Imperial College London

Professor Andy Purvis

Faculty of Natural SciencesDepartment of Life Sciences (Silwood Park)

Research Investigator
 
 
 
//

Contact

 

+44 (0)20 7942 5686a.purvis Website

 
 
//

Location

 

Silwood ParkSilwood Park

//

Summary

 

Publications

Publication Type
Year
to

243 results found

Gonzalez A, Vihervaara P, Balvanera P, Bates AE, Bayraktarov E, Bellingham PJ, Bruder A, Campbell J, Catchen MD, Cavender-Bares J, Chase J, Coops N, Costello MJ, Czúcz B, Delavaud A, Dornelas M, Dubois G, Duffy EJ, Eggermont H, Fernandez M, Fernandez N, Ferrier S, Geller GN, Gill M, Gravel D, Guerra CA, Guralnick R, Harfoot M, Hirsch T, Hoban S, Hughes AC, Hugo W, Hunter ME, Isbell F, Jetz W, Juergens N, Kissling WD, Krug CB, Kullberg P, Le Bras Y, Leung B, Londoño-Murcia MC, Lord J-M, Loreau M, Luers A, Ma K, MacDonald AJ, Maes J, McGeoch M, Mihoub JB, Millette KL, Molnar Z, Montes E, Mori AS, Muller-Karger FE, Muraoka H, Nakaoka M, Navarro L, Newbold T, Niamir A, Obura D, O'Connor M, Paganini M, Pelletier D, Pereira H, Poisot T, Pollock LJ, Purvis A, Radulovici A, Rocchini D, Roeoesli C, Schaepman M, Schaepman-Strub G, Schmeller DS, Schmiedel U, Schneider FD, Shakya MM, Skidmore A, Skowno AL, Takeuchi Y, Tuanmu M-N, Turak E, Turner W, Urban MC, Urbina-Cardona N, Valbuena R, Van de Putte A, van Havre B, Wingate VR, Wright E, Torrelio CZet al., 2023, Author Correction: A global biodiversity observing system to unite monitoring and guide action., Nat Ecol Evol, Vol: 7

Journal article

Burton VJ, Baselga A, De Palma A, Phillips HRP, Mulder C, Eggleton P, Purvis Aet al., 2023, Effects of land use and soil properties on taxon richness and abundance of soil assemblages, European Journal of Soil Science, Vol: 74, ISSN: 1351-0754

Land-use change and habitat degradation are among the biggest drivers of aboveground biodiversity worldwide but their effects on soil biodiversity are less well known, despite the importance of soil organisms in developing soil structure, nutrient cycling and water drainage. Combining a global compilation of biodiversity data from soil assemblages collated as part of the PREDICTS project with global data on soil characteristics, we modelled how taxon richness and total abundance of soil organisms have responded to land use. We also estimated the global Biodiversity Intactness Index (BII)—the average abundance and compositional similarity of taxa that remain in an area, compared to a minimally impacted baseline, for soil biodiversity. This is the first time the BII has been calculated for soil biodiversity. Relative to undisturbed vegetation, soil organism total abundance and taxon richness were reduced in all land uses except pasture. Soil properties mediated the response of soil biota, but not in a consistent way across land uses. The global soil BII in cropland is, on average, a third of that originally present. However, in grazed sites the decline is less severe. The BII of secondary vegetation depends on age, with sites with younger growth showing a lower BII than mature vegetation. We conclude that land-use change has reduced local soil biodiversity worldwide, and this further supports the proposition that soil biota should be considered explicitly when using global models to estimate the state of biodiversity.

Journal article

Gonzalez A, Vihervaara P, Balvanera P, Bates AE, Bayraktarov E, Bellingham PJ, Bruder A, Campbell J, Catchen MD, Cavender-Bares J, Chase J, Coops N, Costello MJ, Dornelas M, Dubois G, Duffy EJ, Eggermont H, Fernandez N, Ferrier S, Geller GN, Gill M, Gravel D, Guerra CA, Guralnick R, Harfoot M, Hirsch T, Hoban S, Hughes AC, Hunter ME, Isbell F, Jetz W, Juergens N, Kissling WD, Krug CB, Le Bras Y, Leung B, Londono-Murcia MC, Lord J-M, Loreau M, Luers A, Ma K, Macdonald AJ, Mcgeoch M, Millette KL, Molnar Z, Mori AS, Muller-Karger FE, Muraoka H, Navarro L, Newbold T, Niamir A, Obura D, O'Connor M, Paganini M, Pereira H, Poisot T, Pollock LJ, Purvis A, Radulovici A, Rocchini D, Schaepman M, Schaepman-Strub G, Schmeller DS, Schmiedel U, Schneider FD, Shakya MM, Skidmore A, Skowno AL, Takeuchi Y, Tuanmu M-N, Turak E, Turner W, Urban MC, Urbina-Cardona N, Valbuena R, van Havre B, Wright Eet al., 2023, A global biodiversity observing system to unite monitoring and guide action, NATURE ECOLOGY & EVOLUTION, ISSN: 2397-334X

Journal article

Cornford R, Spooner F, McRae L, Purvis A, Freeman Ret al., 2023, Ongoing over-exploitation and delayed responses to environmental change highlight the urgency for action to promote vertebrate recoveries by 2030, PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, Vol: 290, ISSN: 0962-8452

Journal article

Liu D, Semenchuk P, Essl F, Lenzner B, Moser D, Blackburn TM, Cassey P, Biancolini D, Capinha C, Dawson W, Dyer EE, Guenard B, Economo EP, Kreft H, Pergl J, Pysek P, van Kleunen M, Nentwig W, Rondinini C, Seebens H, Weigelt P, Winter M, Purvis A, Dullinger Set al., 2023, The impact of land use on non-native species incidence and number in local assemblages worldwide, NATURE COMMUNICATIONS, Vol: 14

Journal article

Valdez JWW, Callaghan CTT, Junker J, Purvis A, Hill SLL, Pereira HMMet al., 2023, The undetectability of global biodiversity trends using local species richness, ECOGRAPHY, Vol: 2023, ISSN: 0906-7590

Journal article

Isbell F, Balvanera P, Mori AS, He J-S, Bullock JM, Regmi GR, Seabloom EW, Ferrier S, Sala OE, Guerrero-Ramirez NR, Tavella J, Larkin DJ, Schmid B, Outhwaite CL, Pramual P, Borer ET, Loreau M, Omotoriogun TC, Obura DO, Anderson M, Portales-Reyes C, Kirkman K, Vergara PM, Clark AT, Komatsu KJ, Petchey OL, Weiskopf SR, Williams LJ, Collins SL, Eisenhauer N, Trisos CH, Renard D, Wright AJ, Tripathi P, Cowles J, Byrnes JEK, Reich PB, Purvis A, Sharip Z, O'Connor M, Kazanski CE, Haddad NM, Soto EH, Dee LE, Diaz S, Zirbel CR, Avolio ML, Wang S, Ma Z, Liang J, Farah HC, Johnson JA, Miller BW, Hautier Y, Smith MD, Knops JMH, Myers BJE, Harmackova Z, Cortes J, Harfoot MBJ, Gonzalez A, Newbold T, Oehri J, Mazon M, Dobbs C, Palmer MSet al., 2023, Expert perspectives on global biodiversity loss and its drivers and impacts on people, FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, Vol: 21, Pages: 94-103, ISSN: 1540-9295

Journal article

Burton VJ, Contu S, De Palma A, Hill SLL, Albrecht H, Bone JS, Carpenter D, Corstanje R, De Smedt P, Farrell M, Ford HV, Hudson LN, Inward K, Jones DT, Kosewska A, Lo-Man-Hung NF, Magura T, Mulder C, Murvanidze M, Newbold T, Smith J, Suarez AV, Suryometaram S, Tóthmérész B, Uehara-Prado M, Vanbergen AJ, Verheyen K, Wuyts K, Scharlemann JPW, Eggleton P, Purvis Aet al., 2022, Land use and soil characteristics affect soil organisms differently from above-ground assemblages, BMC Ecology and Evolution, Vol: 22, ISSN: 2730-7182

Background:Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties.Results:We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use.Conclusions:Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models.

Journal article

Jaureguiberry P, Titeux N, Wiemers M, Bowler DE, Coscieme L, Golden AS, Guerra CA, Jacob U, Takahashi Y, Settele J, Diaz S, Molnar Z, Purvis Aet al., 2022, The direct drivers of recent global anthropogenic biodiversity loss, SCIENCE ADVANCES, Vol: 8, ISSN: 2375-2548

Journal article

Sanchez AC, Jones SK, Purvis A, Estrada-Carmona N, De Palma Aet al., 2022, Landscape complexity and functional groups moderate the effect of diversified farming on biodiversity: A global meta-analysis, AGRICULTURE ECOSYSTEMS & ENVIRONMENT, Vol: 332, ISSN: 0167-8809

Journal article

Chaplin-Kramer R, Brauman KA, Cavender-Bares J, Diaz S, Duarte GT, Enquist BJ, Garibaldi LA, Geldmann J, Halpern BS, Hertel TW, Khoury CK, Krieger JM, Lavorel S, Mueller T, Neugarten RA, Pinto-Ledezma J, Polasky S, Purvis A, Reyes-Garcia V, Roehrdanz PR, Shannon LJ, Shaw MR, Strassburg BBN, Tylianakis JM, Verburg PH, Visconti P, Zafra-Calvo Net al., 2022, Conservation needs to integrate knowledge across scales, NATURE ECOLOGY & EVOLUTION, Vol: 6, Pages: 118-119, ISSN: 2397-334X

Journal article

De Palma A, Hoskins A, Gonzalez RE, Borger L, Newbold T, Sanchez-Ortiz K, Ferrier S, Purvis Aet al., 2021, Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001-2012, SCIENTIFIC REPORTS, Vol: 11, ISSN: 2045-2322

Journal article

Tudge SJ, Purvis A, De Palma A, 2021, The impacts of biofuel crops on local biodiversity: a global synthesis, BIODIVERSITY AND CONSERVATION, Vol: 30, Pages: 2863-2883, ISSN: 0960-3115

Journal article

Cornford R, Deinet S, De Palma A, Hill SLL, McRae L, Pettit B, Marconi V, Purvis A, Freeman Ret al., 2021, Fast, scalable, and automated identification of articles for biodiversity and macroecological datasets, GLOBAL ECOLOGY AND BIOGEOGRAPHY, Vol: 30, Pages: 339-347, ISSN: 1466-822X

Journal article

Tudge SJ, Purvis A, De Palma A, 2020, The impacts of biofuel crops on local biodiversity: a global synthesis

<jats:title>Abstract</jats:title><jats:p>Concerns about the environmental impacts of climate change have led to increased targets for biofuel in the global energy market. First-generation biofuel crops contain oil, sugar or starch and are usually also grown for food, whereas second-generation biofuel is derived from non-food sources, including lignocellulosic crops, fast-growing trees, crop residues and waste. Increasing biofuel production drives land-use change, a major cause of biodiversity loss, but there is limited knowledge of how different first- and second-generation biofuel crops affect local biodiversity. A more detailed understanding could support better decisions about the net environmental impacts of biofuels. We synthesised data from 116 sources where a potential biofuel crop was grown and estimated how two measures of local biodiversity, species richness and total abundance, responded to different crops. Local species richness and abundance were 37% and 49% lower at sites planted with first-generation biofuel crops than in sites with primary vegetation. Soybean, wheat, maize and oil palm had the worst effects; the worst affected regions were Asia and Central and South America; and plant species richness and vertebrate abundance were the worst affected biodiversity measures. Second-generation biofuels had significantly smaller effects: species richness and abundance were 19% and 25%, respectively, lower in such sites than in primary vegetation. Our models suggest that land clearance to generate biofuel results in negative impacts on local biodiversity. However, the geographic and taxonomic variation in effects, and the variation in yields among different crops, are all relevant for making the most sustainable land-use decisions.</jats:p>

Journal article

Sanchez-Ortiz K, Taylor KJM, De Palma A, Essl F, Dawson W, Kreft H, Pergl J, Pysek P, van Kleunen M, Weigelt P, Purvis Aet al., 2020, Effects of land-use change and related pressures on alien and native subsets of island communities, PLOS ONE, Vol: 15, ISSN: 1932-6203

Journal article

Bayley DT, Purvis A, Nellas AC, Arias M, Koldewey HJet al., 2020, Measuring the long-term success of small-scale marine protected areas in a Philippine reef fishery, CORAL REEFS, Vol: 39, Pages: 1591-1604, ISSN: 0722-4028

Journal article

Purvis A, Jones KE, 2020, Georgina Mace (1953-2020) Pioneering conservation biologist and sustainability scientist, SCIENCE, Vol: 370, Pages: 915-915, ISSN: 0036-8075

Journal article

Echeverria-Londono S, Sarkinen T, Fenton IS, Purvis A, Knapp Set al., 2020, Dynamism and context-dependency in diversification of the megadiverse plant genus<i>Solanum</i>(Solanaceae), JOURNAL OF SYSTEMATICS AND EVOLUTION, Vol: 58, Pages: 767-782, ISSN: 1674-4918

Journal article

Prudhomme R, De Palma A, Dumas P, Gonzalez R, Leadley P, Levrel H, Purvis A, Brunelle Tet al., 2020, Combining mitigation strategies to increase co-benefits for biodiversity and food security, ENVIRONMENTAL RESEARCH LETTERS, Vol: 15, ISSN: 1748-9326

Journal article

Waldock CA, De Palma A, Borges PA, Purvis Aet al., 2020, Insect occurrence in agricultural land-uses depends on realized niche and geographic range properties, ECOGRAPHY, Vol: 43, Pages: 1717-1728, ISSN: 0906-7590

Journal article

Diaz S, Zafra-Calvo N, Purvis A, Verburg PH, Obura D, Leadley P, Chaplin-Kramer R, De Meester L, Dulloo E, Martin-Lopez B, Rebecca Shaw M, Visconti P, Broadgate W, Bruford MW, Burgess ND, Cavender-Bares J, DeClerck F, Maria Fernandez-Palacios J, Garibaldi LA, Hill SLL, Isbell F, Khoury CK, Krug CB, Liu J, Maron M, McGowan PJK, Pereira HM, Reyes-Garcia V, Rocha J, Rondinini C, Shannon L, Shin Y-J, Snelgrove PVR, Spehn EM, Strassburg B, Subramanian SM, Tewksbury JJ, Watson JEM, Zanne AEet al., 2020, Set ambitious goals for biodiversity and sustainability, SCIENCE, Vol: 370, Pages: 411-413, ISSN: 0036-8075

Journal article

Turnhout E, Purvis A, 2020, Biodiversity and species extinction: categorisation, calculation, and communication, GRIFFITH LAW REVIEW, Vol: 29, Pages: 669-685, ISSN: 1038-3441

Journal article

Mace GM, Barrett M, Burgess ND, Cornell SE, Freeman R, Grooten M, Purvis Aet al., 2020, Aiming higher to bend the curve of biodiversity loss (vol 52, pg 891, 2020), NATURE SUSTAINABILITY, Vol: 3, Pages: 885-885, ISSN: 2398-9629

Journal article

Hoskins AJ, Harwood TD, Ware C, Williams KJ, Perry JJ, Ota N, Croft JR, Yeates DK, Jetz W, Golebiewski M, Purvis A, Robertson T, Ferrier Set al., 2020, BILBI: Supporting global biodiversity assessment through high-resolution macroecological modelling, ENVIRONMENTAL MODELLING & SOFTWARE, Vol: 132, ISSN: 1364-8152

Journal article

Leclere D, Obersteiner M, Barrett M, Butchart SHM, Chaudhary A, De Palma A, DeClerck FAJ, Di Marco M, Doelman JC, Duerauer M, Freeman R, Harfoot M, Hasegawa T, Hellweg S, Hilbers JP, Hill SLL, Humpenoeder F, Jennings N, Krisztin T, Mace GM, Ohashi H, Popp A, Purvis A, Schipper AM, Tabeau A, Valin H, van Meijl H, Van Zeist W-J, Visconti P, Alkemade R, Almond R, Bunting G, Burgess ND, Cornell SE, Di Fulvio F, Ferrier S, Fritz S, Fujimori S, Grooten M, Harwood T, Havlik P, Herrero M, Hoskins AJ, Jung M, Kram T, Lotze-Campen H, Matsui T, Meyer C, Nel D, Newbold T, Schmidt-Traub G, Stehfest E, Strassburg BBN, van Vuuren DP, Ware C, Watson JEM, Wu W, Young Let al., 2020, Bending the curve of terrestrial biodiversity needs an integrated strategy, NATURE, Vol: 585, Pages: 551-+, ISSN: 0028-0836

Journal article

Purvis A, 2020, A single apex target for biodiversity would be bad news for both nature and people, NATURE ECOLOGY & EVOLUTION, Vol: 4, Pages: 768-769, ISSN: 2397-334X

Journal article

Rosa IMD, Purvis A, Alkemade R, Chaplin-Kramer R, Ferrier S, Guerra CA, Hurtt G, Kim H, Leadley P, Martins IS, Popp A, Schipper AM, van Vuuren D, Pereira HMet al., 2020, Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services, GLOBAL ECOLOGY AND CONSERVATION, Vol: 22

Journal article

Diaz S, Settele J, Brondizio E, Ngo HT, Pfaff A, Polasky S, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnar Z, Obura D, Purvis A, Razzaque J, Reyers B, Chowdhury RR, Shin Y-J, Visseren-Hamakers I, Willis KJ, Zayas CNet al., 2020, Investments' role in ecosystem degradation Response, SCIENCE, Vol: 368, Pages: 377-377, ISSN: 0036-8075

Journal article

Pereira HM, Rosa IMD, Martins IS, Kim H, Leadley P, Popp A, van Vuuren DP, Hurtt G, Anthoni P, Arneth A, Baisero D, Chaplin-Kramer R, Chini L, Di Fulvio F, Di Marco M, Ferrier S, Fujimori S, Guerra CA, Harfoot M, Harwood TD, Hasegawa T, Haverd V, Havlík P, Hellweg S, Hilbers JP, Hill SLL, Hirata A, Hoskins AJ, Humpenöder F, Janse JH, Jetz W, Johnson JA, Krause A, Leclère D, Matsui T, Meijer JR, Merow C, Obsersteiner M, Ohashi H, Poulter B, Purvis A, Quesada B, Rondinini C, Schipper AM, Settele J, Sharp R, Stehfest E, Strassburg BBN, Takahashi K, Talluto MV, Thuiller W, Titeux N, Visconti P, Ware C, Wolf F, Alkemade Ret al., 2020, Global trends in biodiversity and ecosystem services from 1900 to 2050

<jats:title>Abstract</jats:title><jats:p>Despite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-use and climate change from 1900 to 2050. During the 20th century provisioning services increased, but biodiversity and regulating services decreased. Similar trade-offs are projected for the coming decades, but they may be attenuated in a sustainability scenario. Future biodiversity loss from land-use change is projected to keep up with historical rates or reduce slightly, whereas losses due to climate change are projected to increase greatly. Renewed efforts are needed by governments to meet the 2050 vision of the Convention on Biological Diversity.</jats:p><jats:sec><jats:title>One Sentence Summary</jats:title><jats:p>Development pathways exist that allow for a reduction of the rates of biodiversity loss from land-use change and improvement in regulating services but climate change poses an increasing challenge.</jats:p></jats:sec>

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00156933&limit=30&person=true