Imperial College London

DrAnnaRegoutz

Faculty of EngineeringDepartment of Materials

Academic Visitor
 
 
 
//

Contact

 

a.regoutz Website

 
 
//

Location

 

2.M14Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

116 results found

Twyman N, Tetzner K, Anthopoulos T, Payne D, Regoutz Aet al., 2019, Rapid photonic curing of solution-processed In2O3 layers on flexible substrates, Applied Surface Science, Vol: 479, Pages: 974-979, ISSN: 0169-4332

In2O3 is one of the most important semiconducting metal oxides primarily because of its wide band gap, high electron mobility and processing versatility. To this end, high-quality thin films of In2O3 can be prepared using scalable and inexpensive solution-based deposition methods, hence making it attractive for application in a number of emerging electronic applications. However, traditional solution processing often requires high temperature and lengthy annealing steps, making it impossible to use in combination with temperature-sensitive plastic substrates, which would be desired for numerous emerging flexible device applications. Here, rapid photonic curing of In2O3 layers is explored as an alternative to thermal annealing. Oxide thin films are successfully prepared on a range of substrates, including glass, polyimide, and polyethylene naphthalate. The effect of substrate and post-processing treatment on the morphology, surface chemistry, and electronic properties is investigated by atomic force microscopy and X-ray photoelectron spectroscopy. Systematic trends are identified, particularly in the degree of conversion of the precursor and its influence on the electronic structure.

Journal article

Robinson MDM, Oropeza FE, Cui M, Zhang KHL, Hohmann MV, Payne DJ, Egdell RG, Regoutz Aet al., 2019, Electronic structure of lanthanide-doped bismuth vanadates: A systematic study by x-ray photoelectron and optical spectroscopies, Journal of Physical Chemistry C, Vol: 123, Pages: 8484-8499, ISSN: 1932-7447

Monoclinic BiVO 4 has emerged in recent years as one of the most promising materials for photocatalytic evolution of oxygen under solar irradiation. However, it is in itself unable to phototcatalyze reduction of water to hydrogen due to the placement of the conduction band edge below the potential required for H 2 O/H 2 reduction. As a consequence, BiVO 4 only finds application in a hybrid system. Very recently, tetragonal lanthanide-doped BiVO 4 powders have been shown to be able to both reduce and to oxidize water under solar irradiation, but to date there has been no comprehensive study of the electronic properties of lanthanide-doped bismuth vanadates aimed at establishing the systematic trends in the electronic structure in traversing the lanthanide series. Here, the accessible family of lanthanide-doped BiVO 4 quaternary oxides of stoichiometry Bi 0.5 Ln 0.5 VO 4 (Ln = La to Lu, excluding Pm) has been studied by X-ray powder diffraction, X-ray photoemission spectroscopy, and diffuse reflectance optical spectroscopy. The compounds all adopt the tetragonal zircon structure, and lattice parameters decrease monotonically in traversing the lanthanide series. At the same time, there is an increased peak broadening in the diffraction patterns as the mismatch in ionic radius between Bi 3+ and the Ln 3+ ions increases across the series. Valence band X-ray photoemission spectra show that the final state 4f n-1 structure associated with ionization of lanthanide 4f n states is superimposed on the valence band structure of BiVO 4 in the quaternary materials: in the case of the Ce-, Pr- and Tb-doped BiVO 4 , 4f-related states appear above the top of the main valence band of BiVO 4 and account for the small bandgap in the Ce compound. In all cases, the 4f structure is characteristic of the lanthanide element in the Ln(III) oxidation state. Vanadium 2p and lanthanide 3d or 4d core level photoelectron spectra of those compounds where the lanthanide may in principle adopt a hig

Journal article

Gusken NA, Lauri A, Li Y, Matsui T, Doiron B, Bower R, Regoutz A, Mihai A, Petrov PK, Oulton RF, Cohen LF, Maier SAet al., 2019, TiO2-x-enhanced IR hot carrier based photodetection in metal thin film-si junctions, ACS Photonics, Vol: 6, Pages: 953-960, ISSN: 2330-4022

We investigate titanium nitride (TiN) thin film coatings on silicon for CMOS-compatible sub-bandgap charge separation upon incident illumination, which is a key feature in the vast field of on-chip photodetection and related integrated photonic devices. Titanium nitride of tunable oxidation distributions serves as an adjustable broadband light absorber with high mechanical robustness and strong chemical resistivity. Backside-illuminated TiN on p-type Si (pSi) constitutes a self-powered and refractory alternative for photodetection, providing a photoresponsivity of about ∼1 mA/W at 1250 nm and zero bias while outperforming conventional metal coatings such as gold (Au). Our study discloses that the enhanced photoresponse of TiN/pSi in the near-infrared spectral range is directly linked to trap states in an ultrathin TiO2–x interfacial interlayer that forms between TiN and Si. We show that a pSi substrate in conjunction with a few nanometer thick amorphous TiO2–x film can serve as a platform for photocurrent enhancement of various other metals such as Au and Ti. Moreover, the photoresponse of Au on a TiO2–x/pSi platform can be increased to about 4 mA/W under 0.45 V reverse bias at 1250 nm, allowing for controlled photoswitching. A clear deviation from the typically assumed Fowler-like response is observed, and an alternative mechanism is proposed to account for the metal/semiconductor TiO2–x interlayer, capable of facilitating hole transport.

Journal article

Lee W-C, Wahila MJ, Mukherjee S, Singh CN, Eustance T, Regoutz A, Paik H, Boschker JE, Rodolakis F, Lee T-L, Schlom DG, Piper LFJet al., 2019, Cooperative effects of strain and electron correlation in epitaxial VO<sub>2</sub> and NbO<sub>2</sub>, Publisher: AMER INST PHYSICS

Working paper

Regoutz A, Ganose AM, Blumenthal L, Schlueter C, Lee T-L, Kieslich G, Cheetham AK, Kerherve G, Huang Y-S, Chen R-S, Vinai G, Pincelli T, Panaccione G, Zhang KHL, Egdell RG, Lischner J, Scanlon DO, Payne DJet al., 2019, Insights into the electronic structure of OsO2 using soft and hard x-ray photoelectron spectroscopy in combination with density functional theory, Physical Review Materials, Vol: 3, ISSN: 2475-9953

Theory and experiment are combined to gain an understanding of the electronic properties of OsO2, a poorly studied metallic oxide that crystallizes in the rutile structure. Hard and soft valence-band x-ray photoemission spectra of OsO2 single crystals are in broad agreement with the results of density-functional-theory calculations, aside from a feature shifted to high binding energy of the conduction band. The energy shift corresponds to the conduction electron plasmon energy measured by reflection electron energy loss spectroscopy. The plasmon satellite is reproduced by many-body perturbation theory.

Journal article

Davies DW, Walsh A, Mudd JJ, McConville CF, Regoutz A, Kahk JM, Payne DJ, Dhanak VR, Hesp D, Pussi K, Lee T-L, Egdell RG, Zhang KHLet al., 2019, Identification of lone-pair surface states on indium oxide, Journal of Physical Chemistry C, Vol: 123, Pages: 1700-1709, ISSN: 1932-7447

Indium oxide is widely used as a transparent electrode in optoelectronic devices and as a photocatalyst with activity for reduction of CO2. However, very little is known about the structural and electronic properties of its surfaces, particularly those prepared under reducing conditions. In this report, directional “lone-pair” surface states associated with filled 5s2 orbitals have been identified on vacuum-annealed In2O3(111) through a combination of hard and soft X-ray photoemission spectroscopy and density functional theory calculations. The lone pairs reside on indium ad-atoms in a formal +1 oxidation state, each of which traps two electrons into a localized hybrid orbital protruding away from the surface and lying just above the valence band maximum in photoemission spectra. The third electron associated with the ad-atoms is delocalized into the conduction band, thus producing the surface electron accumulation layer identified previously on vacuum-annealed In2O3(111) (1 × 1) surfaces. The surface structure is further supported by low-energy electron diffraction, but there is no chemical shift in indium core level X-ray photoelectron spectra between surface In(I) ad-atoms and bulk In(III). The 5s2 lone pairs confer Lewis basicity on the surface In sites and may have a pronounced impact on the catalytic or photocatalytic activity of reduced In2O3.

Journal article

Jolly P, Rainbow J, Regoutz A, Estrela P, Moschou Det al., 2019, A PNA-based Lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantification., Biosensors and Bioelectronics, Vol: 123, Pages: 244-250, ISSN: 0956-5663

We report the development of a Lab-on-PCB DNA diagnostic platform, exploiting peptide nucleic acid (PNA) sequences as probes. The study demonstrates the optimization and characterization of two commercial PCB manufacturing gold electroplating processes for biosensing applications. Using an optimized ratio of PNA with a spacer molecule (MCH), the lowest limit of detection (LoD) to date for PCB-based DNA biosensors of 57 fM is reported. The study also showcases a fully integrated Lab-on-PCB microsystem designed for rapid detection, which employs PCB-integrated sample delivery, achieving DNA quantification in the 0.1-100 pM range for 5 μL samples analyzed within 5 min under continuous flow. The demonstrated biosensor proves the capability of PCB-based DNA biosensors for high sensitivity and paves the way for their integration in Lab-on-PCB DNA diagnostic microsystems.

Journal article

Ghiasi M, Hariki A, Winder M, Kuneš J, Regoutz A, Lee T-L, Hu Y, Rueff J-P, Groot FMFDet al., 2018, Hard x-ray 1$s$ and 2$p$ photoemission spectra: LDA+DMFT and cluster-model analysis

We study $1s$ and $2p$ hard x-ray photoemission spectra (XPS) in a series oflate transition metal oxides: Fe$_2$O$_3$ (3$d^{5}$), FeTiO$_3$ (3$d^{6}$), CoO(3$d^{7}$) and NiO (3$d^{8}$). The experimental spectra are analyzed with twotheoretical approaches: the MO$_6$ cluster model and the local densityapproximation (LDA) + dynamical mean-field theory (DMFT). Owing to the absenceof the core-valence multiplets and spin-orbit coupling, 1$s$ XPS is found to bea sensitive probe of chemical bonding and nonlocal charge-transfer screening,providing complementary information to 2$p$ XPS. The 1$s$ XPS spectra are usedto assess the accuracy of the $ab$-initio LDA+DMFT approach, developed recentlyto study the material-specific charge-transfer effects in core-level XPS.

Working paper

Regoutz A, Pobegen G, Aichinger T, 2018, Interface chemistry and electrical characteristics of 4H-SiC/SiO2 after nitridation in varying atmospheres, Journal of Materials Chemistry C, Vol: 6, Pages: 12079-12085, ISSN: 2050-7526

SiC has immense potential as the semiconductor for future metal–oxide–semiconductor (MOS) devices. One of the greatest advantages and disadvantages of SiC is its native oxide, SiO2. The ability to use established SiO2 processes to create a reliable dielectric directly on the SiC semiconductor is very desirable. However, the SiC/SiO2 interface exhibits high defect densities leading to detrimental effects on device performance. A variety of treatment processes, often in N-containing atmospheres, has been shown to compensate defects and increase device performance. However, information on the local chemistry at the interface after such processes is scarce, which limits the understanding of the interface and consequently the targeted improvement of device characteristics. The present work uses X-ray photoelectron spectroscopy (XPS) to systematically study the elemental distributions and chemical environments across the 4H-SiC/SiO2 interface after high temperature nitridation treatments in a variety of atmospheres. In particular the use of a NO/NH3 combinatorial process is of great interest as it influences the defect chemistry on both the oxide and carbide side of the interface. We are able to identify N–C–Si environments as the dominant defect states at the interface. The XPS results are correlated with electrical and reflective index measurements, providing new, detailed insights into the relationship between interface chemistry and device behaviour.

Journal article

Regoutz A, Kerherve G, Villar-Garcia I, Williams CK, Payne DJet al., 2018, The influence of oxygen on the surface interaction between CO2 and copper studied by ambient pressure X-ray photoelectron spectroscopy, SURFACE SCIENCE, Vol: 677, Pages: 121-127, ISSN: 0039-6028

Journal article

Lu H, Andrei V, Jenkinson KJ, Regoutz A, Li N, Creissen CE, Wheatley AEH, Hao H, Reisner E, Wright DS, Pike SDet al., 2018, Single-source bismuth (transition metal) polyoxovanadate precursors for the scalable synthesis of doped BiVO4 photoanodes, Advanced Materials, Vol: 30, ISSN: 0935-9648

Single-source precursors are used to produce nanostructured BiVO4 photoanodes for water oxidation in a straightforward and scalable drop-casting synthetic process. Polyoxometallate precursors, which contain both Bi and V, are produced in a one-step reaction from commercially available starting materials. Simple annealing of the molecular precursor produces nanocrystalline BiVO4 films. The precursor can be designed to incorporate a third metal (Co, Ni, Cu, or Zn), enabling the direct formation of doped BiVO4 films. In particular, the Co- and Zn-doped photoanodes show promise for photoelectrochemical water oxidation, with photocurrent densities >1 mA cm-2 at 1.23 V vs reversible hydrogen electrode (RHE). Using this simple synthetic process, a 300 cm2 Co-BiVO4 photoanode is produced, which generates a photocurrent of up to 67 mA at 1.23 V vs RHE and demonstrates the scalability of this approach.

Journal article

Murray C, Ganose A, Regoutz A, Scanlon D, Thompson Aet al., 2018, A Systematic study of radiation damage in transition metal chloride complexes with 1,5-cyclooctadiene ligands using diffraction and spectroscopy, Publisher: INT UNION CRYSTALLOGRAPHY, Pages: E394-E394, ISSN: 2053-2733

Conference paper

Regoutz A, Mascheck M, Wiell T, Eriksson S, Liljenberg C, Tetzner K, Williamson B, Scanlon D, Palmgren Pet al., 2018, A novel laboratory-based hard x-ray photoelectron spectroscopy system, Review of Scientific Instruments, Vol: 89, ISSN: 0034-6748

Hard X-ray photoelectron spectroscopy (HAXPES) has seen continuous development since the first experiments in the 1970s. HAXPES systems are predominantly located at synchrotron sources due to low photoionization cross sections necessitating high X-ray intensities, which limits the technique’s availability to a wide range of users and potential applications. Here, a new laboratory-based instrument capable of delivering monochromated X-rays with an energy of 9.25 keV and a microfocused 30 × 45 μm2 X-ray spot is introduced. The system gives an excellent energy resolution of below 500 meV coupled with good X-ray intensity. It allows stable measurements under grazing incidence conditions to maximise signal intensities. This article outlines the instrument behavior, showcases applications including bulk and multilayer measurements, and describes the overall performance of the spectrometer. This system presents an alternative to synchrotron-based experimental end stations and will help expand the number and range of HAXPES experiments performed in the future.

Journal article

J Jackson A, M Ganose A, Regoutz A, G Egdell R, O Scanlon Det al., 2018, Galore: Broadening and weighting for simulation of photoelectron spectroscopy, Journal of Open Source Software, Vol: 3, Pages: 773-773

Journal article

Petrov PK, Wells M, Zou B, Mihai A, Bower R, Doiron B, Regoutz A, Fearn S, Maier S, Alford Net al., 2018, Multiphase strontium molybdate thin films for plasmonic local heating applications, Optical Materials Express, Vol: 8, Pages: 1806-1817, ISSN: 2159-3930

In the search for alternative plasmonic materials SrMoO3 has recently been identified as possessing a number of desirable optical properties. Owing to the requirement for many plasmonic devices to operate at elevated temperatures however, it is essential to characterize the degradation of these properties upon heating. Here, SrMoO3 thin films are annealed in air at temperatures ranging from 75 - 500{\deg} C. Characterizations by AFM, XRD, and spectroscopic ellipsometry after each anneal identify a loss of metallic behaviour after annealing at 500{\deg} C, together with the underlying mechanism. Moreover, it is shown that by annealing the films in nitrogen following deposition, an additional crystalline phase of SrMoO4 is induced at the film surface, which suppresses oxidation at elevated temperatures.

Journal article

Das PK, Slawinska J, Vobornik I, Fujii J, Regoutz A, Kahk JM, Scanlon DO, Morgan BJ, McGuinness C, Plekhanov E, Di Sante D, Huang Y-S, Chen R-S, Rossi G, Picozzi S, Branford WR, Panaccione G, Payne DJet al., 2018, Role of spin-orbit coupling in the electronic structure of IrO2, Physical Review Materials, Vol: 2, ISSN: 2475-9953

The delicate interplay of electronic charge, spin, and orbital degrees of freedom is in the heart of many novel phenomena across the transition metal oxide family. Here, by combining high-resolution angle-resolved photoemission spectroscopy and first principles calculations (with and without spin-orbit coupling), the electronic structure of the rutile binary iridate, IrO2, is investigated. The detailed study of electronic bands measured on a high-quality single crystalline sample and use of a wide range of photon energy provide a huge improvement over the previous studies. The excellent agreement between theory and experimental results shows that the single-particle DFT description of IrO2 band structure is adequate, without the need of invoking any treatment of correlation effects. Although many observed features point to a 3D nature of the electronic structure, clear surface effects are revealed. The discussion of the orbital character of the relevant bands crossing the Fermi level sheds light on spin-orbit-coupling-driven phenomena in this material, unveiling a spin-orbit-induced avoided crossing, a property likely to play a key role in its large spin Hall effect.

Journal article

El-Shinawi H, Regoutz A, Payne DJ, Cussen EJ, Corr SAet al., 2018, NASICON LiM2(PO4)(3) electrolyte (M = Zr) and electrode (M = Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance, JOURNAL OF MATERIALS CHEMISTRY A, Vol: 6, Pages: 5296-5303, ISSN: 2050-7488

Journal article

Borgatti F, Berger JA, Ceolin D, Zhou JS, Kas JJ, Guzzo M, McConville CF, Offi F, Panaccione G, Regoutz A, Payne DJ, Rueff J-P, Bierwagen O, White ME, Speck JS, Gatti M, Egdell RGet al., 2018, Revisiting the origin of satellites in core-level photoemission of transparent conducting oxides: The case of &ITn&IT-doped SnO2, PHYSICAL REVIEW B, Vol: 97, ISSN: 2469-9950

Journal article

Wijeyasinghe N, Tsetseris L, Regoutz A, Sit WY, Fei Z, Du T, Wang X, Mclachlan MA, Vourlias G, Patsalas PA, Payne DJ, Heeney M, Anthopoulos TDet al., 2018, Copper (I) selenocyanate (CuSeCN) as a novel hole-transport layer for transistors, organic solar cells, and light-emitting diodes, Advanced Functional Materials, Vol: 28, ISSN: 1616-301X

The synthesis and characterization of copper (I) selenocyanate (CuSeCN) and its application as a solution-processable hole-transport layer (HTL) material in transistors, organic light-emitting diodes, and solar cells are reported. Density-functional theory calculations combined with X-ray photoelectron spectroscopy are used to elucidate the electronic band structure, density of states, and microstructure of CuSeCN. Solution-processed layers are found to be nanocrystalline and optically transparent ( > 94%), due to the large bandgap of ≥3.1 eV, with a valence band maximum located at -5.1 eV. Hole-transport analysis performed using field-effect measurements confirms the p-type character of CuSeCN yielding a hole mobility of 0.002 cm 2 V -1 s -1 . When CuSeCN is incorporated as the HTL material in organic light-emitting diodes and organic solar cells, the resulting devices exhibit comparable or improved performance to control devices based on commercially available poly(3,4-ethylenedioxythiophene):polystyrene sulfonate as the HTL. This is the first report on the semiconducting character of CuSeCN and it highlights the tremendous potential for further developments in the area of metal pseudohalides.

Journal article

Trantidou T, Regoutz A, Voon X, Payne D, Ces Oet al., 2018, A “cleanroom-free” and scalable manufacturing technology for the microfluidic generation of lipid-stabilized droplets and cell-sized multisomes, Sensors and Actuators B: Chemical, Vol: 267, Pages: 34-41, ISSN: 0925-4005

There is a growing demand to construct artificial biomimetic structures from the bottom-up using simple chemical components in a controlled and high-throughput way. These cell mimics are encapsulated by lipid membranes and can reconstitute biological machinery within them. To date, such synthetic cells based upon droplet microfluidics are fabricated using non-scalable, expensive and time-consuming strategies, and are thus restricted to small-scale in-house manufacturing. Here, we report a “cleanroom-free” and highly scalable microfluidic manufacturing technology based on dry film resists and multilayer lamination. The technology facilitates the controlled and high-throughput generation of stable and monodisperse droplets using anionic surfactants and more biologically relevant phospholipids. We demonstrate the versatility of this approach by selectively patterning the surface chemistry of the device, enabling the production of compartmentalized lipid structures based on droplet interface bilayers (multisomes). This technology has the potential to simultaneously unlock the widespread exploitation of microfluidics to chemists and synthetic biologists not having access to controlled production environments and facilitate low-cost (< £1) high-volume fabrication of self-contained disposable devices with minimum feature sizes of 30 μm. The associated material and equipment costs approach those of other deskilled prototyping technologies, such as 3D printing that have made the transition into the mainstream.

Journal article

Garcia-Trenco A, Regoutz A, White ER, Payne DJ, Shaffer MSP, Williams CKet al., 2018, PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol, Applied Catalysis B: Environmental, Vol: 220, Pages: 9-18, ISSN: 0926-3373

Direct hydrogenation of CO2 to methanol could offer significant environmental benefits, if efficient catalysts can be developed. Here, bimetallic Pd-In nanoparticles show good performance as catalysts for this reaction. Unsupported nanoparticles are synthesised by the thermal decomposition of Pd(acetate)2 and In(acetate)3 precursors in a high boiling point solvent (squalane), followed by reduction using dilute H2 gas (210 °C). Adjusting the ratio of the two metallic precursors allow access to 5–10 nm nanoparticles with different phase compositions, including metallic Pd(0), In2O3 and intermetallic PdIn. Liquid phase methanol synthesis experiments (50 bar, 210 °C, H2:CO2 = 3:1) identify the intermetallic PdIn nanoparticles as the most efficient. The catalysts exhibit around 70% higher methanol rates (normalised to the overall molar metal content) compared to the conventional heterogeneous Cu/ZnO/Al2O3 catalyst (900 and 540 μmol mmolPdInorCuZnAl−1 h−1, respectively). In addition, the optimum Pd/In catalyst shows an improved methanol selectivity over the whole temperature range studied (190–270 °C), reaching >80% selectivity at 270 °C, compared to only 45% for the reference Cu/ZnO/Al2O3 catalyst. Experiments showed an improvement in stability; the methanol production rate declined by 20% after 120 h run for the optimum PdIn-based compared with 30% for the Cu/ZnO/Al2O3 catalyst (after 25 h). The optimum catalyst consists of ∼8 nm nanoparticles comprising a surface In-enriched PdIn intermetallic phase as characterised by XRD, HR-TEM, STEM-EDX and XPS. Post-catalysis analysis of the optimum catalyst shows that the same PdIn bimetallic phase is retained with only a slight increase in the nanoparticle size.

Journal article

Swallow JEN, Williamson BAD, Birkett M, Abbott A, Farnworth M, Featherstone TJ, Peng N, Cheetham KJ, Warren P, Regoutz A, Duncan DA, Lee T-L, Scanlon DO, Dhanak VR, Veal TDet al., 2018, A hard x-ray photoemission study of transparent conducting fluorine-doped tin dioxide, 7th IEEE World Conference on Photovoltaic Energy Conversion (WCPEC) / A Joint Conference of 45th IEEE PVSC / 28th PVSEC / 34th EU PVSEC, Publisher: IEEE, Pages: 3051-3055, ISSN: 2159-2330

Conference paper

Skinner SJ, ryan MP, pramana S, cavallaro A, li C, handoko A, Chan KW, walker RJ, Regoutz A, herrin J, Yeo BS, Payne DJ, kilner JAet al., 2017, Crystal structure and surface characteristics of Sr-doped GdBaCo2O6-δ double perovskites: oxygen evolution reaction and conductivity, Journal of Materials Chemistry A, Vol: 6, Pages: 5335-5345, ISSN: 2050-7496

A cheap and direct solution towards engineering better catalysts through identification of novel materials is required for a sustainable energy system. Perovskite oxides have emerged as potential candidates to replace the less economically attractive Pt and IrO2 water splitting catalysts. In this work, excellent electrical conductivity (980 S cm−1) was found for the double perovskite of composition GdBa0.6Sr0.4Co2O6−δ which is consistent with a better oxygen evolution reaction activity with the onset polarisation of 1.51 V with respect to a reversible hydrogen electrode (RHE). GdBa1−xSrxCo2O6−δ with increasing Sr content was found to crystallise in the higher symmetry tetragonal P4/mmm space group in comparison with the undoped GdBaCo2O6−δ which is orthorhombic (Pmmm), and yields higher oxygen uptake, accompanied by higher Co oxidation states. This outstanding electrochemical performance is explained by the wider carrier bandwidth, which is a function of Co–O–Co buckling angles and Co–O bond lengths. Furthermore the higher oxygen evolution activity was observed despite the formation of non-lattice oxides (mainly hydroxide species) and enrichment of alkaline earth ions on the surface.

Journal article

Ong ZY, Chen S, Nabavi E, Regoutz A, Payne DJ, Elson DS, Dexter DT, Dunlop IE, Porter AEet al., 2017, Multibranched Gold Nanoparticles with Intrinsic LAT-1 Targeting Capabilities for Selective Photothermal Therapy of Breast Cancer., ACS Applied Materials and Interfaces, Vol: 9, Pages: 39259-39270, ISSN: 1944-8244

Because of the critical role of the large neutral amino acid transporter-1 (LAT-1) in promoting tumor growth and proliferation, it is fast emerging as a highly attractive biomarker for the imaging and treatment of human malignancies, including breast cancer. While multibranched gold nanoparticles (AuNPs) have emerged as a promising modality in the photothermal therapy (PTT) of cancers, some of the key challenges limiting their clinical translation lie in the need to develop reproducible and cost-effective synthetic methods as well as the selective accumulation of sufficient AuNPs at tumor sites. In this study, we report a simple and direct seed-mediated synthesis of monodispersed multibranched AuNPs using the catechol-containing LAT-1 ligands, L- and D-dopa, to confer active cancer targeting. This route obviates the need for additional conjugation with targeting moieties such as peptides or antibodies. Nanoflower-like AuNPs (AuNF) with diameters of approximately 46, 70, and 90 nm were obtained and were found to possess excellent colloidal stability and biocompatibility. A significantly higher intracellular accumulation of the L- and D-dopa functionalized AuNFs was observed in a panel of breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-468, and MDA-MB-453) when compared to the nontargeting control AuNFs synthesized with dopamine and 4-ethylcatechol. Importantly, no significant difference in uptake between the targeting and nontargeting AuNFs was observed in a non-tumorigenic MCF-10A breast epithelial cell line, hence demonstrating tumor selectivity. For PTT of breast cancer, Ag(+) was introduced during synthesis to obtain L-dopa functionalized nanourchin-like AuNPs (AuNUs) with strong near-infrared (NIR) absorbance. The L-dopa functionalized AuNUs mediated selective photothermal ablation of the triple negative MDA-MB-231 breast cancer cell line and sensitized the cells to the anticancer drugs cisplatin and docetaxel. This work brings forward an effective strategy

Journal article

Tetzner K, Lin Y-H, Regoutz A, Seitkhan A, Payne DJ, Anthopoulos TDet al., 2017, Sub-second photonic processing of solution-deposited single layer and heterojunction metal oxide thin-film transistors using a high-power xenon flash lamp, Journal of Materials Chemistry C, Vol: 5, Pages: 11724-11732, ISSN: 2050-7526

We report the fabrication of solution-processed In2O3 and In2O3/ZnO heterojunction thin-film transistors (TFTs) where the precursor materials were converted to their semiconducting state using high power light pulses generated by a xenon flash lamp. In2O3 TFTs prepared on glass substrates exhibited low-voltage operation (≤2 V) and a high electron mobility of ∼6 cm2 V−1 s−1. By replacing the In2O3 layer with a photonically processed In2O3/ZnO heterojunction, we were able to increase the electron mobility to 36 cm2 V−1 s−1, while maintaining the low-voltage operation. Although the level of performance achieved in these devices is comparable to control TFTs fabricated via thermal annealing at 250 °C for 1 h, the photonic treatment approach adopted here is extremely rapid with a processing time of less than 18 s per layer. With the aid of a numerical model we were able to analyse the temperature profile within the metal oxide layer(s) upon flashing revealing a remarkable increase of the layer's surface temperature to ∼1000 °C within ∼1 ms. Despite this, the backside of the glass substrate remains unchanged and close to room temperature. Our results highlight the applicability of the method for the facile manufacturing of high performance metal oxide transistors on inexpensive large-area substrates.

Journal article

Luongo G, Perez JE, Kosel J, Georgiou TK, Regoutz A, Payne DJ, Stevens MM, Porter AE, Dunlop IEet al., 2017, Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer, ACS Applied Materials and Interfaces, Vol: 9, Pages: 40059-40069, ISSN: 1944-8244

Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

Journal article

Bedoya-Lora FE, Hankin A, Holmes-Gentle I, Regoutz A, Nania M, Payne DJ, Cabral JT, Kelsall GHet al., 2017, Effects of low temperature annealing on the photo-electrochemical performance o tin-doped hematite photo-anodes, Electrochimica Acta, Vol: 251, Pages: 1-11, ISSN: 0013-4686

The effects of post-deposition annealing at 400 and 500 °C on the photo-electrochemical performance of SnIV-doped α-Fe2O3 photo-anodes are reported. Samples were fabricated by spray pyrolysis on fluorine-doped tin oxide (FTO) and on titanium substrates. Photo-electrochemical, morphological and optical properties were determined to explain the shift in photocurrent densities to lower electrode potentials and the decrease of maximum photocurrent densities for alkaline water oxidation after annealing. Annealing at 400 and 500 °C in air did not affect significantly the morphology, crystallinity, optical absorption or spatial distributions of oxygen vacancy concentrations. However, XPS data showed a redistribution of SnIV near SnIV-doped α-Fe2O3 | 1 M NaOH interfaces after annealing. Thus, electron-hole recombination rates at photo-anode surfaces decreased after annealing, shifting photocurrents to lower electrode potentials. Conversely, depletion of SnIV in the α-Fe2O3 bulk could increase recombination rates therein and decrease photon absorption near 550 nm, due to an increased dopant concentration in the semiconductor depletion layer. This accounted for the decrease of maximum photocurrents when electron-hole recombination rates were suppressed using HO2− ions as a hole scavenger. The flat band potential of SnIV-doped α-Fe2O3 remained relatively constant at ca. 0.7 V vs. RHE, irrespective of annealing conditions.

Journal article

Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin Y-H, Faber H, Pattanasattayavong P, Li J, Yan F, McLachlan MA, Payne DJ, Heeney M, Anthopoulos TDet al., 2017, Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells, ADVANCED FUNCTIONAL MATERIALS, Vol: 27, ISSN: 1616-301X

This study reports the development of copper(I) thiocyanate (CuSCN) hole-transport layers (HTLs) processed from aqueous ammonia as a novel alternative to conventional n-alkyl sulfide solvents. Wide bandgap (3.4–3.9 eV) and ultrathin (3–5 nm) layers of CuSCN are formed when the aqueous CuSCN–ammine complex solution is spin-cast in air and annealed at 100 °C. X-ray photoelectron spectroscopy confirms the high compositional purity of the formed CuSCN layers, while the high-resolution valence band spectra agree with first-principles calculations. Study of the hole-transport properties using field-effect transistor measurements reveals that the aqueous-processed CuSCN layers exhibit a fivefold higher hole mobility than films processed from diethyl sulfide solutions with the maximum values approaching 0.1 cm2 V−1 s−1. A further interesting characteristic is the low surface roughness of the resulting CuSCN layers, which in the case of solar cells helps to planarize the indium tin oxide anode. Organic bulk heterojunction and planar organometal halide perovskite solar cells based on aqueous-processed CuSCN HTLs yield power conversion efficiency of 10.7% and 17.5%, respectively. Importantly, aqueous-processed CuSCN-based cells consistently outperform devices based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate HTLs. This is the first report on CuSCN films and devices processed via an aqueous-based synthetic route that is compatible with high-throughput manufacturing and paves the way for further developments.

Journal article

Pincelli T, Lollobrigida V, Borgatti F, Regoutz A, Gobaut B, Schlueter C, Lee T-L, Payne DJ, Oura M, Tamasaku K, Petrov AY, Graziosi P, Granozio FM, Cavallini M, Vinai G, Ciprian R, Back CH, Rossi G, Taguchi M, Daimon H, van der Laan G, Panaccione Get al., 2017, Quantifying the critical thickness of electron hybridization in spintronics materials, NATURE COMMUNICATIONS, Vol: 8, ISSN: 2041-1723

In the rapidly growing field of spintronics, simultaneous control of electronic and magnetic properties is essential, and the perspective of building novel phases is directly linked to the control of tuning parameters, for example, thickness and doping. Looking at the relevant effects in interface-driven spintronics, the reduced symmetry at a surface and interface corresponds to a severe modification of the overlap of electron orbitals, that is, to a change of electron hybridization. Here we report a chemically and magnetically sensitive depth-dependent analysis of two paradigmatic systems, namely La1−xSrxMnO3 and (Ga,Mn)As. Supported by cluster calculations, we find a crossover between surface and bulk in the electron hybridization/correlation and we identify a spectroscopic fingerprint of bulk metallic character and ferromagnetism versus depth. The critical thickness and the gradient of hybridization are measured, setting an intrinsic limit of 3 and 10 unit cells from the surface, respectively, for (Ga,Mn)As and La1−xSrxMnO3, for fully restoring bulk properties.

Journal article

Pike SD, White ER, Regoutz A, Sammy N, Payne DJ, Williams CK, Shaffer MSPet al., 2017, Reversible Redox Cycling of Well-Defined, Ultrasmall Cu/Cu2O Nanoparticles, ACS Nano, Vol: 11, Pages: 2714-2723, ISSN: 1936-0851

Exceptionally small and well-defined copper (Cu) and cuprite (Cu2O) nanoparticles (NPs) are synthesized by the reaction of mesitylcopper(I) with either H2 or air, respectively. In the presence of substoichiometric quantities of ligands, namely, stearic or di(octyl)phosphinic acid (0.1–0.2 equiv vs Cu), ultrasmall nanoparticles are prepared with diameters as low as ∼2 nm, soluble in a range of solvents. The solutions of Cu NPs undergo quantitative oxidation, on exposure to air, to form Cu2O NPs. The Cu2O NPs can be reduced back to Cu(0) NPs using accessible temperatures and low pressures of hydrogen (135 °C, 3 bar H2). This striking reversible redox cycling of the discrete, solubilized Cu/Cu(I) colloids was successfully repeated over 10 cycles, representing 19 separate reactions. The ligands influence the evolution of both composition and size of the nanoparticles, during synthesis and redox cycling, as explored in detail using vacuum-transfer aberration-corrected transmission electron microscopy, X-ray photoelectron spectroscopy, and visible spectroscopy.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00853345&limit=30&person=true&page=3&respub-action=search.html