Imperial College London

Dr Syed Anas Imtiaz

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 6297anas.imtiaz Website

 
 
//

Location

 

907Electrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

41 results found

Imtiaz SA, Rodriguez-Villegas E, 2015, Automatic sleep staging using state machine-controlled decision trees., 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Publisher: IEEE, Pages: 378-381, ISSN: 1557-170X

Automatic sleep staging from a reduced number of channels is desirable to save time, reduce costs and make sleep monitoring more accessible by providing home-based polysomnography. This paper introduces a novel algorithm for automatic scoring of sleep stages using a combination of small decision trees driven by a state machine. The algorithm uses two channels of EEG for feature extraction and has a state machine that selects a suitable decision tree for classification based on the prevailing sleep stage. Its performance has been evaluated using the complete dataset of 61 recordings from PhysioNet Sleep EDF Expanded database achieving an overall accuracy of 82% and 79% on training and test sets respectively. The algorithm has been developed with a very small number of decision tree nodes that are active at any given time making it suitable for use in resource-constrained wearable systems.

Conference paper

Imtiaz SA, Rodriguez-Villegas E, 2015, An open-source toolbox for standardized use of PhysioNet Sleep EDF Expanded Database., 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC, Publisher: IEEE, Pages: 6014-6017, ISSN: 1557-170X

PhysioNet Sleep EDF database has been the most popular source of data used for developing and testing many automatic sleep staging algorithms. However, the recordings from this database has been used in an inconsistent fashion. For example, arbitrary selection of start and end times from long term recordings, data-hypnogram mismatches, different performance metrics and hypnogram conversion from R&K to AASM. All these differences result in different data sections and performance metrics being used by researchers thereby making any direct comparison between algorithms very difficult. Recently, a superset of this database has been made available on PhysioNet, known as the Sleep EDF Expanded Database which includes 61 recordings. This provides an opportunity to standardize the way in which signals from this database should be used. With this goal in mind, we present in this paper a toolbox for automatically downloading and extracting recordings from the Sleep EDF Expanded database and converting them to a suitable format for use in MATLAB. This toolbox contains functions for selecting appropriate data for sleep analysis (based on our previous recommendations for sleep staging), hypnogram conversion and computation of performance metrics. Its use makes it simpler to start using the new sleep database and also provides a foundation for much-needed standardization in this research field.

Conference paper

Imtiaz SA, Logesparan L, Rodriguez-Villegas E, 2015, Performance-Power Consumption Tradeoff in Wearable Epilepsy Monitoring Systems, IEEE Journal of Biomedical and Health Informatics, Vol: 19, Pages: 1019-1028, ISSN: 2168-2208

Automated seizure detection methods can be used to reduce time and costs associated with analyzing large volumes of ambulatory EEG recordings. These methods however have to rely on very complex, power hungry algorithms, implemented on the system backend, in order to achieve acceptable levels of accuracy. In size, and therefore power-constrained EEG systems, an alternative approach to the problem of data reduction is online data selection, in which simpler algorithms select potential epileptiform activity for discontinuous recording but accurate analysis is still left to a medical practitioner. Such a diagnostic decision support system would still provide doctors with information relevant for diagnosis while reducing the time taken to analyze the EEG. For wearable systems with limited power budgets, data selection algorithm must be of sufficiently low complexity in order to reduce the amount of data transmitted and the overall power consumption. In this paper, we present a low-power hardware implementation of an online epileptic seizure data selection algorithm with encryption and data transmission and demonstrate the tradeoffs between its accuracy and the overall system power consumption. We demonstrate that overall power savings by data selection can be achieved by transmitting less than 40% of the data. We also show a 29% power reduction when selecting and transmitting 94% of all seizure events and only 10% of background EEG.

Journal article

Chen G, Imtiaz SA, Aguilar-Pelaez E, Rodriguez-Villegas Eet al., 2015, Algorithm for heart rate extraction in a novel wearable acoustic sensor., Healthcare Technology Letters, Vol: 2, Pages: 28-33, ISSN: 2053-3713

Phonocardiography is a widely used method of listening to the heart sounds and indicating the presence of cardiac abnormalities. Each heart cycle consists of two major sounds - S1 and S2 - that can be used to determine the heart rate. The conventional method of acoustic signal acquisition involves placing the sound sensor at the chest where this sound is most audible. Presented is a novel algorithm for the detection of S1 and S2 heart sounds and the use of them to extract the heart rate from signals acquired by a small sensor placed at the neck. This algorithm achieves an accuracy of 90.73 and 90.69%, with respect to heart rate value provided by two commercial devices, evaluated on more than 38 h of data acquired from ten different subjects during sleep in a pilot clinical study. This is the largest dataset for acoustic heart sound classification and heart rate extraction in the literature to date. The algorithm in this study used signals from a sensor designed to monitor breathing. This shows that the same sensor and signal can be used to monitor both breathing and heart rate, making it highly useful for long-term wearable vital signs monitoring.

Journal article

Rodriguez Villegas E, Imtiaz SA, 2014, A low computational cost algorithm for REM sleep detection using single channel EEG, Annals of Biomedical Engineering, Vol: 42, Pages: 2344-2359, ISSN: 0090-6964

The push towards low-power and wearable sleep systems requires using minimum number of recording channels to enhance battery life, keep processing load small and be more comfortable for the user. Since most sleep stages can be identified using EEG traces, enormous power savings could be achieved by using a single channel of EEG. However, detection of REM sleep from one channel EEG is challenging due to its electroencephalographic similarities with N1 and Wake stages. In this paper we investigate a novel feature in sleep EEG that demonstrates high discriminatory ability for detecting REM phases. We then use this feature, that is based on spectral edge frequency (SEF) in the 8–16 Hz frequency band, together with the absolute power and the relative power of the signal, to develop a simple REM detection algorithm. We evaluate the performance of this proposed algorithm with overnight single channel EEG recordings of 5 training and 15 independent test subjects. Our algorithm achieved sensitivity of 83%, specificity of 89% and selectivity of 61% on a test database consisting of 2221 REM epochs. It also achieved sensitivity and selectivity of 81 and 75% on PhysioNet Sleep-EDF database consisting of 8 subjects. These results demonstrate that SEF can be a useful feature for automatic detection of REM stages of sleep from a single channel EEG.

Journal article

Imtiaz SA, Rodriguez-Villegas E, 2014, Recommendations for Performance Assessment of Automatic Sleep Staging Algorithms, 36th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Publisher: IEEE, Pages: 5044-5047, ISSN: 1557-170X

A number of automatic sleep scoring algorithms have been published in the last few years. These can potentially help save time and reduce costs in sleep monitoring. However, the use of both R&K and AASM classification, different databases and varying performance metrics makes it extremely difficult to compare these algorithms. In this paper, we describe some readily available polysomnography databases and propose a set of recommendations and performance metrics to promote uniform testing and direct comparison of different algorithms. We use two different polysomnography databases with a simple sleep staging algorithm to demonstrate the usage of all recommendations and presentation of performance results. We also illustrate how seemingly similar results using two different databases can have contrasting accuracies in different sleep stages. Finally, we show how selection of different training and test subjects from the same database can alter the final performance results.

Conference paper

Imtiaz SA, Casson AJ, Rodriguez-Villegas E, 2014, Compression in Wearable Sensor Nodes: Impacts of Node Topology, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, Vol: 61, Pages: 1080-1090, ISSN: 0018-9294

Journal article

Imtiaz SA, Rodriguez-Villegas E, 2014, Evaluating the use of line length for automatic sleep spindle detection, 36th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Publisher: IEEE, Pages: 5024-5027, ISSN: 1557-170X

Conference paper

Imtiaz SA, Saremi-Yarahmadi S, Rodriguez-Villegas E, 2013, Automatic detection of sleep spindles using Teager energy and spectral edge frequency, IEEE Biomedical Circuits and Systems Conference (BioCAS), Publisher: IEEE, Pages: 262-265

Sleep spindles are the hallmark of N2 stage of sleep. They are transient waveforms observed on sleep electroencephalogram and their identification is required for sleep staging. Due to the large number of sleep spindles appearing on an overnight sleep EEG, automating the detection of sleep spindles would be desirable, not only to save specialist time but also for fully automated sleep staging systems. A simple algorithm for automatic sleep spindle detection is presented in this paper using only one channel of EEG input. This algorithm uses Teager energy and spectral edge frequency to mark sleep spindles and results in a sensitivity of 80% and specificity of about 98%. It is also shown that more than 91% of spindles detected by the algorithm were in N2 and N3 stages combined.

Conference paper

Logesparan L, Casson AJ, Imtiaz SA, Rodriguez-Villegas Eet al., 2013, Discriminating between best performing features for seizure detection and data selection, 35th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Publisher: IEEE, Pages: 1692-1695, ISSN: 1557-170X

Seizure detection algorithms have been developed to solve specific problems, such as seizure onset detection, occurrence detection, termination detection and data selection. It is thus inherent that each type of seizure detection algorithm would detect a different EEG characteristic (feature). However most feature comparison studies do not specify the seizure detection problem for which their respective features have been evaluated. This paper shows that the best features/algorithm bases are not the same for all types of algorithms but depend on the type of seizure detection algorithm wanted. To demonstrate this, 65 features previously evaluated for online seizure data selection are re-evaluated here for seizure occurrence detection, using performance metrics pertinent to each seizure detection type whilst keeping the testing methodology the same. The results show that the best performing features/algorithm bases for data selection and occurrence detection algorithms are different and that it is more challenging to achieve high detection accuracy for the former seizure detection type. This paper also provides a comprehensive evaluation of the performance of 65 features for seizure occurrence detection to aid future researchers in choosing the best performing feature(s) to improve seizure detection accuracy.

Conference paper

Logesparan L, Imtiaz SA, Casson AJ, Aguilar-Pelaez E, Rodriguez-Villegas Eet al., 2012, A 1.8 mW 12 channel wireless seizure detector for miniaturized portable EEG systems, 2012 9th International Conference on Ubiquitous Healthcare (u-Healthcare 2012)

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00575244&limit=30&person=true&page=2&respub-action=search.html