Imperial College London

ProfessorApostolosVoulgarakis

Faculty of Natural SciencesDepartment of Physics

Professor in Global Climate and Environmental Change
 
 
 
//

Contact

 

a.voulgarakis Website

 
 
//

Location

 

Huxley 709BHuxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Qu:2021:10.5194/acp-21-5705-2021,
author = {Qu, Y and Voulgarakis, A and Wang, T and Kasoar, M and Wells, C and Yuan, C and Varma, S and Mansfield, L},
doi = {10.5194/acp-21-5705-2021},
journal = {Atmospheric Chemistry and Physics},
pages = {5705--5718},
title = {A study of the effect of aerosols on surface ozone through meteorology feedbacks over China},
url = {http://dx.doi.org/10.5194/acp-21-5705-2021},
volume = {21},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Interactions between aerosols and gases in the atmosphere have been the focus of an increasing number of studies in recent years. Here, we focus on aerosol effects on tropospheric ozone that involve meteorological feedbacks induced by aerosol–radiation interactions. Specifically, we study the effects that involve aerosol influences on the transport of gaseous pollutants and on atmospheric moisture, both of which can impact ozone chemistry. For this purpose, we use the UK Earth System Model (UKESM1), with which we performed sensitivity simulations including and excluding the aerosol direct radiative effect (ADE) on atmospheric chemistry, and focused our analysis on an area with a high aerosol presence, namely China. By comparing the simulations, we found that ADE reduced shortwave radiation by 11 % in China and consequently led to lower turbulent kinetic energy, weaker horizontal winds and a shallower boundary layer (with a maximum of 102.28 m reduction in north China). On the one hand, the suppressed boundary layer limited the export and diffusion of pollutants and increased the concentration of CO, SO2, NO, NO2, PM2.5 and PM10 in the aerosol-rich regions. The NO/NO2 ratio generally increased and led to more ozone depletion. On the other hand, the boundary layer top acted as a barrier that trapped moisture at lower altitudes and reduced the moisture at higher altitudes (the specific humidity was reduced by 1.69 % at 1493 m on average in China). Due to reduced water vapour, fewer clouds were formed and more sunlight reached the surface, so the photolytical production of ozone increased. Under the combined effect of the two meteorology feedback methods, the annual average ozone concentration in China declined by 2.01 ppb (6.2 %), which was found to bring the model into closer agreement with surface ozone measurements from different parts of China.
AU - Qu,Y
AU - Voulgarakis,A
AU - Wang,T
AU - Kasoar,M
AU - Wells,C
AU - Yuan,C
AU - Varma,S
AU - Mansfield,L
DO - 10.5194/acp-21-5705-2021
EP - 5718
PY - 2021///
SN - 1680-7316
SP - 5705
TI - A study of the effect of aerosols on surface ozone through meteorology feedbacks over China
T2 - Atmospheric Chemistry and Physics
UR - http://dx.doi.org/10.5194/acp-21-5705-2021
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000641147800002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - https://acp.copernicus.org/articles/21/5705/2021/
UR - http://hdl.handle.net/10044/1/96464
VL - 21
ER -