Imperial College London

Dr Ado Farsi

Faculty of EngineeringDepartment of Earth Science & Engineering

Visiting Researcher
 
 
 
//

Contact

 

ado.farsi Website CV

 
 
//

Location

 

4.94Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Farsi:2020:10.1016/j.ces.2019.115409,
author = {Farsi, A and Xiang, J and Latham, JP and Carlsson, M and Stitt, EH and Marigo, M},
doi = {10.1016/j.ces.2019.115409},
journal = {Chemical Engineering Science},
pages = {1--18},
title = {Strength and fragmentation behaviour of complex-shaped catalyst pellets: A numerical and experimental study},
url = {http://dx.doi.org/10.1016/j.ces.2019.115409},
volume = {213},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The effects of catalyst support shapes on their final strength and fragmentation behaviour are investigated. Uniaxial compression tests by diametrical loading of solid and four-holed discs with high-speed video recordings are employed to investigate strengths and pellet crushing behaviours. The combined finite-discrete element method (FDEM) is employed to simulate the effects of geometrical features and loading orientation on the pre- and post-failure behaviour of catalysts. A comparison with experimental results is also presented and the remarkable agreement in failure evolution and mode is discussed. A methodology to derive representative fragment size distributions from defined pellet shapes and material properties is introduced, providing a further tool to understand the strength and fragmentation behaviour of catalyst supports. The results suggest that fixed-bed reactors made with solid cylindrical catalysts will be more likely to be affected by pressure drops caused by the choking effect of a significant portion of fines than if it was made with catalyst supports with four holes. Two designs of four-hole catalyst supports sintered with different porosities have also been studied, showing different fragment size distributions and fines production. Characterisation of fines production for different catalyst support designs will improve prediction of reactor clogging and pressure drops.
AU - Farsi,A
AU - Xiang,J
AU - Latham,JP
AU - Carlsson,M
AU - Stitt,EH
AU - Marigo,M
DO - 10.1016/j.ces.2019.115409
EP - 18
PY - 2020///
SN - 0009-2509
SP - 1
TI - Strength and fragmentation behaviour of complex-shaped catalyst pellets: A numerical and experimental study
T2 - Chemical Engineering Science
UR - http://dx.doi.org/10.1016/j.ces.2019.115409
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000509467600023&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - https://www.sciencedirect.com/science/article/pii/S0009250919308991?via%3Dihub
UR - http://hdl.handle.net/10044/1/80425
VL - 213
ER -