Imperial College London

Professor Adrian Muxworthy

Faculty of EngineeringDepartment of Earth Science & Engineering

Professor of Earth and Planetary Magnetism
 
 
 
//

Contact

 

+44 (0)20 7594 6442adrian.muxworthy

 
 
//

Location

 

4.48Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

339 results found

Zhang Y, Muxworthy A, Jia D, Zhang Y, Chen Z, Wang M, Zhigang Let al., 2020, Fluid migration and widespread remagnetization in the Dabashan fold and thrust belt, China, Journal of Geophysical Research. Solid Earth, Vol: 125, ISSN: 2169-9356

To better understand the fluid migration in orogenic zones and associated chemical remagnetization, we have conducted a detailed magnetic, petrographic, and strontium isotope study in an important orogenic belt of China, the Jurassic Dabashan fold and thrust belt. This belt formed by the continued collision of the North and South China blocks after the Late Triassic closure of the Paleo‐Tethys Ocean. Samples were collected in a variety of rock units of Ediacaran to Permian age, in both the thrust and the fold belts. Paleomagnetic analysis indicates that all the samples were remagnetized and carry a Middle‐Late Jurassic paleo‐direction. Rock magnetic data and scanning electron microscopy observations found that the proposed remagnetization is carried by framboidal magnetite, which likely formed by the replacement of pyrite. The pervasive nature of the chemical remagnetization in these units and belts and its temporal and spatial association with the orogeny suggest that it resulted from the alteration of orogeny‐induced fluids. Sr‐isotopic analysis of the units that are thought to be remagnetized suggests that the sediments in the thrust belt were altered by externally derived evolved fluids, whereas the Permian samples in the fold belt were altered by internal pore fluid mixing during the orogeny. Together with the lithological and structural features, we conclude that the external orogenic fluids migrated preferentially along thrust faults and unconformities but were blocked by layers of low‐permeability gypsum. Our results help to constrain the origin of widespread remagnetization in South China.

Journal article

Heslop D, Roberts AP, Oda H, Zhao X, Harrison RJ, Muxworthy AR, Hu P, Sato Tet al., 2020, An automatic model selection‐based machine learning framework to estimate FORC distributions, Journal of Geophysical Research: Solid Earth, Vol: 125, Pages: 1-16, ISSN: 2169-9313

First‐order reversal curve (FORC) distributions are a powerful diagnostic tool for characterizing and quantifying magnetization processes in fine magnetic particle systems. Estimation of FORC distributions requires the computation of the second‐order mixed derivative of noisy magnetic hysteresis data. This operation amplifies measurement noise, and for weakly magnetic systems, it can compromise estimation of a FORC distribution. Previous processing schemes, which are based typically on local polynomial regression, have been developed to smooth FORC data to suppress detrimental noise. Importantly, the smoothed FORC distribution needs to be consistent with the measurement data from which it was estimated. This can be a challenging task even for expert users, who must adjust subjectively parameters that define the form and extent of smoothing until a “satisfactory” FORC distribution is obtained. For nonexpert users, estimation of FORC distributions using inappropriate smoothing parameters can produce distorted results corrupted by processing artifacts, which can lead to spurious inferences concerning the magnetic system under investigation. We have developed a statistical machine learning framework based on a probabilistic model comparison to guide the estimation of FORC distributions. An intuitive approach is presented that reveals regions of a FORC distribution that may have been smoothed inappropriately. An associated metric can also be used to compare data preparation and local regression schemes to assess their suitability for processing a given FORC data set. Ultimately, our approach selects FORC smoothing parameters in a probabilistic fashion, which automates the derivative estimation process regardless of user expertise.

Journal article

Døssing A, Riishuus MS, MacNiocaill C, Muxworthy AR, Maclennan Jet al., 2020, Late Miocene to late Pleistocene geomagnetic secular variation at high northern latitudes, Geophysical Journal International, Vol: 222, Pages: 86-102, ISSN: 0956-540X

We report a palaeomagnetic study of Icelandic lavas of late Miocene to late Pliocene age to test the geocentric axial dipole hypothesis at high northern latitudes. Cores were sampled from 125 sites in the Fljótsdalur valley in eastern Iceland, and hand samples were taken for 17 new incremental heating 40Ar/39Ar age determinations. 96 per cent of the cores were oriented using both a Brunton compass and a sun compass. Comparison of the magnetic and sun azimuths reveals deviations of ±5°, ±10° and ±20°, respectively, for 42, 16 and 3 per cent of the data points, indicating that core sampling intended for palaeosecular variation (PSV) studies at high northern latitudes should be oriented by sun. A total of 1279 independent specimens were subjected to AF- and thermal-demagnetization for palaeodirectional analysis, and well-grouped site mean directions were obtained for 123 sites of which 113 were found to be independent sites. Applying a selection criteria of k > 50 and N ≥ 5 (Nmean = 9.5), we obtain a combined grand mean direction for 46 normal and 53 reverse (for VGPlat > ±45°) polarity sites of declination = 5.6° and inclination = 77.5° that is not significantly different from that expected from a GAD field. The corresponding palaeomagnetic pole position (VGPlat = 86.3°N, VGPlon = 21.2°E, dp/dm = 4.0°/4.3°) is coincident with the North Pole within the 95 per cent confidence limits. An updated age model is constructed based on the 40Ar/39Ar ages, showing that the majority of the Fljótsdalur lavas fall within 2–7 Ma. We combine the Fljótsdalur data with existing data from the nearby Jökuldalur valley. The 154 palaeodirections are well-dispersed between 1 and 7 Ma and constitute a high-quality data set for PSV analysis. Our results partly support previous conclusions of a generally higher dispersion during reverse polarity intervals. However

Journal article

Valdez Grijalva M, Nagy L, Muxworthy A, Williams W, Roberts AP, Heslop Det al., 2020, Micromagnetic simulations of first-order reversal curve (FORC) diagrams of framboidal greigite, Geophysical Journal International, Vol: 222, Pages: 1126-1134, ISSN: 0956-540X

Greigite is a sensitive environmental indicator and occurs commonly in nature as magnetostatically interacting framboids. Until now only the magnetic response of isolated non-interacting greigite particles have been modelled micromagnetically. We present here hysteresis and first-order reversal curve (FORC) simulations for framboidal greigite (Fe3S4), and compare results to those for isolated particles of a similar size. We demonstrate that these magnetostatic interactions alter significantly the framboid FORC response compared to isolated particles, which makes the magnetic response similar to that of much larger (multidomain) grains. We also demonstrate that framboidal signals plot in different regions of a FORC diagram, which facilitates differentiation between framboidal and isolated grain signals. Given that large greigite crystals are rarely observed in microscopy studies of natural samples, we suggest that identification of multidomain-like FORC signals in samples known to contain abundant greigite could be interpreted as evidence for framboidal greigite.

Journal article

Abubakar R, Muxworthy A, Fraser A, Sephton MA, Watson JS, Heslop D, Paterson G, Southern Pet al., 2020, Mapping hydrocarbon charge-points in the Wessex Basin using seismic, geochemistry and mineral magnetics, Marine and Petroleum Geology, Vol: 111, Pages: 510-528, ISSN: 1873-4073

This study reports a multidisciplinary approach to determining hydrocarbon charge-points and migration in the Wessex Basin, southern England. Geochemical analysis of reservoir core material (Bridport Sandstone and Inferior Oolite) using gas chromatography-mass spectrometry (GC-MS), suggests that the oil in the Wessex Basin is from a single source, and that small variations in environmentally sensitive biomarkers are likely due to small differences in maturity or depositional conditions during the formation of the oil over millions of years. Using seismic data, basin modelling revealed two potential hydrocarbon migration pathways from the hanging wall of the Purbeck fault into the Sherwood Sandstone reservoir at Wytch Farm. One of these potential pathways is represented by cores termed Creech and the other Bushey Farm. To try to distinguish between the two potential pathways, cores were studied using mineral magnetic techniques. The magnetic signature was characterised using low-temperature (<50 K) magnetic measurements; this is because much of the magnetic signature was dominated by nanoparticles < 30 nm, which are thermally activated at room temperature and magnetically “transparent”. Wells that contained considerable amounts of hydrocarbons were dominated by nanometric magnetite (<30 nm). Such particles are small enough to migrate with the oil, through pore spaces, which are of the order ~100 nm. Wells located at the fringes of large hydrocarbon accumulation had enhanced pyrrhotite-dominated magnetic signals. Of the two potential migration pathways, the mineral magnetic results suggest that the oil migrated through Creech rather than through Bushey Farm.

Journal article

Harrison RJ, Zhao X, Hu P, Sato T, Heslop D, Muxworthy A, Oda H, Kuppili VSC, Roberts APet al., 2019, Simulation of remanent, transient, and induced first-order reversal curve (FORC) diagrams for interacting particles with uniaxial, cubic, and hexagonal anisotropy, G3: Geochemistry, Geophysics, Geosystems: an electronic journal of the earth sciences, ISSN: 1525-2027

Journal article

Maidment S, Muxworthy A, 2019, A chronostratigraphic framework for the Upper Jurassic Morrison Formation, western USA, Journal of Sedimentary Research, Vol: 89, Pages: 1017-1038, ISSN: 1527-1404

The fluvial, overbank, and lacustrine deposits of the Upper Jurassic Morrison Formation of the Western Interior, U.S.A. have been intensively studied due to their diverse and well-preserved dinosaurian fauna, and the presence of economic quantities of uranium and vanadium ores. The formation crops out over 12 degrees of latitude and 1.2 million km2, and is an excellent case study for the examination of paleoecology, community structure, and evolutionary dynamics at a time in Earth’s history when the climate was significantly warmer than today. However, paleoecological studies have been hampered by lack of correlation across the formation. Assuming a primarily tectonic control on fluvial architecture, we propose the first chronostratigraphic framework of the formation, which is based on sequence stratigraphy, magnetostratigraphy, and radiometric dating. The formation can be divided into three sequences each represented by a period of degradation followed by aggradation. This chronostratigraphic framework indicates that the formation youngs to the north, and was deposited over about 7 million years during the late Kimmeridgian and Tithonian. This framework provides a foundation for future sedimentological, stratigraphic, and paleobiological studies of the iconic dinosaurian fauna known from the Morrison.

Journal article

Zhang Y, Muxworthy AR, Jia D, Wei G, Xia B, Wen B, Wang M, Liu W, Brzozowski MJet al., 2019, Identifying and dating the destruction of hydrocarbon reservoirs using secondary chemical remanent magnetization, Geophysical Research Letters, Vol: 46, Pages: 11100-11108, ISSN: 0094-8276

Destructive processes are thought to be common in pre‐Cenozoic oil‐gas reservoirs. The timing, mechanism, and even identification of these processes, however, are difficult to clearly characterize, which obscures the evolution of such systems and the assessment of oil and gas reserves. Here, we reveal a new link between secondary chemical remanent magnetization acquisition and tectonically driven destruction of hydrocarbon reservoirs, which can be used to date the destructive processes and identify their tectonic controls. We performed a detailed paleomagnetic analysis of rocks from a typical destroyed reservoir (Majiang reservoir, China) and combined these data with scanning electronic microscope imaging and strontium isotope, total organic carbon, and clay analysis. We found that the Late Triassic syntilting secondary chemical remanent magnetizations of source and reservoir rocks resulted from the destructive processes driven by the Indosinian orogeny. We therefore argue that palaeomagnetic methods can be used to constrain destructive events within hydrocarbon reservoirs worldwide.

Journal article

Roberts AP, Hu P, Harrison RJ, Heslop D, Muxworthy AR, Oda H, Sato T, Tauxe L, Zhao Xet al., 2019, Domain state diagnosis in rock magnetism: evaluation of potential alternatives to the Day diagram, Journal of Geophysical Research: Solid Earth, Vol: 124, Pages: 5286-5314, ISSN: 2169-9313

The Day diagram is used extensively in rock magnetism for domain state diagnosis. It has been shown recently to be fundamentally ambiguous for 10 sets of reasons. This ambiguity highlights the urgency for adopting suitable alternative approaches to identify the domain state of magnetic mineral components in rock magnetic studies. We evaluate 10 potential alternative approaches here and conclude that four have value for identifying data trends, but, like the Day diagram, they are affected by use of bulk parameters that compromise domain state diagnosis in complex samples. Three approaches based on remanence curve and hysteresis loop unmixing, when supervised by independent data to avoid nonuniqueness of solutions, provide valuable component‐specific information that can be linked by inference to domain state. Three further approaches based on first‐order reversal curve diagrams provide direct domain state diagnosis with varying effectiveness. Environmentally important high‐coercivity hematite and goethite are represented with variable effectiveness in the evaluated candidate approaches. These minerals occur predominantly in noninteracting single‐domain particle assemblages in paleomagnetic contexts, so domain state diagnosis is more critical for ferrimagnetic minerals. Treating the high‐coercivity component separately following normal rock magnetic procedures allows focus on the more vexing problem of diagnosing domain state in ferrimagnetic mineral assemblages. We suggest a move away from nondiagnostic methods based on bulk parameters and adoption of approaches that provide unambiguous component‐specific domain state identification, among which various first‐order reversal curve‐based approaches provide diagnostic information.

Journal article

Nagy L, Williams W, Tauxe L, Muxworthy ARet al., 2019, From nano to micro: evolution of magnetic domain structures in multi‐domain magnetite, Geochemistry, Geophysics, Geosystems, Vol: 20, Pages: 2907-2918, ISSN: 1525-2027

Reliability of magnetic recordings of the ancient magnetic field is strongly dependent on the magnetic mineralogy of natural samples. Theoretical estimates of long‐term stability of remanence were restricted to single‐domain (SD) states, but micromagnetic models have recently demonstrated that the so‐called single‐vortex (SV) domain structure can have even higher stability that SD grains. In larger grains ( urn:x-wiley:ggge:media:ggge21913:ggge21913-math-000110 μm in magnetite) the multidomain (MD) state dominates, so that large uniform magnetic domains are separated by narrow domain walls. In this paper we use a parallelized micromagnetic finite element model to provide resolutions of many millions of elements allowing us, for the first time, to examine the evolution of magnetic structure from a uniform state, through the SV state up to the development of the domain walls indicative of MD states. For a cuboctahedral grain of magnetite, we identify clear domain walls in grains as small as ∼3 μm with domain wall widths equal to that expected in large MD grains; we therefore put the SV to MD transition at ∼3 μm for magnetite and expect well‐defined, and stable, SV structures to be present until at least ∼1 μm when reducing the grain size. Reducing the size further shows critical dependence on the history of domain structures, particularly with SV states that transition through a so‐called “unstable zone” leading to the recently observed hard‐aligned SV states that proceed to unwind to SD yet remain hard aligned.

Journal article

Penny C, Muxworthy A, Fabian K, 2019, Mean-field modelling of magnetic nanoparticles: The effect of particle size and shape on the Curie temperature, Physical review B: Condensed matter and materials physics, Vol: 99, ISSN: 1098-0121

A Heisenberg mean-field model is used to study the effect of size and shape on the Curie temperature of magnetic nanoparticles. Simple cubic, body-centered cubic, and magnetite nanoparticles are modelled as spheres, cubes, and needlelike particles. The Curie temperatures of particles of different shape, but with the same crystal structure and smallest dimension d, are found to differ. The range in the value of the Curie temperature between particles of different shape, ΔTC, is found to be ∼20% of the bulk value of TC in particles where d<10 atoms. As particle size increases, the value of ΔTC reduces rapidly and becomes negligible above a threshold size. This threshold size differs between systems and is controlled predominantly by crystal structure. All systems were fit to the finite-size scaling equation, with values of the scaling exponent ν found to lie between 0.46 and 0.55, in good agreement with the expected value of ν=0.5. No trend in the value of ν due to shape was found.

Journal article

Ku J, Valdez-Grijalva M, Deng R, Zuo W, Chen Q, Lin H, Muxworthy Aet al., 2019, Modelling external magnetic fields of magnetite particles: From micro- to macro-scale, Geosciences, Vol: 9, ISSN: 2076-3263

We determine the role of particle shape in the type of magnetic extraction processes used in mining. We use a micromagnetic finite element method (FEM) to analyze the effect of external magnetic fields on the magnetic structures of sub-micron magnetite particles. In non-saturating fields, the magnetite particles contain multiple possible non-uniform magnetization states. The non-uniformity was found to gradually disappear with increasing applied field strength; at 100 mT the domain structure became near uniform; at 300 mT the magnetic structure saturates and the magnetization direction aligned with the field. In magnetic separation techniques, we suggest that 100 mT is the optimal field for magnetite to maximize the magnetic field with the lowest energy transfer; larger particles, i.e., &gt;1 µm, will likely saturate in smaller fields than this. We also examined the effect of external magnetic fields on a much larger irregular particle (L × W × H = 179.5 × 113 × 103 μm) that was too large to be examined using micromagnetics. To do this we used COMSOL. The results show the relative difference between the magnitude of magnetic flux density of the particle and that of a corresponding sphere of the same volume is &lt;5% when the distance to the particle geometry center is more than five times the sphere radius. The ideas developed in this paper have the potential to improve magnetic mineral extraction yield.

Journal article

Valdez-Grijalva MA, Muxworthy AR, 2019, First-order reversal curve (FORC) diagrams of nanomagnets with cubic magnetocrystalline anisotropy: a numerical approach, Journal of Magnetism and Magnetic Materials, Vol: 471, Pages: 359-364, ISSN: 0304-8853

First-order reversal curve (FORC) diagrams are increasingly used as a material’s magnetic domain state fingerprint. FORC diagrams of noninteracting dispersions of single-domain (SD) particles with uniaxial magnetocrystalline anisotropy (MCA) are well studied. However, a large class of materials possess a cubic MCA, for which the FORC diagram properties of noninteracting SD particle dispersions are less understood. A coherent rotation model was implemented to study the FORC diagram properties of noninteracting ensembles of SD particles with positive and negative MCA constants. The pattern formation mechanism is identified and related to the irreversible events the individual particles undergo. Our results support the utility of FORC diagrams for the identification of noninteracting to weakly-interacting SD particles with cubic MCA.

Journal article

Nagy L, Williiams W, Tauxe L, Muxworthy A, Ferreira Iet al., 2019, Thermomagnetic recording fidelity of nanometer sized iron: implications for planetary magnetism, Proceedings of the National Academy of Sciences, ISSN: 0027-8424

Journal article

Ku J, Liu X, Muxworthy AR, Miao Z, Valdez M, Chen H, Deng R, Zuo W, Yin Wet al., 2018, Simplified modelling of particle magnetic induction field based on FEM, AMICR 2018, Publisher: WILEY, Pages: 54-55, ISSN: 1742-7835

Conference paper

Valdez-Grijalva MA, Muxworthy AR, Williams W, ó Conbhui P, Nagy L, Roberts AP, Heslop Det al., 2018, Magnetic vortex effects on first-order reversal curve (FORC) diagrams for greigite dispersions, Earth and Planetary Science Letters, Vol: 501, Pages: 103-111, ISSN: 0012-821X

First-order reversal curve (FORC) diagrams are used increasingly in geophysics for magnetic domain state identification. The domain state of a magnetic particle is highly sensitive to particle size, about which FORC diagrams provide valuable information. However, the FORC signal of particles with nonuniform magnetisations, which are the main carrier of natural remanent magnetisations in many systems, is still poorly understood. In this study, the properties of non-interacting, randomly oriented dispersions of greigite (Fe3S4) in the uniform single-domain (SD) to non-uniform single-vortex (SV) size range are investigated via micromagnetic calculations. Signals for SD particles () are found to be in excellent agreement with previous SD coherent-rotation studies. A transitional range from to is identified for which a mixture of SD and SV behaviour produces complex FORC diagrams. Particles have purely SV behaviour with the remanent state for all particles in the ensemble in the SV state. It is found that for SV ensembles the FORC diagram provides a map of vortex nucleation and annihilation fields and that the FORC distribution peak should not be interpreted as the coercivity of the sample, but as a vortex annihilation field on the path to saturation.

Journal article

Evans ME, Muxworthy AR, 2018, Vaalbara Palaeomagnetism, Canadian Journal of Earth Sciences, Vol: 56, Pages: 912-916, ISSN: 0008-4077

Vaalbara is the name given to a proposed configuration of continental blocks—the Kaapvaal craton (southern Africa) and the Pilbara craton (north-western Australia)—thought to be the Earth’s oldest supercraton assemblage. Its temporal history is poorly defined, but it has been suggested that it was stable for at least 400 million years, between 3.1 and 2.7 Ga. Here, we present an updated analysis that shows that the existence of a single supercraton between ∼2.9 and ∼2.7 Ga is inconsistent with the available palaeomagnetic data.

Journal article

Zhang Y, Jia D, Muxworthy AR, Li Y, Xia B, Xie Z, Hu J, Zi J, Liu Wet al., 2018, The Chemical Remagnetization of Ediacaran Dolomite in the Taishan Paleo-Reservoir, South China, JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, Vol: 123, Pages: 6161-6175, ISSN: 2169-9313

Journal article

Roberts AP, Zhao X, Harrison RJ, Heslop D, Muxworthy AR, Rowan CJ, Larrasoana J-C, Florindo Fet al., 2018, Signatures of Reductive Magnetic Mineral Diagenesis From Unmixing of First-Order Reversal Curves, JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, Vol: 123, Pages: 4500-4522, ISSN: 2169-9313

Journal article

Harrison RJ, Muraszko J, Heslop D, Lascu I, Muxworthy AR, Roberts APet al., 2018, An Improved Algorithm for Unmixing First-Order Reversal Curve Diagrams Using Principal Component Analysis, GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, Vol: 19, Pages: 1595-1610, ISSN: 1525-2027

Journal article

Ó Conbhuí P, Williams W, Fabian K, Muxworthy AR, Ridley P, Nagy Let al., 2018, MERRILL: micromagnetic earth related robust interpreted language laboratory, Geochemistry, Geophysics, Geosystems, Vol: 19, Pages: 1080-1106, ISSN: 1525-2027

Complex magnetic domain structures and the energy barriers between them are responsiblefor pseudo-single-domain phenomena in rock magnetism and contribute significantly to the magneticremanence of paleomagnetic samples. This article introduces MERRILL, an open source software packagefor three-dimensional micromagnetics optimized and designed for the calculation of such complexstructures. MERRILL has a simple scripting user interface that requires little computational knowledge to usebut provides research strength algorithms to model complex, inhomogeneous domain structures inmagnetic materials. It uses a finite element/boundary element numerical method, optimally suited forcalculating magnetization structures of local energy minima (LEM) in irregular grain geometries that are ofinterest to the rock and paleomagnetic community. MERRILL is able to simulate the magnetic characteristicsof LEM states in both single grains, and small assemblies of interacting grains, including saddle-point pathsbetween nearby LEMs. Here the numerical model is briefly described, and an overview of the scriptinglanguage and available commands is provided. The open source nature of the code encourages futuredevelopment of the model by the scientific community.

Journal article

Shah J, Williams W, Almeida TP, Nagy L, Muxworthy AR, Kovacs A, Valdez-Grijalva MA, Fabian K, Russell SS, Genge M, Dunin-Borkowski REet al., 2018, The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling, Nature Communications, Vol: 9, ISSN: 2041-1723

Recordings of magnetic fields, thought to be crucial to our Solar System’s rapid accretion, are potentially retained in unaltered nanometric low-Ni kamacite (~metallic Fe) grains encased within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However, most of these kamacite grains are magnetically non-uniform, so their ability to retain four-billion-year-old magnetic recordings cannot be estimated by previous theories, which assume only uniform magnetization. Here, we demonstrate that non-uniformly magnetized nanometric kamacite grains are stable over Solar System timescales and likely the primary carrier of remanence in dusty olivine. By performing in-situ temperature-dependent nanometric magnetic measurements using off-axis electron holography, we demonstrate the thermal stability of multi-vortex kamacite grains from the chondritic Bishunpur meteorite. Combined with numerical micromagnetic modeling, we determine the stability of the magnetization of these grains. Our study shows that dusty olivine kamacite grains are capable of retaining magnetic recordings from the accreting Solar System.

Journal article

Evans ME, Muxworthy AR, 2018, A re-appraisal of the proposed rapid Matuyama–Brunhes geomagnetic reversal in the Sulmona Basin, Italy, Geophysical Journal International, Vol: 213, Pages: 1744-1750, ISSN: 0956-540X

An extremely sharp magnetic reversal observed in lacustrine sediments in central Italy has been interpreted as a record of the Matuyama-Brunhes geomagnetic polarity reversal that may represent less than a decade (Sagnotti et al., 2014. 2016). Here, we report new results from the same Sulmona Basin outcrop that question this interpretation. In particular, we find evidence of reversed (Matuyama) directions well above the proposed Matuyama-Brunhes Boundary (MBB). Coercivity spectra of anhysteretic remanent magnetization (ARM) imply a 3-component magnetic mineralogy: low-, intermediate-, and high-coercivity. The low-coercivity component is found in all but one of the samples and carries a strong modern overprint seen throughout the section. The high-coercivity component is dominated by volcanic material which is prone to remagnetization. Since it is much more magnetic than the surrounding lacustrine sediments, it may influence the remanence signal even when present at very low concentrations. The intermediate-coercivity component is the main carrier of any true primary remanence, but whether or not this can be isolated depends on the blocking-temperature and coercivity spectra of individual samples, and on the demagnetization method used. The complexity of the magnetization, the reversed zones above the proposed MBB, and the normal zones that Sagnotti and 2 colleagues found below it, lead to the conclusion that this section does not carry a reliable high-resolution record of the geomagnetic field. Thus, we feel that inferences about the stratigraphic position and duration of the MBB are premature.

Journal article

Roberts AP, Almeida TP, Church NS, Harrison RJ, Heslop D, Li Y, Li J, Muxworthy AR, Williams W, Zhao Xet al., 2017, Resolving the origin of pseudo-single domain magnetic behavior, Journal of Geophysical Research, Vol: 122, Pages: 9534-9558, ISSN: 0148-0227

The term “pseudo-single domain” (PSD) has been used to describe the transitional state in rockmagnetism that spans the particle size range between the single domain (SD) and multidomain (MD) states.The particle size range for the stable SD state in the most commonly occurring terrestrial magneticmineral, magnetite, is so narrow (~20–75 nm) that it is widely considered that much of the paleomagneticrecord of interest is carried by PSD rather than stable SD particles. The PSD concept has, thus, become thedominant explanation for the magnetization associated with a major fraction of particles that recordpaleomagnetic signals throughout geological time. In this paper, we argue that in contrast to the SD and MDstates, the term PSD does not describe the relevant physical processes, which have been documentedextensively using three-dimensional micromagnetic modeling and by parallel research in material scienceand solid-state physics. We also argue that features attributed to PSD behavior can be explained bynucleation of a single magnetic vortex immediately above the maximum stable SD transition size. Withincreasing particle size, multiple vortices, antivortices, and domain walls can nucleate, which producevariable cancellation of magnetic moments and a gradual transition into the MD state. Thus, while the termPSD describes a well-known transitional state, it fails to describe adequately the physics of the relevantprocesses. We recommend that use of this term should be discontinued in favor of “vortex state,” whichspans a range of behaviors associated with magnetic vortices.

Journal article

Valdez-Grijalva MA, Nagy L, Muxworthy AR, Williams W, Fabian Ket al., 2017, The magnetic structure and palaeomagnetic recording fidelity of sub-micron greigite (Fe3S4), Earth and Planetary Science Letters, Vol: 483, Pages: 76-89, ISSN: 0012-821X

We present the results of a finite-element micromagnetic model of View the MathML source to View the MathML source greigite (Fe3S4) grains with a variety of equant morphologies. This grain size range covers the magnetic single-domain (SD) to pseudo single-domain (PSD) transition, and possibly also the PSD to multi-domain (MD) transition. The SD–PSD threshold d0 is determined to be View the MathML source depending on grain shape. The nudged elastic-band method was used to determine the room temperature energy barriers between stable states and thus the blocking volumes. It is found that, in the absence of interparticle magnetostatic interactions, the magnetisation of equant SD greigite is not stable on a geological scale and only PSD grains View the MathML source can be expected to carry a stable magnetisation over billion-year timescales, i.e., all non-interacting SD particles are essentially superparamagnetic. We further identify a mechanism for the PSD to multi-domain (MD) transition, which is of a continuous nature from PSD nucleation up to View the MathML source, when structures typical of MD behaviour like closure domains begin to form.

Journal article

Paterson GA, Muxworthy AR, Yamamoto Y, Pan Yet al., 2017, Bulk magnetic domain stability controls paleointensity fidelity, Proceedings of the National Academy of Sciences, Vol: 114, Pages: 13120-13125, ISSN: 0027-8424

Nonideal, nonsingle-domain magnetic grains are ubiquitous in rocks; however, they can have a detrimental impact on the fidelity of paleomagnetic records—in particular the determination of ancient magnetic field strength (paleointensity), a key means of understanding the evolution of the earliest geodynamo and the formation of the solar system. As a consequence, great effort has been expended to link rock magnetic behavior to paleointensity results, but with little quantitative success. Using the most comprehensive rock magnetic and paleointensity data compilations, we quantify a stability trend in hysteresis data that characterizes the bulk domain stability (BDS) of the magnetic carriers in a paleomagnetic specimen. This trend is evident in both geological and archeological materials that are typically used to obtain paleointensity data and is therefore pervasive throughout most paleomagnetic studies. Comparing this trend to paleointensity data from both laboratory and historical experiments reveals a quantitative relationship between BDS and paleointensity behavior. Specimens that have lower BDS values display higher curvature on the paleointensity analysis plot, which leads to more inaccurate results. In-field quantification of BDS therefore reflects low-field bulk remanence stability. Rapid hysteresis measurements can be used to provide a powerful quantitative method for preselecting paleointensity specimens and postanalyzing previous studies, further improving our ability to select high-fidelity recordings of ancient magnetic fields. BDS analyses will enhance our ability to understand the evolution of the geodynamo and can help in understanding many fundamental Earth and planetary science questions that remain shrouded in controversy.

Journal article

Almeida TP, Muxworthy AR, Kovacs A, Williams W, Dunin-Borkowski REet al., 2017, Observation of thermally-induced magnetic relaxation in a magnetite grain using off-axis electron holography, Journal of Physics : Conference Series, Vol: 902, ISSN: 1742-6588

A synthetic basalt comprising magnetic Fe3O4 grains (~ 50 nm to ~ 500 nm in diameter) is investigated using a range of complementary nano-characterisation techniques. Off-axis electron holography combined with in situ heating allowed for the visualisation of the thermally-induced magnetic relaxation of an Fe3O4 grain (~ 300 nm) from an irregular domain state into a vortex state at 550˚C, just below its Curie temperature, with the magnetic intensity of the vortex increasing on cooling.

Journal article

Muxworthy AR, 2017, Considerations for latitudinal time-averaged-field palaeointensity analysis of the last five million years, Frontiers in Earth Science, ISSN: 2296-6463

Journal article

Di Chiara A, Muxworthy AR, Trindade RIF, Bispo-Santos Fet al., 2017, Paleoproterozoic Geomagnetic Field Strength From the Avanavero Mafic Sills, Amazonian Craton, Brazil, Geochemistry, Geophysics, Geosystems, Vol: 18, Pages: 3891-3903, ISSN: 1525-2027

A recent hypothesis has suggested that Earth's inner core nucleated during the Mesoproterozoic, as evidenced by a rapid increase in the paleointensity (ancient geomagnetic field intensity) record; however, paleointensity data during the Paleoproterozoic and Mesoproterozoic period are limited. To address this problem, we have determined paleointensity from samples from three Paleoproterozoic Avanavero mafic sills (Amazonian Craton, Brazil): Cotingo, 1782 Ma, Puiuà 1788, and Pedra Preta, 1795 Ma. We adopted a multi-protocol approach for paleointensity estimates combining Thellier-type IZZI and LTD-IZZI methods, and the non-heating Preisach protocol. We obtained an average VDM value of 1.3 ± 0.7 × 1022Am2 (Cotingo) of 2.0 ± 0.4 × 1022Am2 (Puiuà) and 6 ± 4 × 1022Am2 (Pedra Preta); it is argued that the Cotingo estimate is the most robust. Our results are the first data from the upper Paleoproterozoic for South America and are comparable to data available from other regions and similar periods. The new data do not invalidate the hypothesis of that Earth's inner core nucleated during the Mesoproterozoic.

Journal article

Nagy L, Williams W, Muxworthy AR, Fabian K, Almeida TP, Ó Conbhuí P, Shcherbakov Vet al., 2017, Stability of equidimensional pseudo-single domain magnetite over billion year time-scales, Proceedings of the National Academy of Sciences of the United States of America, Vol: 114, Pages: 10356-10360, ISSN: 1091-6490

Interpretations of paleomagnetic observations assume that naturally occurring magnetic particles can retain their primary magnetic recording over billions of years. The ability to retain a magnetic recording is inferred from laboratory measurements, where heating causes demagnetization on the order of seconds. The theoretical basis for this inference comes from previous models that assume only the existence of small, uniformly magnetized particles, whereas the carriers of paleomagnetic signals in rocks are usually larger, nonuniformly magnetized particles, for which there is no empirically complete, thermally activated model. This study has developed a thermally activated numerical micromagnetic model that can quantitatively determine the energy barriers between stable states in nonuniform magnetic particles on geological timescales. We examine in detail the thermal stability characteristics of equidimensional cuboctahedral magnetite and find that, contrary to previously published theories, such nonuniformly magnetized particles provide greater magnetic stability than their uniformly magnetized counterparts. Hence, nonuniformly magnetized grains, which are commonly the main remanence carrier in meteorites and rocks, can record and retain high-fidelity magnetic recordings over billions of years.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00497930&limit=30&person=true&page=2&respub-action=search.html