Imperial College London

DrAudreyde Nazelle

Faculty of Natural SciencesCentre for Environmental Policy

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 7319anazelle Website

 
 
//

Location

 

20416 Prince's GardensSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

159 results found

Yang X, Orjuela JP, McCoy E, Vich G, Anaya-Boig E, Avila-Palencia I, Brand C, Carrasco-Turigas G, Dons E, Gerike R, Götschi T, Nieuwenhuijsen M, Panis LI, Standaert A, de Nazelle Aet al., 2022, The impact of black carbon (BC) on mode-specific galvanic skin response (GSR) as a measure of stress in urban environments., Environ Res, Vol: 214

Previous research has shown that walking and cycling could help alleviate stress in cities, however there is poor knowledge on how specific microenvironmental conditions encountered during daily journeys may lead to varying degrees of stress experienced at that moment. We use objectively measured data and a robust causal inference framework to address this gap. Using a Bayesian Doubly Robust (BDR) approach, we find that black carbon exposure statistically significantly increases stress, as measured by Galvanic Skin Response (GSR), while cycling and while walking. Augmented Outcome Regression (AOR) models indicate that greenspace exposure and the presence of walking or cycling infrastructure could reduce stress. None of these effects are statistically significant for people in motorized transport. These findings add to a growing evidence-base on health benefits of policies aimed at decreasing air pollution, improving active travel infrastructure and increasing greenspace in cities.

Journal article

Tiernan H, Friedman S, Clube RKM, Burgman MA, Castillo AC, Stettler MEJ, Kazarian SG, Wright S, De Nazelle Aet al., 2022, Implementation of a structured decision-making framework to evaluate and advance understanding of airborne microplastics, Environmental Science and Policy, Vol: 135, Pages: 169-181, ISSN: 1462-9011

Microplastic pollution is increasingly recognised as a global environmental challenge which stems from the rapid growth of the use of petrochemical-derived plastic. As researchers and practitioners face a myriad of environmental challenges, oceanic microplastic pollution has so far dominated interest. However, airborne microplastics present an increasing environmental and public health concern. There is currently a need for research addressing this emerging challenge, and at the same time, the lack of knowledge and consensus regarding airborne microplastics presents an obstacle to action. The purpose of this study is to utilise a participatory Structured Decision-Making (SDM) approach to understand the perspectives of a range of stakeholders involved in the microplastics landscape, and subsequently refine common research priorities and knowledge gaps to advance the field. Through two participatory workshops, we first defined shared objectives of stakeholders and then negotiated best courses of action to achieve these objectives based on discussion between stakeholders and facilitators. The qualitative approach taken has enabled the full, complex and multidisciplinary aspects of the research into airborne microplastic pollution to be considered. Our findings highlight some important potential consequences of airborne microplastic pollution, including impacts on human health, and the need for more interdisciplinary research, and collaborative, integrated approaches in this area. As a result of the first workshop, five fundamental objectives on the theme of airborne microplastics were identified. As a direct consequence of this, participants identified 84 actions split across eight themes, which are outlined later in this paper.

Journal article

Olsen JR, Nicholls N, Caryl F, Mendoza JO, Panis LI, Dons E, Laeremans M, Standaert A, Lee D, Avila-Palencia I, de Nazelle A, Nieuwenhuijsen M, Mitchell Ret al., 2022, Day-to-day intrapersonal variability in mobility patterns and association with perceived stress: A cross-sectional study using GPS from 122 individuals in three European cities, SSM-POPULATION HEALTH, Vol: 19, ISSN: 2352-8273

Journal article

Barban P, De Nazelle A, Chatelin S, Quirion P, Jean Ket al., 2022, Assessing the Health Benefits of Physical Activity Due to Active Commuting in a French Energy Transition Scenario, INTERNATIONAL JOURNAL OF PUBLIC HEALTH, Vol: 67, ISSN: 1661-8556

Journal article

Goel R, Goodman A, Aldred R, Nakamura R, Tatah L, Garcia LMT, Diomedi-Zapata B, de Sa TH, Tiwari G, de Nazelle A, Tainio M, Buehler R, Gotschi T, Woodcock Jet al., 2022, Cycling behaviour in 17 countries across 6 continents: levels of cycling, who cycles, for what purpose, and how far?, Transport Reviews, Vol: 42, Pages: 58-81, ISSN: 0144-1647

International comparisons of cycling behaviour have typically been limited to high-income countries and often limited to the prevalence of cycling, with lack of discussions on demographic and trip characteristics. We used a combination of city, regional, and national travel surveys from 17 countries across the six continents, ranging from years 2009 through 2019. We present a descriptive analysis of cycling behaviour including level of cycling, trip purpose and distance, and user demographics, at the city-level for 35 major cities (>1 million population) and in urbanised areas nationwide for 11 countries. The Netherlands, Japan and Germany are among the highest cycling countries and their cities among the highest cycling cities. In cities and countries with high cycling levels, cycling rates tend to be more equal between work and non-work trips, whereas in geographies with low cycling levels, cycling to work is higher than cycling for other trips. In terms of cycling distance, patterns in high- and low-cycling geographies are more similar. We found a strong positive association between the level of cycling and women’s representation among cyclists. In almost all geographies with cycling mode share greater than 7% women made as many cycle trips as men, and sometimes even greater. The share of cycling trips by women is much lower in geographies with cycling mode shares less than 7%. Among the geographies with higher levels of cycling, children (<16 years) are often overrepresented. Older adults (>60 years) remain underrepresented in all geographies but have relatively better representation where levels of cycling are high. In low-cycling settings, females are underrepresented across all the age groups, and more so when older than 16 years. With increasing level of cycling, representation of females improves across all the age groups, and most significantly among children and older adults. Clustering the cities and countries into homogeneous cycling typo

Journal article

Nieuwenhuijsen MJ, Barrera-Gomez J, Basagana X, Cirach M, Daher C, Pulido MF, Iungman T, Gasparrini A, Hoek G, de Hoogh K, Khomenko S, Khreis H, de Nazelle A, Ramos A, Rojas-Rueda D, Barboza EP, Tainio M, Thondoo M, Tonne C, Woodcock J, Mueller Net al., 2022, Study protocol of the European Urban Burden of Disease Project: a health impact assessment study, BMJ OPEN, Vol: 12, ISSN: 2044-6055

Journal article

Negev M, Zea-Reyes L, Caputo L, Weinmayr G, Potter C, de Nazelle Aet al., 2022, Barriers and Enablers for Integrating Public Health Cobenefits in Urban Climate Policy, ANNUAL REVIEW OF PUBLIC HEALTH, Vol: 43, Pages: 255-270, ISSN: 0163-7525

Journal article

de Nazelle A, Roscoe CJ, Roca-Barcelo A, Sebag G, Weinmayr G, Dora C, Ebi KL, Nieuwenhuijsen MJ, Negev Met al., 2021, Urban Climate Policy and Action through a Health Lens-An Untapped Opportunity, INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, Vol: 18

Journal article

Jackson C, Johnson R, de Nazelle A, Goel R, de Sá TH, Tainio M, Woodcock Jet al., 2021, A guide to value of information methods for prioritising research in health impact modelling, Epidemiologic Methods, Vol: 10, Pages: 1-22, ISSN: 2194-9263

Health impact simulation models are used to predict how a proposed policy or scenario will affect population health outcomes. These models represent the typically-complex systems that describe how the scenarios affect exposures to risk factors for disease or injury (e.g. air pollution or physical inactivity), and how these risk factors are related to measures of population health (e.g. expected survival). These models are informed by multiple sources of data, and are subject to multiple sources of uncertainty. We want to describe which sources of uncertainty contribute most to uncertainty about the estimate or decision arising from the model. Furthermore, we want to decide where further research should be focused to obtain further data to reduce this uncertainty, and what form that research might take. This article presents a tutorial in the use of Value of Information methods for uncertainty analysis and research prioritisation in health impact simulation models. These methods are based on Bayesian decision-theoretic principles, and quantify the expected benefits from further information of different kinds. The expected value of partial perfect information about a parameter measures sensitivity of a decision or estimate to uncertainty about that parameter. The expected value of sample information represents the expected benefit from a specific proposed study to get better information about the parameter. The methods are applicable both to situations where the model is used to make a decision between alternative policies, and situations where the model is simply used to estimate a quantity (such as expected gains in survival under a scenario). This paper explains how to calculate and interpret the expected value of information in the context of a simple model describing the health impacts of air pollution from motorised transport. We provide a general-purpose R package and full code to reproduce the example analyses.

Journal article

Yang X, McCoy E, Anaya-Boig E, Avila-Palencia I, Brand C, Carrasco-Turigas G, Dons E, Gerike R, Goetschi T, Nieuwenhuijsen M, Orjuela JP, Int Panis L, Standaert A, de Nazelle Aet al., 2021, The effects of traveling in different transport modes on Galvanic Skin Response (GSR) as a measure of stress: an observational study, Environment International, Vol: 156, Pages: 1-10, ISSN: 0160-4120

BackgroundStress is one of many ailments associated with urban living, with daily travel a potential major source. Active travel, nevertheless, has been associated with lower levels of stress compared to other modes. Earlier work has relied on self-reported measures of stress, and on study designs that limit our ability to establish causation.ObjectivesTo evaluate effects of daily travel in different modes on an objective proxy measure of stress, the galvanic skin response (GSR).MethodsWe collected data from 122 participants across 3 European cities as part of the Physical Activity through Sustainable Transport Approaches (PASTA) study, including: GSR measured every minute alongside confounders (physical activity, near-body temperature) during three separate weeks covering 3 seasons; sociodemographic and travel information through questionnaires. Causal relationships between travel in different modes (the “treatment”) and stress were established by using a propensity score matching (PSM) approach to adjust for potential confounding and estimating linear mixed models (LMM) with individuals as random effects to account for repeated measurements. In three separate analyses, we compared GSR while cycling to not cycling, then walking to not walking then motorized (public or private) travel to any activity other than motorized travel.ResultsDepending on LMM formulations used, cycling reduces 1-minute GSR by 5.7% [95% CI: 2.0–16.9%] to 11.1% [95% CI: 5.0–24.4%] compared to any other activity. Repeating the analysis for other modes we find that: walking is also beneficial, reducing GSR by 3.9% [95% CI: 1.4–10.7%] to 5.7% [95% CI: 2.6–12.3%] compared to any other activity; motorized mode (private or public) in reverse increases GSR by up to 1.1% [95% CI: 0.5–2.9%].DiscussionActive travel offers a welcome way to reduce stress in urban dwellers’ daily lives. Stress can be added to the growing number of evidence-based reasons for

Journal article

Yang Z, He Z, Zhang K, Zeng L, de Nazelle Aet al., 2021, Investigation into Beijing commuters' exposure to ultrafine particles in four transportation modes: bus, car, bicycle and subway, ATMOSPHERIC ENVIRONMENT, Vol: 266, ISSN: 1352-2310

Journal article

Riley R, de Preux L, Capella P, Mejia C, Kajikawa Y, de Nazelle Aet al., 2021, How do we effectively communicate air pollution to change public attitudes and behaviours? A review, Sustainability Science, Vol: 16, Pages: 2027-2047, ISSN: 1862-4065

Solutions that engage the public are needed to tackle air pollution. Technological approaches are insufficient to bring urban air quality to recommended target levels, and miss out on opportunities to promote health more holistically through behavioural solutions, such as active travel. Behaviour change is not straightforward, however, and is more likely to be achieved when communication campaigns are based on established theory and evidence-based practices. We systematically reviewed the academic literature on air pollution communication campaigns aimed at influencing air pollution-related behaviour. Based on these findings, we developed an evidence-based framework for stimulating behaviour change through engagement. Across the 37 studies selected for analyses, we identified 28 different behaviours assessed using a variety of designs including natural and research-manipulated experiments, cross-sectional and longitudinal surveys and focus groups. While avoidance behaviour (e.g. reducing outdoor activity) followed by contributing behaviours (e.g. reducing idling) were by far the most commonly studied, supporting behaviour (e.g. civil engagement) shows promising results, with the added benefit that supporting local and national policies may eventually lead to the removal of social and physical barriers that prevent wider behavioural changes. Providing a range of actionable information will reduce disengagement due to feelings of powerlessness. Targeted localized information will appear more immediate and engaging, and positive framing will prevent cognitive dissonance whereby people rationalize their behaviour to avoid living with feelings of unease. Communicating the co-benefits of action may persuade individuals with different drivers but as an effective solution, it remains to be explored. Generally, finding ways to connect with people’s emotions, including activating social norms and identities and creating a sense of collective responsibility, provide prom

Journal article

Hoffmann B, Boogaard H, de Nazelle A, Andersen ZJ, Abramson M, Brauer M, Brunekreef B, Forastiere F, Huang W, Kan H, Kaufman JD, Katsouyanni K, Krzyzanowski M, Kuenzli N, Laden F, Nieuwenhuijsen M, Mustapha A, Powell P, Rice M, Roca-Barcelo A, Roscoe CJ, Soares A, Straif K, Thurston Get al., 2021, WHO Air Quality Guidelines 2021-aiming for healthier air for all: a joint statement by medical, public health, scientific societies and patient representative organisations, International Journal of Public Health, Vol: 66, ISSN: 1661-8564

Journal article

Laumbach RJ, Cromar KR, Adamkiewicz G, Carlsten C, Charpin D, Chan WR, de Nazelle A, Forastiere F, Goldstein J, Gumy S, Hallman WK, Jerrett M, Kipen HM, Pirozzi CS, Polivka BJ, Radbel J, Shaffer RE, Sin DD, Viegi Get al., 2021, Personal Interventions for Reducing Exposure and Risk for Outdoor Air Pollution, ANNALS OF THE AMERICAN THORACIC SOCIETY, Vol: 18, Pages: 1435-1443, ISSN: 1546-3222

Journal article

Nieuwenhuijsen M, Fletcher T, de Nazelle A, Etzel RAet al., 2021, Re: Sponsorship by Big Oil, Like the Tobacco Industry, Should be Banned by the Research Community, EPIDEMIOLOGY, Vol: 32, Pages: E11-E11, ISSN: 1044-3983

Journal article

Brand C, Dons E, Anaya-Boig E, Avila-Palencia I, Clark A, de Nazelle A, Gascon M, Gaupp-Berghausen M, Gerike R, Gotschi T, Iacorossi F, Kahlmeier S, Laeremans M, Nieuwenhuijsen MJ, Orjuela JP, Racioppi F, Raser E, Rojas-Rueda D, Standaert A, Stigell E, Sulikova S, Wegener S, Panis LIet al., 2021, The climate change mitigation effects of daily active travel in cities, Transportation Research Part D: Transport and Environment, Vol: 93, Pages: 1-18, ISSN: 1361-9209

Active travel (walking or cycling for transport) is considered the most sustainable form of personal transport. Yet its net effects on mobility-related CO2 emissions are complex and under-researched. Here we collected travel activity data in seven European cities and derived life cycle CO2 emissions across modes and purposes. Daily mobility-related life cycle CO2 emissions were 3.2 kgCO2 per person, with car travel contributing 70% and cycling 1%. Cyclists had 84% lower life cycle CO2 emissions than non-cyclists. Life cycle CO2 emissions decreased by −14% per additional cycling trip and decreased by −62% for each avoided car trip. An average person who ‘shifted travel modes’ from car to bike decreased life cycle CO2 emissions by 3.2 kgCO2/day. Promoting active travel should be a cornerstone of strategies to meet net zero carbon targets, particularly in urban areas, while also improving public health and quality of urban life.

Journal article

Brand C, Gotschi T, Dons E, Gerike R, Anaya-Boig E, Avila-Palencia I, de Nazelle A, Gascon M, Gaupp-Berghausen M, Iacorossi F, Kahlmeier S, Panis LI, Racioppi F, Rojas-Rueda D, Standaert A, Stigell E, Sulikova S, Wegener S, Nieuwenhuijsen MJet al., 2021, The climate change mitigation impacts of active travel: Evidence from a longitudinal panel study in seven European cities, GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, Vol: 67, Pages: 1-15, ISSN: 0959-3780

Active travel (walking or cycling for transport) is considered the most sustainable and low carbon form of getting from A to B. Yet the net effects of changes in active travel on changes in mobility-related CO2 emissions are complex and under-researched. Here we collected longitudinal data on daily travel behavior, journey purpose, as well as personal and geospatial characteristics in seven European cities and derived mobility-related lifecycle CO2 emissions over time and space. Statistical modelling of longitudinal panel (n = 1849) data was performed to assess how changes in active travel, the ‘main mode’ of daily travel, and cycling frequency influenced changes in mobility-related lifecycle CO2 emissions.We found that changes in active travel have significant lifecycle carbon emissions benefits, even in European urban contexts with already high walking and cycling shares. An increase in cycling or walking consistently and independently decreased mobility-related lifecycle CO2 emissions, suggesting that active travel substituted for motorized travel – i.e. the increase was not just additional (induced) travel over and above motorized travel. To illustrate this, an average person cycling 1 trip/day more and driving 1 trip/day less for 200 days a year would decrease mobility-related lifecycle CO2 emissions by about 0.5 tonnes over a year, representing a substantial share of average per capita CO2 emissions from transport. The largest benefits from shifts from car to active travel were for business purposes, followed by social and recreational trips, and commuting to work or place of education. Changes to commuting emissions were more pronounced for those who were younger, lived closer to work and further to a public transport station.Even if not all car trips could be substituted by active travel the potential for decreasing emissions is considerable and significant. The study gives policy and practice the empirical evidence needed to assess climate

Journal article

Kahlmeier S, Boig EA, Castro A, Smeds E, Benvenuti F, Eriksson U, Iacorossi F, Nieuwenhuijsen MJ, Panis LI, Rojas-Rueda D, Wegener S, de Nazelle Aet al., 2021, Assessing the policy environment for active mobility in cities-development and feasibility of the PASTA cycling and walking policy environment score, International Journal of Environmental Research and Public Health, Vol: 18, Pages: 1-13, ISSN: 1660-4601

The importance of setting a policy focus on promoting cycling and walking as sustainable and healthy modes of transport is increasingly recognized. However, to date a science-driven scoring system to assess the policy environment for cycling and walking is lacking. In this study, spreadsheet-based scoring systems for cycling and walking were developed, including six dimensions (cycling/walking culture, social acceptance, perception of traffic safety, advocacy, politics and urban planning). Feasibility was tested using qualitative data from pre-specified sections of semi-standardized interview and workshop reports from a European research project in seven cities, assessed independently by two experts. Disagreements were resolved by discussions of no more than 75 minutes per city. On the dimension “perception of traffic safety”, quantitative panel data were used. While the interrater agreement was fair, feasibility was confirmed in general. Validity testing against social norms towards active travel, modal split and network length was encouraging for the policy area of cycling. Rating the policy friendliness for cycling and walking separately was found to be appropriate, as different cities received the highest scores for each. Replicating this approach in a more standardized way would pave the way towards a transparent, evidence-based system for benchmarking policy approaches of cities towards cycling and walking.

Journal article

Tainio M, Andersen ZJ, Nieuwenhuijsen MJ, Hu L, de Nazelle A, An R, Garcia LMT, Goenka S, Zapata-Diomedi B, Bull F, de Sa THet al., 2021, Air pollution, physical activity and health: A mapping review of the evidence, ENVIRONMENT INTERNATIONAL, Vol: 147, ISSN: 0160-4120

Journal article

Corada K, Woodward H, Alaraj H, Collins CM, de Nazelle Aet al., 2021, A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas, Environmental Pollution, Vol: 269, Pages: 1-13, ISSN: 0269-7491

Global urban planning has promoted green infrastructure (GI) such as street trees, shrubs or other greenspace in order to mitigate air pollution. Although considerable attention has been paid to understanding particulate matter (PM) deposition on GI, there has been little focus on identifying which leaf traits might maximise airborne PM removal. This paper examines existing literature to synthesize the state of knowledge on leaf traits most relevant to PM removal. We systematically reviewed measurement studies that evaluated particulate matter accumulated on leaves on street trees, shrubs green roofs, and green walls, for a variety of leaf traits. Our final selection included 62 papers, most from field studies and a handful from wind tunnel studies. The following were variously promoted as useful traits: coniferous needle leaves; small, rough and textured broadleaves; lanceolate and ovate shapes; waxy coatings, and high-density trichomes. Consideration of these leaf traits, many of which are also associated with drought tolerance, may help to maximise PM capture. Although effective leaf traits were identified, there is no strong or consistent evidence to identify which is the most influential leaf trait in capturing PM. The diversity in sampling methods, wide comparison groups and lack of background PM concentration measures in many studies limited our ability to synthesize results. We found that several ancillary factors contribute to variations in the accumulation of PM on leaves, thus cannot recommend that selection of urban planting species be based primarily on leaf traits. Further research into the vegetation structural features and standardization of the method to measure PM on leaves is needed.

Journal article

Gascon M, Marquet O, Gràcia-Lavedan E, Ambròs A, Götschi T, Nazelle AD, Panis LI, Gerike R, Brand C, Dons E, Eriksson U, Iacorossi F, Ávila-Palència I, Cole-Hunter T, Nieuwenhuisjen MJet al., 2020, What explains public transport use? Evidence from seven European cities, Transport Policy, Vol: 99, Pages: 362-374, ISSN: 0967-070X

Backgroundthe relationships between the built environment characteristics and personal factors influencing public transport use and the ways they interact are not well understood.Objectivewe aim to advance the understanding of the relationship between built environment and frequency of public transport use in seven European cities, while accounting for other factors, such as individual values and attitudes.Methodsin this population-based cross-sectional study, we collected information on mobility behaviour including frequency of public transport use, individual characteristics, and attitudes towards transport, environment and health issues (N = 9952). Home and work/study built environment characteristics were determined with GIS-based techniques. We also applied factor and principal component analyses to define profiles of potential correlates. Logistic regression analyses for each frequency category of public transport use (1–3 days/month, 1–3 days/week, and daily or almost daily), using as reference “never or less than once a month”, were applied. City was included as random effect.ResultsOver all, a large percentage of participants reported daily or almost daily public transport use for travel (40.5%), with a wide range across cities (from 7.1% in Örebro to 59.8% in Zurich). Being female, highly educated, a student, or not working increased the odds of higher frequency of using public transport, while having access to a car and/or a bike reduced the odds. Living or working in high-density areas was associated with higher frequency of public transport use, while living or working in low-density areas was associated with lower frequency (1–3 days/month or 1–3 days/week). We observed interactions between built environment characteristics and having access to a car and/or a bike. For instance, greater distance between the residential and the work or study address increased the odds of higher frequency of public transport use

Journal article

Cruz-Piedrahita C, Howe C, de Nazelle A, 2020, Public health benefits from urban horticulture in the global north: A scoping review and framework, Global Transitions, Vol: 2, Pages: 246-256, ISSN: 2589-7918

Urban agriculture has increased rapidly in the Global North in recent decades. However, because most research has focused on developing countries, we still lack systematic information on the benefits, barriers, costs and risks of the practice of food production in cities of the Global North. Urban horticulture (UH) is the agriculture of plants for food consumption, materials production, or decoration, developed inside city boundaries. UH has recently been proposed as a tool to improve population health and urban biodiversity. This study takes a systems approach to reviewing the literature on the impacts of UH on public health, the environment and health behaviours, using the ecosystem services (ES) concept as lens. Using a scoping review methodology, 138 papers met the search criteria and these studies were used to develop a conceptual framework summarizing and synthesing the direct and indirect pathways in which urban horticulture and public health are interconnected. The resulting “eco”systems-based framework analyses and visualises the relationship between UH and public health and provides evidence for relationships (both positive and negative) between, and pathways linking, urban horticulture and benefits for mental health, physical activity, diet, and socialisation. This study demonstrates that UH can help to improve public health in cities of the Global North and makes the case for UH as a solution to tackling multiple health and societal challenges that arise in urban populations. We provide a framework to enable local authorities and urban stakeholders to maximise the benefits from, and reduce the risks related to, the practice of UH at a systems level.

Journal article

Heydari S, Tainio M, Woodcock J, de Nazelle Aet al., 2020, Estimating traffic contribution to particulate matter concentration in urban areas using a multilevel Bayesian meta-regression approach, Environment International, Vol: 141, Pages: 1-8, ISSN: 0160-4120

Quantifying traffic contribution to air pollution in urban settings is required to inform traffic management strategies and environmental policies that aim at improving air quality. Assessments and comparative analyses across multiple urban areas are challenged by the lack of datasets and methods available for global applications. In this study, we quantify the traffic contribution to particulate matter concentration in multiple cities worldwide by synthesising 155 previous studies reported in the World Health Organization (WHO)’s air pollution source apportionment data for PM10 and PM2.5. We employed a Bayesian multilevel meta-regression that accounts for uncertainties and captures both within- and between-study variations (in estimation methods, study protocols, etc.) through study-specific and location-specific explanatory variables. The final sample analysed in this paper covers 169 cities worldwide. Based on our analysis, traffic contribution to air pollution (particulate matter) varies from 5% to 61% in cities worldwide, with an average of 27%. We found that variability in the traffic contribution estimates reported worldwide can be explained by the region of study, publication year, PM size fraction, and population. Specifically, traffic contribution to air pollution in cities located in Europe, North America, or Oceania is on average 36% lower relative to the rest of the world. Traffic contribution is 28% lower among studies published after 2005 than those published on or before 2005. Traffic contribution is on average 24% lower among cities with less than 500,000 inhabitants and 19% higher when estimated based on PM10 relative to PM2.5. This quantitative summary overcomes challenges in the data and provides useful information for health impact modellers and decision-makers to assess impacts of traffic reduction policies.

Journal article

Branion-Calles M, Gotschi T, Nelson T, Anaya-Boig E, Avila-Palencia I, Castro A, Cole-Hunter T, de Nazelle A, Dons E, Gaupp-Berghausen M, Gerike R, Panis LI, Kahlmeier S, Nieuwenhuijsen M, Rojas-Rueda D, Winters Met al., 2020, Cyclist crash rates and risk factors in a prospective cohort in seven European cities, Accident Analysis and Prevention, Vol: 141, Pages: 1-12, ISSN: 0001-4575

Increased cycling uptake can improve population health, but barriers include real and perceived risks. Crash risk factors are important to understand in order to improve safety and increase cycling uptake. Many studies of cycling crash risk are based on combining diverse sources of crash and exposure data, such as police databases (crashes) and travel surveys (exposure), based on shared geography and time. When conflating crash and exposure data from different sources, the risk factors that can be quantified are only those variables common to both datasets, which tend to be limited to geography (e.g. countries, provinces, municipalities) and a few general road user characteristics (e.g. gender and age strata). The Physical Activity through Sustainable Transport Approaches (PASTA) project was a prospective cohort study that collected both crash and exposure data from seven European cities (Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zürich). The goal of this research was to use data from the PASTA project to quantify exposure-adjusted crash rates and model adjusted crash risk factors, including detailed sociodemographic characteristics, attitudes about transportation, neighbourhood built environment features and location by city. We used negative binomial regression to model the influence of risk factors independent of exposure. Of the 4,180 cyclists, 10.2 % reported 535 crashes. We found that overall crash rates were 6.7 times higher in London, the city with the highest crash rate, relative to Örebro, the city with the lowest rate. Differences in overall crash rates between cities are driven largely by crashes that did not require medical treatment and that involved motor-vehicles. In a parsimonious crash risk model, we found higher crash risks for less frequent cyclists, men, those who perceive cycling to not be well regarded in their neighbourhood, and those who live in areas of very high building density. Longitudinal collection of crash a

Journal article

Branion-Calles M, Winters M, Nelson T, de Nazelle A, Int Panis L, Avila-Palencia I, Anaya-Boig E, Rojas-Rueda D, Dons E, Gotschi Tet al., 2019, Impacts of study design on sample size, participation bias, and outcome measurement: A case study from bicycling research, Journal of Transport and Health, Vol: 15, Pages: 1-12, ISSN: 2214-1405

IntroductionMeasuring bicycling behaviour is critical to bicycling research. A common study design question is whether to measure bicycling behaviour once (cross-sectional) or multiple times (longitudinal). The Physical Activity through Sustainable Transport Approaches (PASTA) project is a longitudinal cohort study of over 10,000 participants from seven European cities over two years. We used PASTA data as a case study to investigate how measuring once or multiple times impacted three factors: a) sample size b) participation bias and c) accuracy of bicycling behaviour estimates.MethodsWe compared two scenarios: i) as if only the baseline data were collected (cross-sectional approach) and ii) as if the baseline plus repeat follow-ups were collected (longitudinal approach). We compared each approach in terms of differences in sample size, distribution of sociodemographic characteristics, and bicycling behaviour. In the cross-sectional approach, we measured participants long-term bicycling behaviour by asking for recall of typical weekly habits, while in the longitudinal approach we measured by taking the average of bicycling reported for each 7-day period.ResultsRelative to longitudinal, the cross-sectional approach provided a larger sample size and slightly better representation of certain sociodemographic groups, with worse estimates of long-term bicycling behaviour. The longitudinal approach suffered from participation bias, especially the drop-out of more frequent bicyclists. The cross-sectional approach under-estimated the proportion of the population that bicycled, as it captured ‘typical’ behaviour rather than 7-day recall. The magnitude and directionality of the difference between typical weekly (cross-sectional approach) and the average 7-day recall (longitudinal approach) varied depending on how much bicycling was initially reported.ConclusionsIn our case study we found that measuring bicycling once, resulted in a larger sample with better repres

Journal article

Yang L, van Dam KH, Anvari B, de Nazelle Aet al., 2019, Evaluating the impact of an integrated urban design of transport infrastructure and public space on human behavior and environmental quality: a case study in Beijing, Social Simulation Conference 2017, Publisher: Springer International Publishing, Pages: 121-133, ISSN: 2213-8684

Urban transport infrastructure can result in the physical, psychological and environmental separation of neighborhoods, public spaces and pedestrian networks, leading to negative impacts on citizens’ daily commutes, social activities and the quality of the ecosystem. An integrated design of transport infrastructure and public space is beneficial for mediating these negative impacts. In this paper, we propose an integrated methodology, which combines urban design, computational scenario evaluation and decision-making processes, based on a conceptual model of human and ecological needs-driven planning. To evaluate the impacts of the road network and public space design on individual outdoor activities, travel behavior and air pollution, an agent-based model is demonstrated. This model is then applied to a case study in Beijing, leading to hourly traffic volume maps and car-related air pollution heat maps of a baseline road network-public space design.

Conference paper

Dons E, Laeremans M, Orjuela JP, Avila-Palencia I, de Nazelle A, Nieuwenhuijsene M, Van Poppel M, Carrasco-Turigas G, Standaert A, De Boever P, Nawrot T, Panis LIet al., 2019, Transport most likely to cause air pollution peak exposures in everyday life: Evidence from over 2000 days of personal monitoring, Atmospheric Environment, Vol: 213, Pages: 424-432, ISSN: 1352-2310

BackgroundAir quality standards are typically based on long term averages – whereas a person may encounter exposure peaks throughout the day. Exposure peaks may contribute meaningfully to health impacts beyond their contribution to long term averages, and therefore should be considered alongside longer-term exposures. We aim to define and explain peak exposure to black carbon air pollution and look at the relationship between short peak exposures and longer term personal exposure.MethodsA peak detection algorithm was applied to pooled data from two independent studies. High-resolution personal black carbon monitoring was performed in 175 healthy adult volunteers for a minimum of two 24-h periods per person. At the same time, we retrieved information on the time-activity pattern. Data covered Belgium, Spain, and the United Kingdom. In total, 2053 monitoring days were included.ResultsExposure profiles revealed 2.8 ± 1.6 (avg ± SD) peaks per person per day. The average black carbon concentration during a peak was 4206 ng/m³. On 5.5% of the time participants were exposed to peak concentrations, but this contributed to 21.0% of their total exposure. The short time in transport (8%), was responsible for 32.7% of the peaks. 24.1% of the measurements in transport were categorized as peak exposure; while sleeping this was only 0.9%. When considering transport modes, participants were most likely to encounter peaks while cycling (34.0%). Most peaks were encountered at rush hour, from Monday through Friday, and in the cold season. Gender and age had no impact on the presence of peaks. Daily average black carbon exposure showed only a moderate correlation with peak frequency (r = 0.44). This correlation coefficient increased when considering longer term exposure to r > 0.60 from 10 days onward.ConclusionsThe occurrence of peaks varied substantially over time, across microenvironments and transport modes. Daily average exposure was moderately correlat

Journal article

An R, Shen J, Ying B, Tainio M, Andersen ZJ, de Nazelle Aet al., 2019, Impact of ambient air pollution on physical activity and sedentary behavior in China: A systematic review, Environmental Research, Vol: 176, Pages: 1-9, ISSN: 0013-9351

This study systematically reviewed scientific evidence linking ambient air pollution to physical activity and sedentary behavior in China. A keyword and reference search was conducted in PubMed, Web of Science, and the Cochrane Library. Predetermined selection criteria included—study designs: interventions or experiments, retrospective or prospective cohort studies, cross-sectional studies, and case-control studies; subjects: people of all ages; exposures: specific air pollutants and/or overall air quality; outcomes: physical activity and/or sedentary behavior; and country/area: mainland China. Ten studies met the selection criteria and were included in the review. Six adopted a cross-sectional design and the remaining four adopted a prospective cohort design. Four studies assessed a specific air pollutant namely particulate matter with diameter <2.5 μg/m3 (PM2.5), whereas the remaining six focused on overall air quality, defined using air quality indexes. Decline in overall air quality and increase in PM2.5 concentration were found to be associated with reduced daily/weekly duration of outdoor leisure-time and/or transportation-related physical activity such as walking but increased duration of daytime/nighttime sleeping among Chinese residents. In contrast, evidence linking overall air quality and PM2.5 concentration to sedentary behavior remains mixed and inconclusive. In conclusion, preliminary evidence indicates that ambient air pollution impacts Chinese residents’ daily physical activity-related behaviors. Future studies adopting objective measures of physical activity and a longitudinal or experimental study design are warranted to examine the impact of air pollution on sensitive sub-populations such as children, older adults and people with pre-existing conditions, and in locations outside China.

Journal article

Gascon M, Götschi T, de Nazelle A, Gracia E, Ambròs A, Márquez S, Marquet O, Avila-Palencia I, Brand C, Iacorossi F, Raser E, Gaupp-Berghausen M, Dons E, Laeremans M, Kahlmeier S, Sánchez J, Gerike R, Anaya-Boig E, Panis LI, Nieuwenhuijsen Met al., 2019, Correlates of walking for travel in seven European cities: The PASTA project., Environmental Health Perspectives, Vol: 127, Pages: 097003-1-097003-13, ISSN: 0091-6765

BACKGROUND: Although walking for travel can help in reaching the daily recommended levels of physical activity, we know relatively little about the correlates of walking for travel in the European context. OBJECTIVE: Within the framework of the European Physical Activity through Sustainable Transport Approaches (PASTA) project, we aimed to explore the correlates of walking for travel in European cities. METHODS: The same protocol was applied in seven European cities. Using a web-based questionnaire, we collected information on total minutes of walking per week, individual characteristics, mobility behavior, and attitude ( N = 7,875 ). Characteristics of the built environment (the home and the work/study addresses) were determined with geographic information system (GIS)-based techniques. We conducted negative binomial regression analyses, including city as a random effect. Factor and principal component analyses were also conducted to define profiles of the different variables of interest. RESULTS: Living in high-density residential areas with richness of facilities and density of public transport stations was associated with increased walking for travel, whereas the same characteristics at the work/study area were less strongly associated with the outcome when the residential and work/study environments were entered in the model jointly. A walk-friendly social environment was associated with walking for travel. All three factors describing different opinions about walking (ranging from good to bad) were associated with increased minutes of walking per week, although the importance given to certain criteria to choose a mode of transport provided different results according to the criteria. DISCUSSION: The present study supports findings from previous research regarding the role of the built environment in the promotion o

Journal article

Keidel D, Maria Anto J, Basagana X, Bono R, Burte E, Carsin A-E, Forsberg B, Fuertes E, Galobardes B, Heinrich J, de Hoogh K, Jarvis D, Kunzli N, Leynaert B, Marcon A, Le Moual N, de Nazelle A, Schindler C, Siroux V, Stempfelet M, Sunyer J, Temam S, Tsai M-Y, Varraso R, Jacquemin B, Probst-Hensch Net al., 2019, The role of socioeconomic status in the association of lung function and air pollution - A pooled analysis of three adult ESCAPE cohorts, International Journal of Environmental Research and Public Health, Vol: 16, ISSN: 1660-4601

Ambient air pollution is a leading environmental risk factor and its broad spectrum ofadverse health effects includes a decrease in lung function. Socioeconomic status (SES) is knownto be associated with both air pollution exposure and respiratory function. This study assesses therole of SES either as confounder or effect modifier of the association between ambient air pollutionand lung function. Cross-sectional data from three European multicenter adult cohorts were pooledto assess factors associated with lung function, including annual means of home outdoor NO2.Pre-bronchodilator lung function was measured according to the ATS-criteria. Multiple mixedlinear models with random intercepts for study areas were used. Three different factors (education,occupation and neighborhood unemployment rate) were considered to represent SES. NO2 exposurewas negatively associated with lung function. Occupation and neighborhood unemployment rateswere not associated with lung function. However, the inclusion of the SES-variable education improvedthe models and the air pollution-lung function associations got slightly stronger. NO2 associationswith lung function were not substantially modified by SES-variables. In this multicenter Europeanstudy we could show that SES plays a role as a confounder in the association of ambient NO2 exposurewith lung function.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00749077&limit=30&person=true