Imperial College London

DrAntonioPantaleo

Faculty of EngineeringDepartment of Chemical Engineering

Research Fellow
 
 
 
//

Contact

 

a.pantaleo CV

 
 
//

Location

 

C410City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

117 results found

Aunedi M, Olympios AV, Pantaleo AM, Markides CN, Strbac Get al., 2023, System-driven design and integration of low-carbon domestic heating technologies, Renewable and Sustainable Energy Reviews, Vol: 187, ISSN: 1364-0321

This research explores various combinations of electric heat pumps (EHPs), hydrogen boilers (HBs), electric boilers (EBs), hydrogen absorption heat pumps (AHPs) and thermal energy storage (TES) to assess their potential for delivering cost-efficient low-carbon heat supply. The proposed technology-to-systems approach is based on comprehensive thermodynamic and component-costing models of various heating technologies, which are integrated into a whole-energy system optimisation model to determine cost-effective configurations of heating systems that minimise the overall cost for both the system and the end-user. Case studies presented in the study focus on two archetypal systems: (i) the North system, which is characterised by colder climate conditions and abundant wind resource; and (ii) the South system, which is characterised by a milder climate and higher solar energy potential. The results indicate a preference for a portfolio of low-carbon heating technologies including EHPs, EBs and HBs, coupled with a sizable amount of TES, while AHPs are not chosen, since, for the investigated conditions, their efficiency does not outweigh the high investment cost. Capacities of heat technologies are found to vary significantly depending on system properties such as the volume and diversity of heat demand and the availability profiles of renewable generation. The bulk of heat (83–97%) is delivered through EHPs, while the remainder is supplied by a mix of EBs and HBs. The results also suggest a strong impact of heat demand diversity on the cost-efficient mix of heating technologies, with higher diversity penalizing EHP relatively more than other, less capital-intensive heating options.

Journal article

Aunedi M, Al Kindi AA, Pantaleo AM, Markides CN, Strbac Get al., 2023, System-driven design of flexible nuclear power plant configurations with thermal energy storage, Energy Conversion and Management, Vol: 291, Pages: 1-14, ISSN: 0196-8904

Nuclear power plants are expected to make an important contribution to the decarbonisation of electricity supply alongside variable renewable generation, especially if their operational flexibility is enhanced by coupling them with thermal energy storage. This paper presents a system modelling approach to identifying configurations of flexible nuclear plants that minimise the investment and operation costs in a decarbonised energy system, effectively proposing a system-driven design of flexible nuclear technology. Case studies presented in the paper explore the impact of system features on plant configuration choices. The results suggest that cost-efficient flexible nuclear configurations should adapt to the system they are located in. In the main low-carbon scenarios and assuming standard-size nuclear power plants (1,610 MWel), the lowest-cost system configuration included around 500 MWel of additional secondary generation capacity coupled to the nuclear power plants, with 4.5 GWhth of thermal storage capacity and a discharging duration of 2.2 h. Net system benefits per unit of flexible nuclear generation for the main scenarios were quantified at £29-33 m/yr for a wind-dominated system and £19-20 m/yr for a solar-dominated system.

Journal article

Tafuni A, Giannotta A, Mersch M, Pantaleo AM, Amirante R, Markides CN, De Palma Pet al., 2023, Thermo-economic analysis of a low-cost greenhouse thermal solar plant with seasonal energy storage, Energy Conversion and Management, Vol: 288, Pages: 1-11, ISSN: 0196-8904

Reduction of greenhouse gas emissions is today mandatory to limit the increase of ambient temperature. This paper provides a numerical study of a thermal solar plant using a seasonal dual-media sensible heat thermal energy storage system for supplying the total energy demand of a greenhouse located in the South of Italy, avoiding the use of the gas boiler. The aim of the work is to assess the technical and economic performance of a low-cost pit storage system, made of gravel and water, placed under the greenhouse to save surface. The study provides an original analysis of the charging and discharging phases during one year of operation on the basis of the real hourly heating demand and on real weather data. A sensitivity analysis of the levelized cost of heat is carried on with respect to the solar-collector area and to the storage-pit volume. The analysis shows that a minimum-cost design solution exists to cover 100% of the heat demand with an estimated levelized cost of heat of 153.3 EUR/MWh. The results demonstrate that dual-media thermal energy storage systems with solar thermal collectors represent a viable solution for reducing the environmental impact of greenhouses.

Journal article

Lombardi P, Mattepu SY, Wasser H, Arendarski B, Richter M, Pantaleo A, Komarnicki Pet al., 2023, Net-Zero Energy Factories as Active Players in the Decarbonization Process. An Application for Blockchain

More than 32 % of small and medium enterprises in Europe generate electricity using solar resources. The operation of net-zero energy factories of such industrial prosumers can help system operators to integrate better into the grid. The application of blockchain technologies can help the industrial operator to generate extra revenue by providing flexibility services to system operators. This study analyses the role that facility systems can play if they are designed as net-zero energy factories and integrate blockchain-based technologies in their processes.

Conference paper

Arcasi A, Mastrullo R, Mauro AW, Pantaleo AMet al., 2022, State of the art of evapotranspiration models for plant cultivation in open fields, greenhouse systems and plant factories, ATI Annual Congress, Publisher: IOP Publishing, Pages: 1-8, ISSN: 1742-6588

The scarcity of water, the need to reduce of pesticides, the demand for on-site production of vegetables are moving the interest from greenhouse cultivation to indoor farming. Compared to greenhouses, indoor farms allow to reduce considerably the water consumption, requiring more energy, which could be provided by renewable sources. In order to assess the convenience of such a system, accurate preliminary calculations are needed for productivity, energy requirements and costs as a function of the type of cultivation and the operating conditions. While some knowledge (e.g. production rate or cooling system performance) are available from open literature, some specific predictive methods are required. Based on the few works available in literature about indoor farming, evapotranspiration rate resulted as a critical term. An assessment of different methods based on literature data with a critical analysis of their effectiveness based on several aspects (level of fidelity of the model, complexity in the calibration and use, potential strengths and weaknesses) is proposed in this work.

Conference paper

Al Kindi A, Sapin PAUL, Pantaleo A, Wang KAI, Markides Cet al., 2022, Thermo-economic analysis of steam accumulation and solid thermal energy storage in direct steam generation concentrated solar power plants, Energy Conversion and Management, Vol: 274, Pages: 1-27, ISSN: 0196-8904

In direct steam generation (DSG) concentrated solar power (CSP) plants, a common thermal energy storage (TES) option relies on steam accumulation. This conventional option is constrained by temperature and pressure limits, and delivers saturated or slightly superheated steam at reduced pressure during discharge, which is undesirable for part-load turbine operation. However, steam accumulation can be integrated with sensible-heat storage in concrete to provide higher-temperature superheated steam at higher pressure. In this paper, this conventional steam accumulation option (existing) and an integrated concrete-steam TES option (extended) are described and analysed, and their thermo-economic performance are compared taking the 50-MW Khi Solar One DSG CSP plant in South Africa as a case study. The results show that the extended option with five 10-m long, square cross-section concrete blocks, each with 3600 equally spaced tubes, provides an additional TES capacity of 177 MWh compared to the existing configuration as a result of utilising most of the available thermal power in the solar receivers. Moreover, the extended option delivers 58 % more electricity with a 13 % enhancement in thermalefficiency during TES discharging mode. With an estimated additional investment of $4.2M, the levelised costs of storage and electricity for Khi Solar One with the extended TES option are, respectively, 29 % and 6 % lower than those obtained with the existing TES option. With the extended TES option, the projected net present value of Khi Solar One increases by 73 %, from $41M to $71M, at an average electricity price of 280 $/MWh.

Journal article

El Nemr A, Hassaan MA, Elkatory MR, Ragab S, El-Nemr MA, Tedone L, De Mastro G, Pantaleo Aet al., 2022, Enhancement of biogas production from individually or co-digested green algae Cheatomorpha linum using ultrasound and ozonation treated biochar, Ultrasonics Sonochemistry, Vol: 90, ISSN: 1350-4177

This paper proposes the use of modified biochar, derived from Sawdust (SD) biomass using sonication (SSDB) and Ozonation (OSDB) processes, as an additive for biogas production from green algae Cheatomorpha linum (C. linum) either individually or co-digested with natural diet for rotifer culture (S. parkel). Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared (FTIR), thermal-gravimetric (TGA), and X-ray diffraction (XRD) analyses were used to characterize the generated biochar. Ultrasound (US) specific energy, dose, intensity and dissolved ozone (O3) concentration were also calculated. FTIR analyses proved the capability of US and ozonation treatment of biochar to enhance the biogas production process. The kinetic model proposed fits successfully with the data of the experimental work and the modified Gompertz models that had the maximum R2 value of 0.993 for 150 mg/L of OSDB. The results of this work confirmed the significant impact of US and ozonation processes on the use of biochar as an additive in biogas production. The highest biogas outputs 1059 mL/g VS and 1054 mL/g VS) were achieved when 50 mg of SSDB and 150 mg of OSDB were added to C. linum co-digested with S. parkle.

Journal article

El-Nemr MA, El Nemr A, Hassaan MA, Ragab S, Tedone L, De Mastro G, Pantaleo Aet al., 2022, Microporous Activated Carbon from Pisum sativum Pods Using Various Activation Methods and Tested for Adsorption of Acid Orange 7 Dye from Water, MOLECULES, Vol: 27

Journal article

Elkatory MR, Soliman EA, El Nemr A, Hassaan MA, Ragab S, El-Nemr MA, Pantaleo Aet al., 2022, Mitigation and Remediation Technologies of Waxy Crude Oils' Deposition within Transportation Pipelines: A Review, POLYMERS, Vol: 14

Journal article

Aunedi M, Yliruka M, Dehghan S, Pantaleo AM, Shah N, Strbac Get al., 2022, Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen, Renewable Energy, Vol: 194, Pages: 1261-1276, ISSN: 0960-1481

Delivering low-carbon heat will require the substitution of natural gas with low-carbon alternatives such as electricity and hydrogen. The objective of this paper is to develop a method to soft-link two advanced, investment-optimising energy system models, RTN (Resource-Technology Network) and WeSIM (Whole-electricity System Investment Model), in order to assess cost-efficient heat decarbonisation pathways for the UK while utilising the respective strengths of the two models. The linking procedure included passing on hourly electricity prices from WeSIM as input to RTN, and returning capacities and locations of hydrogen generation and shares of electricity and hydrogen in heat supply from RTN to WeSIM. The outputs demonstrate that soft-linking can improve the quality of the solution, while providing useful insights into the cost-efficient pathways for zero-carbon heating. Quantitative results point to the cost-effectiveness of using a mix of electricity and hydrogen technologies for delivering zero-carbon heat, also demonstrating a high level of interaction between electricity and hydrogen infrastructure in a zero-carbon system. Hydrogen from gas reforming with carbon capture and storage can play a significant role in the medium term, while remaining a cost-efficient option for supplying peak heat demand in the longer term, with the bulk of heat demand being supplied by electric heat pumps.

Journal article

Olympios AV, Aunedi M, Mersch M, Krishnaswamy A, Stollery C, Pantaleo AM, Sapin P, Strbac G, Markides CNet al., 2022, Delivering net-zero carbon heat: technoeconomic and whole-system comparisons of domestic electricity- and hydrogen-driven technologies in the UK, Energy Conversion and Management, Vol: 262, ISSN: 0196-8904

Proposed sustainable transition pathways for moving away from natural gas in domestic heating focus on two main energy vectors: electricity and hydrogen. Electrification would be implemented by using vapour-compression heat pumps, which are currently experiencing market growth in many countries. On the other hand, hydrogen could substitute natural gas in boilers or be used in thermally–driven absorption heat pumps. In this paper, a consistent thermodynamic and economic methodology is developed to assess the competitiveness of these options. The three technologies, along with the option of district heating, are for the first time compared for different weather/ambient conditions and fuel-price scenarios, first from a homeowner’s and then from a whole-energy system perspective. For the former, two-dimensional decision maps are generated to identify the most cost-effective technologies for different combinations of fuel prices. It is shown that, in the UK, hydrogen technologies are economically favourable if hydrogen is supplied to domestic end-users at a price below half of the electricity price. Otherwise, electrification and the use of conventional electric heat pumps will be preferred. From a whole-energy system perspective, the total system cost per household (which accounts for upstream generation and storage, as well as technology investment, installation and maintenance) associated with electric heat pumps varies between 790 and 880 £/year for different scenarios, making it the least-cost decarbonisation pathway. If hydrogen is produced by electrolysis, the total system cost associated with hydrogen technologies is notably higher, varying between 1410 and 1880 £/year. However, this total system cost drops to 1150 £/year with hydrogen produced cost-effectively by methane reforming and carbon capture and storage, thus reducing the gap between electricity- and hydrogen-driven technologies.

Journal article

Al Kindi A, Aunedi M, Pantaleo A, Strbac G, Markides Cet al., 2022, Thermo-economic assessment of flexible nuclear power plants in future low-carbon electricity systems: Role of thermal energy storage, Energy Conversion and Management, Vol: 258, ISSN: 0196-8904

The increasing penetration of intermittent renewable power will require additional flexibility from conventional plants, in order to follow the fluctuating renewable output while guaranteeing security of energy supply. In this context, coupling nuclear reactors with thermal energy storage could ensure a more continuous and efficient operation of nuclear power plants, while at other times allowing their operation to become more flexible and cost-effective. This study proposes options for upgrading a 1610-MWel nuclear power plant with the addition of a thermal energy storage system and secondary power generators. The total whole-system benefits of operating the proposed configuration are quantified for several scenarios in the context of the UK’s national electricity system using a whole-system model that minimises the total system costs. The proposed configuration allows the plant to generate up to 2130 MWel during peak load, representing an increase of 32% in nominal rated power. This 520 MWel of additional power is generated by secondary steam Rankine cycle systems (i.e., with optimised cycle thermal efficiencies of 24% and 30%) and by utilising thermal energy storage tanks with a total heat storage capacity of 1950 MWhth. Replacing conventional with flexible nuclear power plants is found to generate whole-system cost savings between £24.3m/yr and £88.9m/yr, with the highest benefit achieved when stored heat is fully discharged in 0.5 h. At an estimated cost of added flexibility of £42.7m/yr, the proposed flexibility upgrades to such nuclear power plants appears to be economically justified with net system benefits ranging from £4.0m/yr to £31.6m/yr for the examined low-carbon scenarios, provided that the number of flexible nuclear plants in the system is small. This suggests that the value of this technology is system dependent, and that system characteristics should be adequately considered when evaluating the benefits of diffe

Journal article

Bianco N, Mauro AW, Mauro GM, Pantaleo AM, Viscito Let al., 2022, A semi-empirical model for de-watering and cooling of leafy vegetables, APPLIED THERMAL ENGINEERING, Vol: 208, ISSN: 1359-4311

Journal article

Romanos P, Al Kindi A, Pantaleo AM, Markides CNet al., 2022, Flexible nuclear plants with thermal energy storage and secondary power cycles: Virtual power plant integration in a UK energy system case study, e-Prime - Advances in Electrical Engineering, Electronics and Energy, Vol: 2, Pages: 1-24, ISSN: 2772-6711

Electricity markets are fast changing because of the increasing penetration of intermittent renewable generation, leading to a growing need for the flexible operation of power plants to provide regulation services to the grid. Previous studies have suggested that conventional power plants (e.g., nuclear) may benefit from the integration of thermal energy storage (TES), as this enables greater flexibility. In conventional Rankine-cycle power plants, steam can be extracted during off-peak periods to charge TES tanks filled with phase-change materials (PCMs); at a later time, when this is required and/or economically favourable, these tanks can feed secondary thermal power plants to generate power, for example, by acting as evaporators of organic Rankine cycle (ORC) plants. This solution offers greater flexibility than TES-only solutions that store thermal energy and then release this back to the base power plant, as it allows both derating and over-generation. The solution is applied here to a specific case study of a 670 MW el nuclear power plant in the UK, which is a typical baseload power plant not intended for flexible operation. It is found a maximum combined power of 822 MW el can be delivered during peak demand, which is 23% higher than the base plant’s (nominal) rated power, and a maximum derating of 40%, i.e., down to 406 MW el during off-peak demand. An operational energy management strategy (EMS) is then proposed for optimising the charging of the TES tanks during off-peak demand periods and for controlling the discharging of the tanks for electricity generation during peak-demand periods. An economic analysis is performed to evaluate the potential benefits of this EMS. Profitability in the case study considered here can result when the average peak and off-peak electricity price variations are at least double those that occurred in the UK market in 2019 (with recent data now close to this), and when TES charge/discharge cycles are performed more than

Journal article

Al Kindi A, Aunedi M, Pantaleo A, Strbac G, Markides Cet al., 2021, Thermo-economic assessment of flexible nuclear power plants in the UK’s future low-carbon electricity system: role of thermal energy storage, 16th Conference on Sustainable Development of Energy, Water and Environment Systems, Publisher: SDEWES

Nuclear power plants are commonly operated as baseload units due to their low variable costs, high investment costs and limited ability to modulate their output. The increasing penetration of intermittent renewable power will require additional flexibility from conventional generation units, in order to follow the fluctuating renewable output while guaranteeing security of energy supply. In this context, coupling nuclear reactors with thermal energy storage could ensure a more continuous and efficient operation of nuclear power plants, while at other times allowing their operation to become more flexible and cost-effective. This study considers options for upgrading a 1610-MWel nuclear power plant with the addition of a thermal energy storage system and secondary power generators. The analysed configuration allows the plant to generate up to 2130 MWel during peak load, representing an increase of 32% in nominal rated power. The gross whole-system benefits of operating the proposed configuration are quantified over several scenarios for the UK’s low-carbon electricity system. Replacing conventional with flexible nuclear plant configuration is found to generate system cost savings that are between £24.3m/yr and £88.9m/yr, with the highest benefit achieved when stored heat is fully discharged in 0.5 hours (the default case is 1 hour). At an estimated cost of added flexibility of £42.7m/yr, the proposed flexibility upgrade to a nuclear power plant appears to be economically justified for a wide range of low-carbon scenarios, provided that the number of flexible nuclear units in the system is small.

Conference paper

Richter M, Lombardi P, Arendarski B, Naumann A, Hoepfner A, Komarnicki P, Pantaleo Aet al., 2021, A Vision for Energy Decarbonization: Planning Sustainable Tertiary Sites as Net-Zero Energy Systems, ENERGIES, Vol: 14

Journal article

Hassaan MA, El Nemr A, Elkatory MR, Ragab S, El-Nemr MA, Pantaleo Aet al., 2021, Synthesis, characterization, and synergistic effects of modified biochar in combination with alpha-Fe2O3 NPs on biogas production from red algae pterocladia capillacea, Sustainability, Vol: 13, Pages: 1-22, ISSN: 2071-1050

This study is the first work that evaluated the effectiveness of unmodified (SD) and modified biochar with ammonium hydroxide (SD-NH2) derived from sawdust waste biomass as an additive for biogas production from red algae Pterocladia capillacea either individually or in combination with hematite α-Fe2O3 NPs. Brunauer, Emmett, and Teller, Fourier transform infrared, thermal gravimetric analysis, X-ray diffraction, transmission electron microscopy, Raman, and a particle size analyzer were used to characterize the generated biochars and the synthesized α-Fe2O3. Fourier transform infrared (FTIR) measurements confirmed the formation of amino groups on the modified biochar surface. The kinetic research demonstrated that both the modified Gompertz and logistic function models fit the experimental data satisfactorily except for 150 SD-NH2 alone or in combination with α-Fe2O3 at a concentration of 10 mg/L. The data suggested that adding unmodified biochar at doses of 50 and 100 mg significantly increased biogas yield compared to untreated algae. The maximum biogas generation (219 mL/g VS) was obtained when 100 mg of unmodified biochar was mixed with 10 mg of α-Fe2O3 in the inoculum.

Journal article

El Nemr A, Hassaan MA, Elkatory MR, Ragab S, Pantaleo Aet al., 2021, Efficiency of Fe3O4 Nanoparticles with Different Pretreatments for Enhancing Biogas Yield of Macroalgae Ulva intestinalis Linnaeus, MOLECULES, Vol: 26

Journal article

Olympios A, Krishnaswamy A, Stollery C, Mersch M, Pantaleo A, Sapin P, Markides Cet al., 2021, Techno-economic comparison of hydrogen- and electricity-driven technologies for the decarbonisation of domestic heating, 16th Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES 2021)

Sustainable transition pathways currently being proposed for moving away from the use of natural gas and oil in domestic heating focus on two main energy vectors: electricity and hydrogen. The former transition would most likely be implemented using electric vapour-compression heat pumps, which are currently experiencing market growth in many industrialised countries. Electric heat pumps have proven to be an efficient alternative to gas boilers under certain conditions, but their techno-economic potential is highly dependent on the local climate conditions. Hydrogen-based heating systems, which could potentially utilise existing natural gas infrastructure, are being proposed as providing an attractive opportunity to maximise the use of existing assets to facilitate the energy-system transition. In this case, hydrogen can substitute natural gas in boilers or in thermally driven absorption heat pumps. Both heating system transition pathways may involve either installing new technologies at the household level or producing heat in centralised hubs and distributing it via district-heating systems. Although the potential of hydrogen in the context of heating decarbonisation has been explored in the past, a comprehensive comparison of electricity- and hydrogen-driven domestic heating options is lacking in literature. In this paper, a thermodynamic and economic methodology is developed to assess the competitiveness of a domestic-scale ammonia-water absorption heat pump driven by heat from a hydrogen boiler compared to a standalone hydrogen boiler, a classic vapour-compression heat pump and district heating, all from a homeowner’s perspective. Using a previously developed electric heat pump model, the different systems are compared for various climate conditions and fuel-price scenarios under a unified framework. The coefficient of performance of the absorption heat pump system under design conditions and the total system cost are found to be 1.4 and £5400, resp

Conference paper

Todaro L, Liuzzi S, Pantaleo AM, Lo Giudice V, Moretti N, Stefanizzi Pet al., 2021, Thermo-modified native black poplar (Populus nigra L.) wood as an insulation material, IFOREST-BIOGEOSCIENCES AND FORESTRY, Vol: 14, Pages: 268-273, ISSN: 1971-7458

Journal article

Palmitessa OD, Pantaleo MA, Santamaria P, 2021, Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes, AGRONOMY-BASEL, Vol: 11

Journal article

Fermo P, Artinano B, De Gennaro G, Pantaleo AM, Parente A, Battaglia F, Colicino E, Di Tanna G, da Silva Junior AG, Pereira IG, Garcia GS, Goncalves LMG, Comite V, Miani Aet al., 2021, Improving indoor air quality through an air purifier able to reduce aerosol particulate matter (PM) and volatile organic compounds (VOCs): Experimental results, ENVIRONMENTAL RESEARCH, Vol: 197, ISSN: 0013-9351

Journal article

Hassaan MA, El Nemr A, Elkatory MR, Eleryan A, Ragab S, El Sikaily A, Pantaleo Aet al., 2021, Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment, ENERGIES, Vol: 14

Journal article

Calise F, Cappiello FL, Vicidomini M, Song J, Pantaleo AM, Abdelhady S, Shaban A, Markides CNet al., 2021, Energy and economic assessment of energy efficiency options for energy districts: case studies in Italy and Egypt, Energies, Vol: 14, Pages: 1-24, ISSN: 1996-1073

In this research, a technoeconomic comparison of energy efficiency options for energy districts located in different climatic areas (Naples, Italy and Fayoum, Egypt) is presented. A dynamic simulation model based on TRNSYS is developed to evaluate the different energy efficiency options, which includes different buildings of conceived districts. The TRNSYS model is integrated with the plug-in Google SketchUp TRNSYS3d to estimate the thermal load of the buildings and the temporal variation. The model considers the unsteady state energy balance and includes all the features of the building’s envelope. For the considered climatic zones and for the different energy efficiency measures, primary energy savings, pay back periods and reduced CO2 emissions are evaluated. The proposed energy efficiency options include a district heating system for hot water supply, air-to-air conventional heat pumps for both cooling and space heating of the buildings and the integration of photovoltaic and solar thermal systems. The energy actions are compared to baseline scenarios, where the hot water and space heating demand is satisfied by conventional natural gas boilers, the cooling demand is met by conventional air-to-air vapor compression heat pumps and the electric energy demand is satisfied by the power grid. The simulation results provide valuable guidance for selecting the optimal designs and system configurations, as well as suggest guidelines to policymakers to define decarbonization targets in different scenarios. The scenario of Fayoum offers a savings of 67% in primary energy, but the associated payback period extends to 23 years due to the lower cost of energy in comparison to Naples.

Journal article

Aunedi M, Pantaleo AM, Kuriyan K, Strbac G, Shah Net al., 2020, Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems, Applied Energy, Vol: 276, Pages: 1-18, ISSN: 0306-2619

Decarbonisation of the heating and cooling sector is critical for achieving long-term energy and climate change objectives. Closer integration between heating/cooling and electricity systems can provide additional flexibility required to support the integration of variable renewables and other low-carbon energy sources. This paper proposes a framework for identifying cost-efficient solutions for supplying district heating systems within both operation and investment timescales, while considering local and national-level interactions between heat and electricity infrastructures. The proposed optimisation model minimises the levelised cost of a portfolio of heating technologies, and in particular Combined Heat and Power (CHP) and polygeneration systems, centralised heat pumps (HPs), centralised boilers and thermal energy storage (TES). A number of illustrative case studies are presented, quantifying the impact of renewable penetration, electricity price volatility, local grid constraints and local emission targets on optimal planning and operation of heat production assets. The sensitivity analysis demonstrates that the cost-optimal TES capacity could increase by 41–134% in order to manage a constraint in the local electricity grid, while in systems with higher RES penetration reflected in higher electricity price volatility it may be optimal to increase the TES capacity by 50–66% compared to constant prices, allowing centralised electric HP technologies to divert excess electricity produced by intermittent renewable generators to the heating sector. This confirms the importance of reflecting the whole-system value of heating technologies in the underlying cost-benefit analysis of heat networks.

Journal article

Hassaan MA, Pantaleo A, Santoro F, Elkatory MR, De Mastro G, El Sikaily A, Ragab S, El Nemr Aet al., 2020, Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw, ENERGIES, Vol: 13

Journal article

Wang K, Pantaleo AM, Herrando M, Faccia M, Pesmazoglou I, Franchetti BM, Markides CNet al., 2020, Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms, Renewable Energy, Vol: 159, Pages: 1047-1065, ISSN: 0960-1481

Dairy farming is one of the most energy- and emission-intensive industrial sectors, and offers noteworthy opportunities for displacing conventional fossil-fuel consumption both in terms of cost saving and decarbonisation. In this paper, a solar-combined heat and power (S–CHP) system is proposed for dairy-farm applications based on spectral-splitting parabolic-trough hybrid photovoltaic-thermal (PVT) collectors, which is capable of providing simultaneous electricity, steam and hot water for processing milk products. A transient numerical model is developed and validated against experimental data to predict the dynamic thermal and electrical characteristics and to assess the thermoeconomic performance of the S–CHP system. A dairy farm in Bari (Italy), with annual thermal and electrical demands of 6000 MWh and 3500 MWh respectively, is considered as a case study for assessing the energetic and economic potential of the proposed S–CHP system. Hourly simulations are performed over a year using real-time local weather and measured demand-data inputs. The results show that the optical characteristic of the spectrum splitter has a significant influence on the system’s thermoeconomic performance. This is therefore optimised to reflect the solar region between 550 nm and 1000 nm to PV cells for electricity generation and (low-temperature) hot-water production, while directing the rest to solar receivers for (higher-temperature) steam generation. Based on a 10000-m2 installed area, it is found that 52% of the demand for steam generation and 40% of the hot water demand can be satisfied by the PVT S–CHP system, along with a net electrical output amounting to 14% of the farm’s demand. Economic analyses show that the proposed system is economically viable if the investment cost of the spectrum splitter is lower than 75% of the cost of the parabolic trough concentrator (i.e., <1950 €/m2 spectrum splitter) in this application. The influenc

Journal article

Cremi MR, Pantaleo AM, van Dam KH, Shah Net al., 2020, Optimal design and operation of an urban energy system applied to the Fiera Del Levante exhibition centre, Applied Energy, Vol: 275, Pages: 1-22, ISSN: 0306-2619

To move from centralised fossil fuel-based energy systems, synergies between distributed renewable generation, storage and demand-side strategies can be exploited to lower environmental impact and costs. This paper proposes an optimisation model for the techno-economic assessment of energy management strategies with a short-term investment horizon aimed at business managers and decision-makers in the commercial sector. The main novelty is the selection of a combination of on-site technologies and peak shaving strategies to minimise energy costs under time-of-use electricity tariffs, and the adaptation of a general methodology for a specific socio-technical context under seasonal loads. The “Fiera del Levante” exhibition centre in the city of Bari is selected due to the high seasonality of its electricity demand. The optimal solution uses a combined system with photovoltaics, diesel-fired and gas-fired combined-heat-and-power, including part-load operation and electric storage. The cost minimisation scenario reports up to 20% cost savings and 35% carbon emission savings with a 1MWp photovoltaic plant, compared to the baseline. This presents a five-year return on investment of 75%, and levelized cost of energy of €0.14 kWh−1. When coupled with a lithium-ion battery, solar energy brings up to 60% carbon emission savings through load shifting strategies, though this reduces the five-year return on investment by 9%. This hybrid setup is not financially competitive in the Italian retail market, but a hypothetical 25% rise of the grid import prices would make it economically viable. The proposed model is flexible and can be adapted to commercial end-users, providing decision-support in urban energy systems under local conditions.

Journal article

Olympios AV, Pantaleo AM, Sapin P, Markides CNet al., 2020, On the value of combined heat and power (CHP) systems and heat pumps in centralised and distributed heating systems: Lessons from multi-fidelity modelling approaches, Applied Energy, Vol: 274, Pages: 1-19, ISSN: 0306-2619

This paper presents a multi-scale framework for the design and comparison of centralised and distributed heat generation solutions. An extensive analysis of commercially available products on the UK market is conducted to gather information on the performance and cost of a range of gas-fired combined heat and power (CHP) systems, air-source heat pumps (ASHPs) and ground-source heat pumps (GSHPs). Data-driven models with associated uncertainty bounds are derived from the collected data, which capture cost and performance variations with scale (i.e., size and rating) and operating conditions. In addition, a comprehensive thermoeconomic (thermodynamic and component-costing) heat pump model, validated against manufacturer data, is developed to capture design-related performance and cost variations, thus reducing technology-related model uncertainties. The novelty of this paper lies in the use of multi-fidelity approaches for the comparison of the economic and environmental potential of important heat-generation solutions: (i) centralised gas-fired CHP systems associated with district heating network; (ii) gas-fired CHP systems or GSHPs providing heat to differentiated energy communities; and (iii) small-scale micro-CHP systems, ASHPs or GSHPs, installed at the household level. The pathways are evaluated for the case of the Isle of Dogs district in London, UK. A centralised CHP system appears as the most profitable option, achieving annual savings of £13 M compared to the use of decentralised boilers and a levelised cost of heat equal to 31 £/MWhth. However, if the carbon intensity of the electrical grid continues to reduce at current rates, CHP systems will only provide minimal carbon savings compared to boilers (<6%), with heat pumps achieving significant heat decarbonisation (55–62%). Differentiating between high- and low-performance and cost heat pump designs shows that the former, although 25% more expensive, have significantly lower annualised

Journal article

Sokolnikova P, Lombardi P, Arendarski B, Suslov K, Pantaleo AM, Kranhold M, Komarnicki Pet al., 2020, Net-zero multi-energy systems for Siberian rural communities: A methodology to size thermal and electric storage units, RENEWABLE ENERGY, Vol: 155, Pages: 979-989, ISSN: 0960-1481

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00498518&limit=30&person=true