency-magnitude distribution of microseismicity and the increase in fitted Gaussian distribution parameters to the logarithmic event energy. These deviations are believed to result from the combined effects of increased stress drops and slipped fracture sizes when the heterogeneous zone is approached.
Shi JQ, Durucan S, Korre A, et al., 2019, History matching and pressure analysis with stress-dependent permeability using the In Salah CO2 storage case study, International Journal of Greenhouse Gas Control, Vol: 91, ISSN: 1750-5836
Using the In Salah CO2 storage case study, this study demonstrates how reservoir simulation history-matching and pressure analysis can be used to improve conformance assurance. By adopting a holistic approach to reservoir simulation and history matching, in conjunction with the injection pressure analysis and use of microseismic monitoring data, an improved understanding of the injection processes at the In Salah storage site was gained, revealing distinctively different responses to CO2 injection at each of the three injection wells. It has been shown that injection well performance at wells KB-501 and KB-503 was characterised by periods of matrix and fracture flow, the latter being due to shear reactivation of existing fractures in the vicinity of the wellbore. In contrast, the analysis at KB-502 revealed that CO2 injection has resulted in fracture reactivation in both shear and tensile modes with propagation both laterally and vertically.The findings of this study have shown that the injection-induced microseismic events recorded close to the KB-502 well is mainly caused by injecting CO2 into a 4-kilometer long fracture-zone intersecting the borehole. This fracture zone experienced tensile opening of fractures during injection and then subsequent partial closure after the injection was suspended. It is furthermore clear that the rather unique combination of microseismic and InSAR monitoring data and reservoir history matching around the injection well KB-502 provide highly valuable insights into injection-induced seismicity and fracture flow behaviour for CO2 storage projects. Episodes of flow in natural fractures can be separated from flow in induced fractures and the need for a dynamic, stress-dependent, permeability variable have been demonstrated.
Korre A, Durucan S, Nie Z, 2019, Life cycle environmental impact assessment of coupled underground coal gasification and CO2 capture and storage: alternative end uses for the UCG product gases, International Journal of Greehouse Gas Control, Vol: 91, Pages: 1-20, ISSN: 1750-5836
Underground coal gasification (UCG) has the potential to provide a source of energy or chemical feedstock derived from coal seams, where traditional mining methods are not suitable or are uneconomical. This paper presents the life cycle inventory models developed for the UCG processes and three alternative syngas utilisation options with and without CO2 capture and storage. The paper compares the life cycle carbon footprint of two different conventional above ground coal fired power generation options with UCG Integrated Gasification Combined Cycle power generation with/without CCS for two different lignites and one bituminous coal. One of the lignites is then used to compare the life cycle performance of different syngas utilisation options: power generation, ammonia production with power generation, and methanol production with power generation. It was found that the life cycle carbon footprint of conventional above ground coal fired power generation is very much dependent on the in-situ methane content of the coal used, and methane emissions experienced during mining and accompanying upstream processes, whereas the same for UCG-IGCC power depends more on the process dependent syngas composition. UCG methanol production with associated power and CCS is shown to release more life cycle CO2-eq emissions per tonne of lignite consumed than that of UCG ammonia production with associated power and CCS and UCG CCGT power generation with CCS. Furthermore, when chemicals production from UCG is considered as the main objective, the most substantial improvements in comparison to conventional methods are associated with UCG ammonia process per tonne of chemical produced.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.