Imperial College London

Dr Alice Pollard

Faculty of MedicineInstitute of Clinical Sciences

Research Associate







Sir Alexander Fleming BuildingSouth Kensington Campus





Publication Type

5 results found

Carling D, Bevan C, Leach D, Fets L, Woods A, Pollard A, Whilding C, Penfold L, Navarro-Pascual E, Muckett P, Montoya A, Mokochinski J, Constantin T, Hall Z, Dore M, Nikitin Yet al., 2023, AMPK activation protects against prostate cancer by inducing a catabolic cellular state, Cell Reports, Vol: 42, Pages: 1-21, ISSN: 2211-1247

Emerging evidence indicates that metabolic dysregulation drives prostate cancer (PCa) progression and metastasis. AMP-activated protein kinase (AMPK) is a master regulator of metabolism, although its role in PCa remains unclear. Here, we show that genetic and pharmacological activation of AMPK provides a protective effect on PCa progression in vivo. We show that AMPK activation induces PGC1α expression, leading to catabolic metabolic reprogramming of PCa cells. This catabolic state is characterized by increased mitochondrial gene expression, increased fatty acid oxidation, decreased lipogenic potential, decreased cell proliferation, and decreased cell invasiveness. Together, these changes inhibit PCa disease progression. Additionally, we identify a gene network involved in cell cycle regulation that is inhibited by AMPK activation. Strikingly, we show a correlation between this gene network and PGC1α gene expression in human PCa. Taken together, our findings support the use of AMPK activators for clinical treatment of PCa to improve patient outcome.

Journal article

Nguyen-Tu M-S, Harris J, Martinez-Sanchez A, Chabosseau P, Hu M, Georgiadou E, Pollard A, Otero P, Lopez-Noriega L, Leclerc I, Sakamoto K, Schmoll D, Smith DM, Carling D, Rutter GAet al., 2022, Opposing effects on regulated insulin secretion of acute vs chronic stimulation of AMP-activated protein kinase, DIABETOLOGIA, Vol: 65, Pages: 997-1011, ISSN: 0012-186X

Journal article

Wilson L, Pollard AE, Penfold L, Muckett PJ, Whilding C, Bohlooly-Y M, Wilson P, Carling Det al., 2021, Chronic activation of AMP-activated protein kinase leads to early-onset polycystic kidney phenotype, CLINICAL SCIENCE, Vol: 135, Pages: 2393-2408, ISSN: 0143-5221

Journal article

Pollard AE, Martins L, Muckett PJ, Khadayate S, Bornot A, Clausen M, Admyre T, Bjursell M, Fiadeiro R, Wilson L, Whilding C, Kotiadis VN, Duchen MR, Sutton D, Penfold L, Sardini A, Bohlooly-Y M, Smith DM, Read JA, Snowden MA, Woods A, Carling Det al., 2019, AMPK activation protects against diet induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue, Nature Metabolism, Vol: 1, Pages: 340-349, ISSN: 2522-5812

Obesity results from a chronic imbalance between energy intake and energy output but remains difficult to prevent or treat in humans. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an important regulator of energy homeostasis1,2,3 and is a molecular target of drugs used for the treatment of metabolic diseases, including obesity4,5. Here we show that mice expressing a gain-of-function AMPK mutant6 display a change in morphology of subcutaneous white adipocytes that is reminiscent of browning. However, despite a dramatic increase in mitochondrial content, Ucp1 expression is undetectable in these adipocytes. In response to a high-fat diet (HFD), expression of skeletal muscle–associated genes is induced in subcutaneous white adipocytes from the gain-of-function AMPK mutant mice. Chronic genetic AMPK activation results in protection against diet-induced obesity due to an increase in whole-body energy expenditure, most probably because of a substantial increase in the oxygen consumption rate of white adipose tissue. These results suggest that AMPK activation enriches, or leads to the emergence of, a population of subcutaneous white adipocytes that produce heat via Ucp1-independent uncoupling of adenosine triphosphate (ATP) production on a HFD. Our findings indicate that AMPK activation specifically in adipose tissue may have therapeutic potential for the treatment of obesity.

Journal article

Penfold L, Woods A, Muckett P, Nikitin A, Kent T, Zhang S, Graham R, Pollard A, Carling Det al., 2018, CAMKK2 promotes prostate cancer independently of AMPK via increased lipogenesis, Cancer Research, Vol: 78, Pages: 6747-6761, ISSN: 1538-7445

New targets are required for treating prostate cancer, particularly castrate-resistant disease. Previous studies reported that calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) expression is increased in human prostate cancer. Here, we show that Camkk2 deletion or pharmacologic inhibition protects against prostate cancer development in a preclinical mouse model that lacks expression of prostate-specific Pten. In contrast, deletion of AMP-activated protein kinase (Ampk) β1 resulted in earlier onset of adenocarcinoma development. These findings suggest for the first time that Camkk2 and Ampk have opposing effects in prostate cancer progression. Loss of CAMKK2 in vivo or in human prostate cancer cells reduced the expression of two key lipogenic enzymes, acetyl-CoA carboxylase and fatty acid synthase. This reduction was mediated via a posttranscriptional mechanism, potentially involving a decrease in protein translation. Moreover, either deletion of CAMKK2 or activation of AMPK reduced cell growth in human prostate cancer cells by inhibiting de novo lipogenesis. Activation of AMPK in a panel of human prostate cancer cells inhibited cell proliferation, migration, and invasion as well as androgen-receptor signaling. These findings demonstrate that CAMKK2 and AMPK have opposing effects on lipogenesis, providing a potential mechanism for their contrasting effects on prostate cancer progression in vivo. They also suggest that inhibition of CAMKK2 combined with activation of AMPK would offer an efficacious therapeutic strategy in treatment of prostate cancer.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00918072&limit=30&person=true