Imperial College London

Professor Aimee S. Morgans

Faculty of EngineeringDepartment of Mechanical Engineering

Professor of Thermofluids
 
 
 
//

Contact

 

+44 (0)20 7594 9975a.morgans

 
 
//

Location

 

621City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Surendran:2019,
author = {Surendran, A and Boakes, C and Yang, D and Morgans, A},
title = {Thermoacoustic response of heat exchanger tubes in future aero-propulsion engines},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - © Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019. All rights reserved. Cylindrical heat exchanger tubes can act as active or passive acoustic elements that influence the thermoacoustic stability of combustion systems. They can act as both unsteady heat sinks and acoustic dampers. The present work is motivated by heat exchangers in future aero-propulsion engines. One significant difference to heat exchanger tubes in domestic boiler systems is that rather than being tightly spaced, their spacing is likely to be of the same order as their diameter. The heat transfer behaviour can change depending on the tube spacing. The contributions of this work are twofold. Firstly, to build acoustic scattering models for heat sinks and simple area jump conditions, and secondly, to include them in 1D network models to study the influence of the spatial positioning of these models within the network. Preliminary results indicate that there is significant variation in the thermoacoustic behaviour if one were to consider an approximated model with a heat sink followed by an area jump, as compared to the one where an area jump is followed by a heat sink
AU - Surendran,A
AU - Boakes,C
AU - Yang,D
AU - Morgans,A
PY - 2019///
TI - Thermoacoustic response of heat exchanger tubes in future aero-propulsion engines
ER -