Publications
27 results found
Zenner C, Chalklen L, Adjei H, et al., 2023, Non-invasive faecal cytokine and microbiome profiles predict commencement of necrotizing enterocolitis in a proof-of-concept study, Gastro Hep Advances, ISSN: 2772-5723
Akello J, Bujaki E, Shaw A, et al., 2023, Comparison of eleven RNA extraction methods for poliovirus direct molecular detection in stool samples, Microbiology Spectrum, ISSN: 2165-0497
Sim K, Powell E, Emma C, et al., 2023, Development of the gut microbiota during early life in premature and term infants, Gut Pathogens, Vol: 15, ISSN: 1757-4749
Background:The gastrointestinal (GI) microbiota has been linked to health consequences throughout life, from early life illnesses (e.g. sepsis and necrotising enterocolitis) to lifelong chronic conditions such as obesity and inflammatory bowel disease. It has also been observed that events in early life can lead to shifts in the microbiota, with some of these changes having been documented to persist into adulthood. A particularly extreme example of a divergent early GI microbiota occurs in premature neonates, who display a very different GI community to term infants. Certain characteristic patterns have been associated with negative health outcomes during the neonatal period, and these patterns may prove to have continual damaging effects if not resolved.Results:In this study we compared a set of premature infants with a paired set of term infants (n = 37 pairs) at 6 weeks of age and at 2 years of age. In the samples taken at 6 weeks of age we found microbial communities differing in both diversity and specific bacterial groups between the two infant cohorts. We identified clinical factors associated with over-abundance of potentially pathogenic organisms (e.g. Enterobacteriaceae) and reduced abundances of some beneficial organisms (e.g. Bifidobacterium). We contrasted these findings with samples taken at 2 years of age, which indicated that despite a very different initial gut microbiota, the two infant groups converged to a similar, more adult-like state. We identified clinical factors, including both prematurity and delivery method, which remain associated with components of the gut microbiota. Both clinical factors and microbial characteristics are compared to the occurrence of childhood wheeze and eczema, revealing associations between components of the GI microbiota and the development of these allergic conditions.Conclusions:The faecal microbiota differs greatly between infants born at term and those born prematurely during early life, yet it c
Karampatsas K, Faal A, Jaiteh M, et al., 2022, Gastrointestinal, vaginal, nasopharyngeal, and breast milk microbiota profiles and breast milk metabolomic changes in Gambian infants over the first two months of lactation: a prospective cohort study, Medicine, Vol: 101, Pages: 1-10, ISSN: 0025-7974
Background: Microbiota composition in breast milk affects intestinal and respiratory microbiota colonization and the mucosal immune system's development in infants. The metabolomic content of breast milk is thought to interact with the microbiota and may influence developing infant immunity.Methods: 107 Gambian mothers and their healthy, vaginally delivered, exclusively breastfed infants were included in our study. We analyzed 32 breast milk samples, 51 maternal rectovaginal swabs and 30 infants' rectal swabs at birth. We also analyzed 9 breast milk samples and 18 infants' nasopharyngeal swabs 60 days post-delivery. We used 16S rRNA genesequencing to determine the microbiota composition. Metabolomic profiling analysis was performed on colostrum and mature breast milk samples using a multiplatform approach combining 1-H Nuclear Magnetic Resonance Spectroscopy and Gas Chromatography-Mass Spectrometry.Results: Bacterial communities were distinct in composition and diversity across different sample types. Breast milk composition changed over the first 60 days of lactation. α-1,4- and α-1,3-fucosylated human milk oligosaccharides, and other 33 key metabolites in breast milk(monosaccharides, sugar alcohols and fatty acids) increased between birth and day of 60 life.Conclusions: This study's results indicate that infant gut and respiratory microbiota are unique bacterial communities, distinct from maternal gut and breast milk, respectively. Breast milk microbiota composition and metabolomic profile change throughout lactation. These changesmay contribute to the infant's immunological, metabolic, and neurological development and could consist the basis for future interventions to correct disrupted early life microbial colonization.
Klapsa D, Wilton T, Zealand A, et al., 2022, Sustained detection of type 2 poliovirus in London sewage between February and July, 2022, by enhanced environmental surveillance, The Lancet, Vol: 400, Pages: 1531-1538, ISSN: 0140-6736
BACKGROUND: The international spread of poliovirus exposes all countries to the risk of outbreaks and is designated a Public Health Emergency of International Concern by WHO. This risk can be exacerbated in countries using inactivated polio vaccine, which offers excellent protection against paralysis but is less effective than oral vaccine against poliovirus shedding, potentially allowing circulation without detection of paralytic cases for long periods of time. Our study investigated the molecular properties of type 2 poliovirus isolates found in sewage with an aim to detect virus transmission in the community. METHODS: We performed environmental surveillance in London, UK, testing sewage samples using WHO recommended methods that include concentration, virus isolation in cell culture, and molecular characterisation. We additionally implemented direct molecular detection and determined whole-genome sequences of every isolate using novel nanopore protocols. FINDINGS: 118 genetically linked poliovirus isolates related to the serotype 2 Sabin vaccine strain were detected in 21 of 52 sequential sewage samples collected in London between Feb 8 and July 4, 2022. Expansion of environmental surveillance sites in London helped localise transmission to several boroughs in north and east London. All isolates have lost two key attenuating mutations, are recombinants with a species C enterovirus, and an increasing proportion (20 of 118) meet the criterion for a vaccine-derived poliovirus, having six to ten nucleotide changes in the gene coding for VP1 capsid protein. INTERPRETATION: Environmental surveillance allowed early detection of poliovirus importation and circulation in London, permitting a rapid public health response, including enhanced surveillance and an inactivated polio vaccine campaign among children aged 1-9 years. Whole-genome sequences generated through nanopore sequencing established linkage of isolates and confirmed transmission of a unique recombinant poliov
Shaw A, Cooper L, Gumede N, et al., 2022, Time taken to detect and respond to polio outbreaks in Africa and the potential impact of direct molecular detection and nanopore sequencing, Journal of Infectious Diseases, Vol: 226, Pages: 453-462, ISSN: 0022-1899
BackgroundDetection of poliovirus outbreaks relies on a complex laboratory algorithm of cell-culture, PCR and sequencing to distinguish wild-type and vaccine-derived polioviruses (VDPV) from Sabin-like strains. We investigated the potential for direct molecular detection and nanopore sequencing (DDNS) to accelerate poliovirus detection.MethodsWe analysed laboratory data for time required to analyse and sequence serotype-2 VDPV (VDPV2) in stool collected from children with acute flaccid paralysis in Africa (May 2016-February 2020). Impact of delayed detection on VDPV2 outbreak size was assessed through negative binomial regression.ResultsVDPV2 confirmation in 525 stools required a median of 49 days from paralysis onset (10th-90th percentile: 29-74), comprising collection and transport (median: 16 days), cell-culture (7 days), intratypic differentiation RT-qPCR (3 days) and sequencing (including shipping if required) (15 days). New VDPV2 outbreaks were confirmed a median of 35 days (27-60) after paralysis onset, which we estimate could be reduced to 16 days by DDNS (9-37). Because longer delays in confirmation and response were positively associated with more cases (p<0.001), we estimate that DDNS could reduce the number of VDPV2 cases before a response by 28% (95% CrI 12-42%).ConclusionsDDNS could accelerate poliovirus outbreak response, reducing their size and the cost of eradication.
Powell E, Sumner E, Shaw A, et al., 2022, The temporal pattern and lifestyle associations of respiratory virus infection in a cohort study spanning the first two years of life, BMC Pediatrics, Vol: 22, ISSN: 1471-2431
Background:Respiratory virus infection is common in early childhood, and children may be symptomatic or symptom-free. Little is known regarding the association between symptomatic/asymptomatic infection and particular clinical factors such as breastfeeding as well as the consequences of such infection.Method:We followed an unselected cohort of term neonates to two years of age (220 infants at recruitment, 159 who remained in the study to 24 months), taking oral swabs at birth and oropharyngeal swabs at intervals subsequently (at 1.5, 6, 9, 12, 18 and 24 months and in a subset at 3 and 4.5 months) while recording extensive metadata including the presence of respiratory symptoms and breastfeeding status. After 2 years medical notes from the general practitioner were inspected to ascertain whether doctor-diagnosed wheeze had occurred by this timepoint. Multiplex PCR was used to detect a range of respiratory viruses: influenza (A&B), parainfluenza (1–4), bocavirus, human metapneumovirus, rhinovirus, coronavirus (OC43, 229E, NL63, HKU1), adenovirus, respiratory syncytial virus (RSV), and polyomavirus (KI, WU). Logistic regression and generalised estimating equations were used to identify associations between clinical factors and virus detection.Results:Overall respiratory viral incidence increased with age. Rhinovirus was the virus most frequently detected. The detection of a respiratory virus was positively associated with respiratory symptoms, male sex, season, childcare and living with another child. We did not observe breastfeeding (whether assessed as the number of completed months of breastfeeding or current feed status) to be associated with the detection of a respiratory virus. There was no association between early viral infection and doctor-diagnosed wheeze by age 2 years.Conclusion:Asymptomatic and symptomatic viral infection is common in the first 2 years of life with rhinovirus infection being the most common. Whilst there was no association betwee
Shaw A, Sim K, Rose G, et al., 2021, Premature neonatal gut microbial community patterns supporting an epithelial TLR-mediated pathway for necrotizing enterocolitis, BMC Microbiology, Vol: 21, Pages: 1-11, ISSN: 1471-2180
Background: Necrotising enterocolitis (NEC) is a devastating bowel disease, primarilyaffecting premature infants, with a poorly understood aetiology. Prior studies havefound associations in different cases with an overabundance of particular elements ofthe faecal microbiota (in particular Enterobacteriaceae or Clostridium perfringens ),but there has been no explanation for the different results found in different cohorts.Immunological studies have indicated that stimulation of the TLR4 receptor is involvedin development of NEC, with TLR4 signalling being antagonised by the activated TLR9receptor. We speculated that differential stimulation of these two components of thesignalling pathway by different microbiota might explain the dichotomous findings ofmicrobiota-centered NEC studies. Here we used shotgun metagenomic sequencingand qPCR to characterise the faecal microbiota community of infants prior to NEConset and in a set of matched controls. Bayesian regression was used to segregatecases from control samples using both microbial and clinical data.Results: We found that the infants suffering from NEC fell into two groups based ontheir microbiota; one with low levels of CpG DNA in bacterial genomes and the otherwith high abundances of organisms expressing LPS. The identification of thesecharacteristic communities was reproduced using an external metagenomic validationdataset. We propose that these two patterns represent the stimulation of a commonpathway at extremes; the LPS-enriched microbiome suggesting overstimulation ofTLR4, whilst a microbial community with low levels of CpG DNA suggests reduction ofthe counterbalance to TLR4 overstimulation.Conclusions: The identified microbial community patterns support the concept of NECresulting from TLR-mediated pathways. Identification of these signals suggestscharacteristics of the gastrointestinal microbial community to be avoided to preventNEC. Potential pre- or pro-biotic treatments may be designed to optimise TLRsig
Shaw AG, Troman C, Grassly N, 2020, Rapid and sensitive direct detection and identification of poliovirus from stool and environmental surveillance samples using nanopore sequencing, Journal of Clinical Microbiology, Vol: 58, Pages: 1-13, ISSN: 0095-1137
Global poliovirus surveillance involves virus isolation from stool and environmental samples, intratypic differential (ITD) by PCR, and sequencing of the VP1 region to distinguish vaccine (Sabin), vaccine-derived, and wild-type polioviruses and to ensure an appropriate response. This cell culture algorithm takes 2 to 3 weeks on average between sample receipt and sequencing. Direct detection of viral RNA using PCR allows faster detection but has traditionally faced challenges related to poor sensitivity and difficulties in sequencing common samples containing poliovirus and enterovirus mixtures. We present a nested PCR and nanopore sequencing protocol that allows rapid (<3 days) and sensitive direct detection and sequencing of polioviruses in stool and environmental samples. We developed barcoded primers and a real-time analysis platform that generate accurate VP1 consensus sequences from multiplexed samples. The sensitivity and specificity of our protocol compared with those of cell culture were 90.9% (95% confidence interval, 75.7% to 98.1%) and 99.2% (95.5% to 100.0%) for wild-type 1 poliovirus, 92.5% (79.6% to 98.4%) and 98.7% (95.4% to 99.8%) for vaccine and vaccine-derived serotype 2 poliovirus, and 88.3% (81.2% to 93.5%) and 93.2% (88.6% to 96.3%) for Sabin 1 and 3 poliovirus alone or in mixtures when tested on 155 stool samples in Pakistan. Variant analysis of sequencing reads also allowed the identification of polioviruses and enteroviruses in artificial mixtures and was able to distinguish complex mixtures of polioviruses in environmental samples. The median identity of consensus nanopore sequences with Sanger or Illumina sequences from the same samples was >99.9%. This novel method shows promise as a faster and safer alternative to cell culture for the detection and real-time sequencing of polioviruses in stool and environmental samples.
Kroll JS, Hall L, Kiu R, et al., 2020, Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: an observational study, Cell Reports Medicine, Vol: 1, ISSN: 2666-3791
Supplementation with members of the early-life microbiota as “probiotics” is increasingly used in attempts to beneficially manipulate the preterm infant gut microbiota. We performed a large observational longitudinal study comprising two preterm groups: 101 infants orally supplemented with Bifidobacterium and Lactobacillus (Bif/Lacto) and 133 infants non-supplemented (control) matched by age, sex, and delivery method. 16S rRNA gene profiling on fecal samples (n = 592) showed a predominance of Bifidobacterium and a lower abundance of pathobionts in the Bif/Lacto group. Metabolomic analysis showed higher fecal acetate and lactate and a lower fecal pH in the Bif/Lacto group compared to the control group. Fecal acetate positively correlated with relative abundance of Bifidobacterium, consistent with the ability of the supplemented Bifidobacterium strain to metabolize human milk oligosaccharides into acetate. This study demonstrates that microbiota supplementation is associated with a Bifidobacterium-dominated preterm microbiota and gastrointestinal environment more closely resembling that of full-term infants.
Jorgensen D, Pons Salort M, Shaw A, et al., 2020, The role of genetic sequencing and analysis in the polio eradication program, Virus Evolution, Vol: 6, ISSN: 2057-1577
Genetic sequencing of polioviruses detected through clinical and environmental surveillance is used to confirm detection, identify their likely origin, track geographic patterns of spread and determine the appropriate vaccination response. The critical importance of genetic sequencing and analysis to the Global Polio Eradication Initiative has grown with the increasing incidence of vaccine-derived poliovirus infections in Africa specifically (470 reported cases in 2019), and globally, alongside persistent transmission of serotype 1 wild-type poliovirus in Pakistan and Afghanistan (197 reported cases in 2019). Adapting what has been learned about the virus genetics and evolution to address these threats has been a major focus of recent work. Here we review how phylogenetic and phylogeographic methods have been used to trace the spread of wild-type polioviruses and identify the likely origins of vaccine-derived polioviruses. We highlight the analysis methods and sequencing technology currently used and the potential for new technologies to speed up poliovirus detection and the interpretation of genetic data. At a pivotal point in the eradication campaign with the threat of anti-vaccine sentiment and donor and public fatigue, innovation is critical to maintain drive and overcome the last remaining circulating virus.
Shaw A, 2020, Rapid and sensitive direct detection and identification of poliovirus using nanopore sequencing
Shaw A, Cornwell E, Sim K, et al., 2020, Dynamics of toxigenic Clostridium perfringens colonisation in a cohort of prematurely born neonatal infants, BMC Pediatrics, Vol: 20, ISSN: 1471-2431
BackgroundClostridium perfringens forms part of the human gut microbiota and has been associated with life-threatening necrotising enterocolitis (NEC) in premature infants. Whether specific toxigenic strains are responsible is unknown, as is the extent of diversity of strains in healthy premature babies. We investigated the C. perfringens carrier status of premature infants in the neonatal intensive care unit, factors influence this status, and the toxic potential of the strains.MethodsC. perfringens was isolated by culture from faecal samples from 333 infants and their toxin gene profiles analysed by PCR. A survival analysis was used to identify factors affecting probability of carriage. Competitive growth experiments were used to explore the results of the survival analysis.Results29.4% of infants were colonized with C. perfringens before they left hospital. Three factors were inversely associated with probability of carriage: increased duration of maternal milk feeds, CPAP oxygen treatment and antibiotic treatment. C. perfringens grew poorly in breast milk and was significantly outperformed by Bifidobacterium infantis, whether grown together or separately. Toxin gene screening revealed that infants carried isolates positive for collagenase, perfringolysin O, beta 2, beta, becA/B, netB and enterotoxin toxin genes, yet none were observed to be associated with the development of NEC.ConclusionsApproximately a third of preterm infants are colonised 3 weeks after birth with toxin gene-carrying C. perfringens. We speculate that increased maternal breast milk, oxygen and antibiotic treatment creates an environment in the gut hostile to growth of C. perfringens. Whilst potentially toxigenic C. perfringens isolates were frequent, no toxin type was associated with NEC.
Kiu R, Sim K, Shaw A, et al., 2019, Genomic analysis of clostridium perfringens BEC/CPILE-positive, toxinotype D and E strains isolated from healthy children, Toxins, Vol: 11, Pages: 1-14, ISSN: 2072-6651
Clostridium perfringens toxinotype D, toxinotype E, and gastroenteritis-linked BEC/CPILE-positive strains have never been reported in healthy children. We isolated, whole-genome sequenced and bioinformatically characterised three C. perfringens isolates—type D (IQ1), type E (IQ2) and BEC/CPILE-positive (IQ3), recovered from the stools of three healthy two-year-olds, which were further compared to 128 C. perfringens genomes available from NCBI. The analysis uncovered a previously under-described putative toxin gene alv (alveolysin) encoded by isolates IQ2 and IQ3, which appeared to be a clade-specific trait associated with strains from domestic animals. A plasmid analysis indicated that the iota-toxin was encoded on a near-intact previously described plasmid pCPPB-1 in type E strain IQ2. The BEC genes becA and becB were carried on a near-identical pCPOS-1 plasmid previously associated with Japanese gastroenteritis outbreaks. Furthermore, a close phylogenetic relatedness was inferred between the French C. perfringens type E isolates cp515.17 and newly sequenced IQ2, suggesting geographical links. This study describes novel C. perfringens isolates from healthy individuals which encode important toxin genes, indicating the potential spread of these veterinary and clinically important strains and mobile genetic elements, and highlights areas for future research.
Powell E, Fontanella S, Boakes E, et al., 2019, Temporal association of the development of oropharyngeal microbiota with early life wheeze in a population-based birth cohort, EBioMedicine, Vol: 46, Pages: 486-498, ISSN: 2352-3964
Background A critical window in infancy has been proposed, during which the microbiota may affect subsequent health. The longitudinal development of the oropharyngeal microbiota is under-studied and may be associated with early-life wheeze. We aimed to investigate the temporal association of the development of the oropharyngeal microbiota with early-life wheeze.Methods A population-based birth cohort based in London, UK was followed for 24 months. We collected oropharyngeal swabs at six time-points. Microbiota was determined using sequencing of the V3-V5 region of the 16S rRNA-encoding gene. Medical records were reviewed for the outcome of doctor diagnosed wheeze. We used a time-varying model to investigate the temporal association between the development of microbiota and doctor-diagnosed wheeze. Findings 159 participants completed the study to 24 months and for 98 there was complete sequencing data at all timepoints and outcome data. Of these, 26 had doctor-diagnosed wheeze. We observed significant increase in the abundance of Neisseria between 9 and 24 months in children who developed wheeze (p=0∙003), while in those without wheezing there was a significant increment in the abundance of Granulicatella (p=0 ∙012) between 9 and 12 months, and of Prevotella (p=0 ∙018) after 18 months. Interpretation A temporal association between the respiratory commensal Granulicatella and also Prevotella with wheeze (negative), and between Neisseria and wheeze (positive) was identified in infants prior to one year of age. This adds to evidence for the proposed role of the microbiota in the development of wheeze.
Rowe WPM, Carrieri AP, Alcon-Giner C, et al., 2019, Streaming histogram sketching for rapid microbiome analytics, Microbiome, Vol: 7, ISSN: 2049-2618
BackgroundThe growth in publically available microbiome data in recent years has yielded an invaluable resource for genomic research, allowing for the design of new studies, augmentation of novel datasets and reanalysis of published works. This vast amount of microbiome data, as well as the widespread proliferation of microbiome research and the looming era of clinical metagenomics, means there is an urgent need to develop analytics that can process huge amounts of data in a short amount of time.To address this need, we propose a new method for the compact representation of microbiome sequencing data using similarity-preserving sketches of streaming k-mer spectra. These sketches allow for dissimilarity estimation, rapid microbiome catalogue searching and classification of microbiome samples in near real time.ResultsWe apply streaming histogram sketching to microbiome samples as a form of dimensionality reduction, creating a compressed ‘histosketch’ that can efficiently represent microbiome k-mer spectra. Using public microbiome datasets, we show that histosketches can be clustered by sample type using the pairwise Jaccard similarity estimation, consequently allowing for rapid microbiome similarity searches via a locality sensitive hashing indexing scheme.Furthermore, we use a ‘real life’ example to show that histosketches can train machine learning classifiers to accurately label microbiome samples. Specifically, using a collection of 108 novel microbiome samples from a cohort of premature neonates, we trained and tested a random forest classifier that could accurately predict whether the neonate had received antibiotic treatment (97% accuracy, 96% precision) and could subsequently be used to classify microbiome data streams in less than 3 s.ConclusionsOur method offers a new approach to rapidly process microbiome data streams, allowing samples to be rapidly clustered, indexed and classified. We also provide our implementation, Histosk
Wopereis H, Sim K, Shaw A, et al., 2018, Intestinal microbiota in infants at high risk for allergy: effects of prebiotics and role in eczema development, Journal of Allergy and Clinical Immunology, Vol: 141, Pages: 1334-1342.e5, ISSN: 1097-6825
Background: The development of gut microbiota in infancy is important in the maturation of the immune system. Deviations in colonization patterns have been associated with allergic manifestations (e.g. eczema), but exact microbiome dysfunctions underlying allergies remain unclear. We studied the gut microbiota of 138 infants at increased risk of developing allergy, participating in a clinical trial investigating the effectiveness of a partially hydrolyzed protein formula supplemented with non-digestible oligosaccharides (pHF-OS) on the prevention of eczema. Objective: The effects of the interventions and breastfeeding on fecal microbiota were investigated. Additionally, we aimed to identify microbial patterns associated with the onset of eczema. Methods: Bacterial taxonomic compositions in the first 26 weeks of life were analyzed using 16S rRNA-gene sequencing. Additionally, fecal pH and microbial metabolites were measured. Results: Fecal microbial composition, metabolites and pH of infants receiving pHF-OS was closer to breastfed infants than to infants receiving standard cow’s milk formula. Infants developing eczema by 18 months showed temporal differences that were marked by decreased relative abundances of Parabacteroides and Enterobacteriaceae at 4 weeks, and decreased relative abundances of lactate-utilizing bacteria producing butyrate at 26 weeks, namely Eubacterium and Anaerostipes spp., supported by increased lact ate and decreased butyrate levels. Conclusions: We showed that a pHF with specific prebiotics modulated the gut microbiota closer to that of breastfed infants. Additionally, we identified a potential link between the microbial activity and onset of eczema, which may reflect a suboptimal implementation of gut microbiota at specific developmental stages in infants at high-risk for allergy.
Rose G, Shaw AG, Sim K, et al., 2017, Antibiotic resistance potential of the healthy preterm infant gut microbiome, PeerJ, Vol: 5, ISSN: 2167-8359
Background: Few studies have investigated the gut microbiome of infants, fewer still preterm infants. In this study we sought to quantify and interrogate the resistome within a cohort of premature infants using shotgun metagenomic sequencing. We describe the gut microbiomes from preterm but healthy infants, characterising the taxonomic diversity identified and frequency of antibiotic resistance genes detected.Results: Dominant clinically important species identified within the microbiomes included C. perfringens, K. pneumoniae and members of the Staphylococci and Enterobacter genera. Screening at the gene level we identified an average 13 genes per preterm infant, ranging across 8 different antibiotic classes, including aminoglycosides and fluoroquinolones. Some antibiotic resistance genes were associated with clinically relevant bacteria, including the identification of mecA and high levels of Staphylococci within some infants. We were able to demonstrate that in a third of the infants the S. aureus identified was unrelated using MLST or metagenome assembly, but low abundance prevented such analysis within the remaining samples.Conclusions: We found that the healthy preterm infant gut microbiomes in this study harboured a significant diversity of antibiotic resistance genes. This broad picture of resistances and the wider taxonomic diversity identified raises further caution to the use of antibiotics without consideration of the resident microbial communities.
Shaw AG, Sim K, Powell E, et al., 2016, Latitude in Sample Handling and Storage for Infant Faecal Microbiota Studies: The Elephant in the Room?, Microbiome, Vol: 4, ISSN: 2049-2618
BackgroundIn this manuscript we investigate the “stones best left unturned” of sample storage and preparation and their implications for the next-generation sequencing of infant faecal microbial communities by the 16S rRNA gene.We present a number of experiments that investigate the potential effects of often overlooked methodology factors, establishing a “normal” degree of variation expected between replica sequenced samples. Sources of excess variation are then identified, as measured by observation of alpha diversity, taxonomic group counts and beta diversity magnitudes between microbial communities. ResultsExtraction of DNA from samples on different dates, by different people and even using varied sample weights results in little significant difference in downstream sequencing data. A key assumption in many studies is the stability of samples stored long term at -80°C prior to extraction. After two years, we see relatively few changes; increased abundances of lactobacilli and bacilli and a reduction in the overall OTU count. Where samples cannot be frozen, we find that storing samples at room temperature does lead to significant changes in the microbial community after two days. Mailing of samples during this time period (a common form of sample collection from out-patients for example) does not lead to any additional variation.ConclusionsImportant methodological standards can be drawn from these results; painstakingly created archives of infant faecal samples stored at -80 °C are still largely representative of the original community and varying factors in DNA extraction methodology have comparatively little effect on overall results. Samples taken should ideally be either frozen at -80 °C or extracted within two days if stored at room temperature, with mail samples being mailed on the day of collection.
Shaw AG, Black N, Rushd A, et al., 2016, Assessing the colonic microbiota in children: effects of sample site and bowel preparation, Journal of Pediatric Gastroenterology and Nutrition, Vol: 64, Pages: 230-237, ISSN: 1536-4801
ObjectivesInflammatory bowel disease (IBD) states are associated with gastrointestinal dysbiosis. Mucosal biopsy sampling, retrieving the bacterial community that most directly interacts with the host, is an invasive procedure, and we hypothesize may be sufficiently approximated by other sampling methods. We investigate the relatedness of samples obtained by different methods and the effects of bowel preparation on the gastrointestinal community in a paediatric population. MethodsWe recruited a cohort of patients undergoing colonoscopy, collecting serial samples via differing methods (rectal swabs, biopsies and faecal matter/luminal contents) pre-bowel preparation, during colonoscopy and post-colonoscopy. Next generation sequencing was used to determine the structure of the microbial community. ResultsThe microbial community in luminal contents collected during colonoscopy was found to be more similar to that of mucosal biopsies than rectal swabs. Community traits of the mucosal biopsies could be used to segregate IBD patients from other patients, and the similarity of the communities in the luminal contents was sufficient for the segregation to be reproduced. Microbial communities sampled by rectal swabs and pre-bowel preparation faeces were less similar to mucosal biopsies. Bowel preparation was found to have no significant long term effects on the microbial community, despite the transient effects evident during colonoscopy. ConclusionsA clinically relevant description of the mucosal microbial community can be obtained via the non-invasive collection of luminal contents after bowel cleansing. Bowel preparation in a paediatric population results in no consistent sustained alterations to the gastrointestinal microbiota.
Shaw AG, Sim K, Randell P, et al., 2015, Late-onset bloodstream infection and perturbed maturation of the gastrointestinal microbiota in premature infants, PLOS One, Vol: 10, ISSN: 1932-6203
Sim K, Shaw AG, Randell P, et al., 2015, Dysbiosis anticipating necrotizing enterocolitis in very premature infants, Clinical Infectious Diseases, Vol: 60, Pages: 389-397, ISSN: 1537-6591
Background. Necrotizing enterocolitis (NEC) is a devastating inflammatory bowel disease of premature infants speculatively associated with infection. Suspected NEC can be indistinguishable from sepsis, and in established cases an infant may die within hours of diagnosis. Present treatment is supportive. A means of presymptomatic diagnosis is urgently needed. We aimed to identify microbial signatures in the gastrointestinal microbiota preceding NEC diagnosis in premature infants.Methods. Fecal samples and clinical data were collected from a 2-year cohort of 369 premature neonates. Next-generation sequencing of 16S ribosomal RNA gene regions was used to characterize the microbiota of prediagnosis fecal samples from 12 neonates with NEC, 8 with suspected NEC, and 44 controls. Logistic regression was used to determine clinical characteristics and operational taxonomic units (OTUs) discriminating cases from controls. Samples were cultured and isolates identified using matrix-assisted laser desorption/ionization–time of flight. Clostridial isolates were typed and toxin genes detected.Results. A clostridial OTU was overabundant in prediagnosis samples from infants with established NEC (P = .006). Culture confirmed the presence of Clostridium perfringens type A. Fluorescent amplified fragment-length polymorphism typing established that no isolates were identical. Prediagnosis samples from NEC infants not carrying profuse C. perfringens revealed an overabundance of a Klebsiella OTU (P = .049). Prolonged continuous positive airway pressure (CPAP) therapy with supplemental oxygen was also associated with increased NEC risk.Conclusions. Two fecal microbiota signatures (Clostridium and Klebsiella OTUs) and need for prolonged CPAP oxygen signal increased risk of NEC in presymptomatic infants. These biomarkers will assist development of a screening tool to allow very early diagnosis of NEC.Clinical Trials Registration. NCT01102738.
Wopereis H, Sim K, Shaw A, et al., 2014, The developmental gut microbiota is modulated towards a pattern closer to breastfed infants by a partially hydrolyzed cow's milk formula supplemented with specific prebiotic oligosaccharides, European-Academy-of-Allergy-and-Clinical-Immunology Congress, Publisher: WILEY-BLACKWELL, Pages: 315-315, ISSN: 0105-4538
- Author Web Link
- Cite
- Citations: 2
Sim K, Powell E, Shaw AG, et al., 2013, The neonatal gastrointestinal microbiota: the foundation of future health?, ARCHIVES OF DISEASE IN CHILDHOOD-FETAL AND NEONATAL EDITION, Vol: 98, Pages: F362-F364, ISSN: 1359-2998
- Author Web Link
- Cite
- Citations: 9
Martin C, Chen S, Heilos D, et al., 2010, Changed Genome Heterochromatinization Upon Prolonged Activation of the Raf/ERK Signaling Pathway, PLoS ONE, Vol: 5, Pages: e13322-e13322
Maya-Mendoza A, Olivares-Chauvet P, Shaw A, et al., 2010, S Phase Progression in Human Cells Is Dictated by the Genetic Continuity of DNA Foci, PLoS Genetics, Vol: 6, Pages: e1000900-e1000900
Shaw A, Olivares-Chauvet P, Maya-Mendoza A, et al., 2010, S-phase progression in mammalian cells: modelling the influence of nuclear organization, Chromosome Research, Vol: 18, Pages: 163-178, ISSN: 0967-3849
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.