Imperial College London

DrAndreBrown

Faculty of MedicineInstitute of Clinical Sciences

Reader in Behavioural Phenomics
 
 
 
//

Contact

 

+44 (0)20 3313 8218andre.brown

 
 
//

Location

 

4.15BLMS BuildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

63 results found

Tom O, Ida B, Luigi F, Brown Aet al., 2023, Systematic creation and phenotyping of Mendelian disease models in C. elegans: towards large-scale drug repurposing, eLife, Vol: 12, ISSN: 2050-084X

There are thousands of Mendelian diseases with more being discovered weekly and the majority have no approved treatments. To address this need, we require scalable approaches that are relatively inexpensive compared to traditional drug development. In the absence of a validated drug target, phenotypic screening in model organisms provides a route for identifying candidate treatments. Success requires a screenable phenotype, however the right phenotype and assay may not be obvious for pleiotropic neuromuscular disorders. Here we show that high-throughput imaging and quantitative phenotyping can be conducted systematically on a panel of C. elegans disease model strains. We used CRISPR genome-editing to create 25 worm models of human Mendelian diseases and phenotyped them using a single standardised assay. All but two strains were significantly different from wild type controls in at least one feature. The observed phenotypes were diverse, but mutations of genes predicted to have related functions in their human orthologs led to similar behavioural differences in worms. As a proof-of-concept, we performed a drug repurposing screen of an FDA approved compound library, and identified two compounds that rescued the behavioural phenotype of a model of UNC80 deficiency. Our results show that a single assay to measure multiple phenotypes can be applied systematically to diverse Mendelian disease models. The relatively short time and low cost associated with creating and phenotyping multiple strains suggests that high-throughput worm tracking could provide a scalable approach to drug repurposing commensurate with the number of Mendelian diseases.

Journal article

Saida K, Marootain R, Sengoku T, Mitani T, Pagnamenta AT, Marafi D, Zaki MS, O'Brian TJ, Karimiani EG, Kaiyrzhanov R, Takizawa M, Ohori S, Leong HY, Akay G, Galehdari H, Zamani M, Romy R, Carroll CJ, Toosi MB, Ashrafzadeh F, Imannezhad S, Malek H, Ahangari N, Tomoum H, Gowda VK, Srinivasan VM, Murphy D, Dominik N, Elbendary HM, Rafat K, Yilmaz S, Kanmaz S, Serin M, Krishnakumar D, Gardham A, Maw A, Rao TS, Alsubhi S, Srour M, Buhas D, Jewett T, Goldberg RE, Shamseldin H, Frengen E, Misceo D, Stromme P, Ceroni JRM, Kim CA, Yesil G, Sengenc E, Guler S, Hull M, Parnes M, Aktas D, Anlar B, Bayram Y, Pehlivan D, Posey JE, Alayi S, Manshadi SAM, Alzaidan H, Al-Owain M, Alabdi L, Abdulwahab F, Sekiguchi F, Hamanaka K, Fujita A, Uchiyama Y, Mizuguchi T, Miyatake S, Miyake N, Elshafie RM, Salayev K, Guliyeva U, Alkuraya FS, Gleeson JG, Monaghan KG, Langley KG, Yang H, Motavaf M, Safari S, Alipour M, Ogata K, Brown AEX, Lupski JR, Houlden H, Matsumoto Net al., 2023, Brain monoamine vesicular transport disease caused by homozygous<i> SLC18A2</i> variants: A study in 42 affected individuals, GENETICS IN MEDICINE, Vol: 25, Pages: 90-102, ISSN: 1098-3600

Journal article

Rosenhahn E, O'Brien TJ, Zaki MS, Sorge I, Wieczorek D, Rostasy K, Vitobello A, Nambot S, Alkuraya FS, Hashem MO, Alhashem A, Tabarki B, Alamri AS, Al Safar AH, Bubshait DK, Alahmady NF, Gleeson JG, Abdel-Hamid MS, Lesko N, Ygberg S, Correia SP, Wredenberg A, Alavi S, Seyedhassani SM, Nasab ME, Hussien H, Omar TE, Harzallah I, Touraine R, Tajsharghi H, Morsy H, Houlden H, Shahrooei M, Ghavideldarestani M, Abdel-Salam GMH, Torella A, Zanobio M, Terrone G, Brunetti-Pierri N, Omrani A, Hentschel J, Lemke JR, Sticht H, Abou Jamra R, Brown AEX, Maroofian R, Platzer Ket al., 2022, Bi-allelic loss-of-function variants in PPFIBP1 cause a neurodevelopmental disorder with microcephaly, epilepsy, and periventricular calcifications, American Journal of Human Genetics, Vol: 109, Pages: 1421-1435, ISSN: 0002-9297

PPFIBP1 encodes for the liprin-β1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.

Journal article

Barlow I, Feriani L, Minga E, McDermott-Rouse A, O'Brien T, Liu Z, Hofbauer M, Stowers J, Andersen E, Ding S, Brown Aet al., 2022, Megapixel camera arrays enable high-resolution animal tracking in multiwell plates, Communications Biology, Vol: 5, ISSN: 2399-3642

Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in neuroscience, genetics, disease modelling, and drug discovery. An imaging system with sufficient throughput and spatiotemporal resolution would be capable of imaging a large number of animals, estimating their pose, and quantifying detailed behavioural differences at a scale where hundreds of treatments could be tested simultaneously. Here we report an array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient resolution to estimate the pose of C. elegans worms and to extract high-dimensional phenotypic fingerprints. We use the system to study behavioural variability across wild isolates, the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease models, and worms’ behavioural responses to drug treatment. Because the system is compatible with standard multiwell plates, it makes computational ethological approaches accessible in existing high-throughput pipelines.

Journal article

Nambyiah P, Brown AEX, 2021, Quantitative behavioural phenotyping to investigate anaesthesia induced neurobehavioural impairment, Scientific Reports, Vol: 11, Pages: 1-10, ISSN: 2045-2322

Anaesthesia exposure to the developing nervous system causes neuroapoptosis and behavioural impairment in vertebrate models. Mechanistic understanding is limited, and target-based approaches are challenging. High-throughput methods may be an important parallel approach to drug-discovery and mechanistic research. The nematode worm Caenorhabditis elegans is an ideal candidate model. A rich subset of its behaviour can be studied, and hundreds of behavioural features can be quantified, then aggregated to yield a ‘signature’. Perturbation of this behavioural signature may provide a tool that can be used to quantify the effects of anaesthetic regimes, and act as an outcome marker for drug screening and molecular target research. Larval C. elegans were exposed to: isoflurane, ketamine, morphine, dexmedetomidine, and lithium (and combinations). Behaviour was recorded, and videos analysed with automated algorithms to extract behavioural features. Anaesthetic exposure during early development leads to persisting behavioural variation (in total, 125 features across exposure combinations). Higher concentrations, and combinations of isoflurane with ketamine, lead to persistent change in a greater number of features. Morphine and dexmedetomidine do not appear to lead to behavioural impairment. Lithium rescues the neurotoxic phenotype produced by isoflurane. Findings correlate well with vertebrate research: impairment is dependent on agent, is concentration-specific, is more likely with combination therapies, and can potentially be rescued by lithium. These results suggest that C. elegans may be an appropriate model with which to pursue phenotypic screens for drugs that mitigate the neurobehavioural impairment. Some possibilities are suggested for how high-throughput platforms might be organised in service of this field.

Journal article

Martinez-Miguel VE, Lujan C, Espie-Caullet T, Martinez-Martinez D, Moore S, Backes C, Gonzalez S, Galimov ER, Brown AEX, Halic M, Tomita K, Rallis C, von der Haar T, Cabreiro F, Bjedov Iet al., 2021, Increased fidelity of protein synthesis extends lifespan, Cell Metabolism, Vol: 33, Pages: 2288-2300.e12, ISSN: 1550-4131

Loss of proteostasis is a fundamental process driving aging. Proteostasis is affected by the accuracy of translation, yet the physiological consequence of having fewer protein synthesis errors during multi-cellular organismal aging is poorly understood. Our phylogenetic analysis of RPS23, a key protein in the ribosomal decoding center, uncovered a lysine residue almost universally conserved across all domains of life, which is replaced by an arginine in a small number of hyperthermophilic archaea. When introduced into eukaryotic RPS23 homologs, this mutation leads to accurate translation, as well as heat shock resistance and longer life, in yeast, worms, and flies. Furthermore, we show that anti-aging drugs such as rapamycin, Torin1, and trametinib reduce translation errors, and that rapamycin extends further organismal longevity in RPS23 hyperaccuracy mutants. This implies a unified mode of action for diverse pharmacological anti-aging therapies. These findings pave the way for identifying novel translation accuracy interventions to improve aging.

Journal article

Sonobe Y, Aburas J, Krishnan G, Fleming AC, Ghadge G, Islam P, Warren EC, Gu Y, Kankel MW, Brown AEX, Kiskinis E, Gendron TF, Gao F-B, Roos RP, Kratsios Pet al., 2021, A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation, Nature Communications, Vol: 12, Pages: 1-17, ISSN: 2041-1723

A hexanucleotide repeat expansion GGGGCC in the non-coding region of C9orf72 is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Toxic dipeptide repeats (DPRs) are synthesized from GGGGCC via repeat-associated non-AUG (RAN) translation. Here, we develop C. elegans models that express, either ubiquitously or exclusively in neurons, 75 GGGGCC repeats flanked by intronic C9orf72 sequence. The worms generate DPRs (poly-glycine-alanine [poly-GA], poly-glycine-proline [poly-GP]) and poly-glycine-arginine [poly-GR]), display neurodegeneration, and exhibit locomotor and lifespan defects. Mutation of a non-canonical translation-initiating codon (CUG) upstream of the repeats selectively reduces poly-GA steady-state levels and ameliorates disease, suggesting poly-GA is pathogenic. Importantly, loss-of-function mutations in the eukaryotic translation initiation factor 2D (eif-2D/eIF2D) reduce poly-GA and poly-GP levels, and increase lifespan in both C. elegans models. Our in vitro studies in mammalian cells yield similar results. Here, we show a conserved role for eif-2D/eIF2D in DPR expression.

Journal article

McDermott-Rouse A, Minga E, Barlow I, Feriani L, Harlow P, Flemming A, Brown Aet al., 2021, Behavioral fingerprints predict insecticide and anthelmintic mode of action, Molecular Systems Biology, Vol: 17, Pages: 1-14, ISSN: 1744-4292

Novel invertebrate-killing compounds are required in agriculture and medicine to overcome resistance to existing treatments. Because insecticides and anthelmintics are discovered in phenotypic screens, a crucial step in the discovery process is determining the mode of action of hits. Visible whole-organism symptoms are combined with molecular and physiological data to determine mode of action. However, manual symptomology is laborious and requires symptoms that are strong enough to see by eye. Here, we use high-throughput imaging and quantitative phenotyping to measure Caenorhabditis elegans behavioral responses to compounds and train a classifier that predicts mode of action with an accuracy of 88% for a set of ten common modes of action. We also classify compounds within each mode of action to discover substructure that is not captured in broad mode-of-action labels. High-throughput imaging and automated phenotyping could therefore accelerate mode-of-action discovery in invertebrate-targeting compound development and help to refine mode-of-action categories.

Journal article

McDermott-Rouse A, Minga E, Barlow I, Feriani L, Harlow PH, Flemming AJ, Brown AEXet al., 2021, Behavioral fingerprints predict insecticide and anthelmintic mode of action

<jats:title>Abstract</jats:title><jats:p>Novel invertebrate-killing compounds are required in agriculture and medicine to overcome resistance to existing treatments. Because insecticides and anthelmintics are discovered in phenotypic screens, a crucial step in the discovery process is determining the mode of action of hits. Visible whole-organism symptoms are combined with molecular and physiological data to determine mode of action. However, manual symptomology is laborious and requires symptoms that are strong enough to see by eye. Here we use high-throughput imaging and quantitative phenotyping to measure <jats:italic>C. elegans</jats:italic> behavioral responses to compounds and train a classifier that predicts mode of action with an accuracy of 88% for a set of ten common modes of action. We also classify compounds within each mode of action to discover pharmacological relationships that are not captured in broad mode of action labels. High-throughput imaging and automated phenotyping could therefore accelerate mode of action discovery in invertebrate-targeting compound development and help to refine mode of action categories.</jats:p>

Working paper

Hadjieconomou D, King G, Gaspar P, Mineo A, Blackie L, Ameku T, Studd C, de Mendoza A, Diao F, White BH, Brown AEX, Placais P-Y, Preat T, Miguel-Aliaga Iet al., 2020, Enteric neurons increase maternal food intake during reproduction (vol 587, pg 455, 2020), Nature, Vol: 588, Pages: E36-E36, ISSN: 0028-0836

Journal article

Miguel-Aliaga I, Hadjieconomou D, King G, Gaspar P, Mineo A, Blackie L, Ameku T, Studd C, de Mendoza A, Diao F, White BH, Brown A, Placais P-Y, Preat Tet al., 2020, Enteric neurons increase maternal food intake during reproduction, Nature, Vol: 587, Pages: 455-459, ISSN: 0028-0836

Reproduction induces increased food intake across females of many animal species1,2,3,4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop—a stomach-like organ—after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.

Journal article

Li Y, Osuma A, Correa E, Okebalama MA, Dao P, Gaylord O, Aburas J, Islam P, Brown AE, Kratsios Pet al., 2020, Establishment and maintenance of motor neuron identity via temporal modularity in terminal selector function, eLife, Vol: 9, ISSN: 2050-084X

Terminal selectors are transcription factors (TFs) that establish during development and maintain throughout life post-mitotic neuronal identity. We previously showed that UNC-3/Ebf, the terminal selector of C. elegans cholinergic motor neurons (MNs), acts indirectly to prevent alternative neuronal identities (Feng et al., 2020). Here, we globally identify the direct targets of UNC-3. Unexpectedly, we find that the suite of UNC-3 targets in MNs is modified across different life stages, revealing 'temporal modularity' in terminal selector function. In all larval and adult stages examined, UNC-3 is required for continuous expression of various protein classes (e.g. receptors, transporters) critical for MN function. However, only in late larvae and adults, UNC-3 is required to maintain expression of MN-specific TFs. Minimal disruption of UNC-3's temporal modularity via genome engineering affects locomotion. Another C. elegans terminal selector (UNC-30/Pitx) also exhibits temporal modularity, supporting the potential generality of this mechanism for the control of neuronal identity.

Journal article

Marques F, Thapliyal S, Javer A, Shrestha P, Brown AEX, Glauser DAet al., 2020, Tissue-specific isoforms of the single C. elegans Ryanodine receptor gene unc-68 control specific functions, PLoS Genetics, Vol: 16, Pages: 1-21, ISSN: 1553-7390

Ryanodine receptors (RyR) are essential regulators of cellular calcium homeostasis and signaling. Vertebrate genomes contain multiple RyR gene isoforms, expressed in different tissues and executing different functions. In contrast, invertebrate genomes contain a single RyR-encoding gene and it has long been proposed that different transcripts generated by alternative splicing may diversify their functions. Here, we analyze the expression and function of alternative exons in the C. elegans RyR gene unc-68. We show that specific isoform subsets are created via alternative promoters and via alternative splicing in unc-68 Divergent Region 2 (DR2), which actually corresponds to a region of high sequence variability across vertebrate isoforms. The expression of specific unc-68 alternative exons is enriched in different tissues, such as in body wall muscle, neurons and pharyngeal muscle. In order to infer the function of specific alternative promoters and alternative exons of unc-68, we selectively deleted them by CRISPR/Cas9 genome editing. We evaluated pharyngeal function, as well as locomotor function in swimming and crawling with high-content computer-assisted postural and behavioral analysis. Our data provide a comprehensive map of the pleiotropic impact of isoform-specific mutations and highlight that tissue-specific unc-68 isoforms fulfill distinct functions. As a whole, our work clarifies how the C. elegans single RyR gene unc-68 can fulfill multiple tasks through tissue-specific isoforms, and provide a solid foundation to further develop C. elegans as a model to study RyR channel functions and malfunctions.

Journal article

Newton H, Wang Y-F, Camplese L, Mokochinski JB, Kramer HB, Brown AEX, Fets L, Hirabayashi Set al., 2020, Systemic muscle wasting and coordinated tumour response drive tumourigenesis, Nature Communications, Vol: 11, ISSN: 2041-1723

Cancer cells demand excess nutrients to support their proliferation, but how tumours exploit extracellular amino acids during systemic metabolic perturbations remain incompletely understood. Here, we use a Drosophila model of high-sugar diet (HSD)-enhanced tumourigenesis to uncover a systemic host-tumour metabolic circuit that supports tumour growth. We demonstrate coordinate induction of systemic muscle wasting with tumour-autonomous Yorkie-mediated SLC36-family amino acid transporter expression as a proline-scavenging programme to drive tumourigenesis. We identify Indole-3-propionic acid as an optimal amino acid derivative to rationally target the proline-dependency of tumour growth. Insights from this whole-animal Drosophila model provide a powerful approach towards the identification and therapeutic exploitation of the amino acid vulnerabilities of tumourigenesis in the context of a perturbed systemic metabolic network.

Journal article

Ding SS, Muhle LS, Brown A, Schumacher L, Endres Ret al., 2020, Comparison of solitary and collective foraging strategies of Caenorhabditis elegans in patchy food distributions, Philosophical Transactions of the Royal Society B: Biological Sciences, Vol: 375, ISSN: 0962-8436

Collective foraging has been shown to benefit organisms in environments where food is patchily distributed, but whether this is true in the case where organisms do not rely on long range communications to coordinate their collective behaviour has been understudied. To address this question, we use the tractable laboratory model organism Caenorhabditis elegans, where a social strain (npr-1 mutant) and a solitary strain (N2) are available for directcomparison of foraging strategies. We first developed an on-lattice minimal model for comparing collective and solitary foraging strategies, finding that social agents benefit from feeding faster and more efficiently simply due to group formation. Our laboratory foraging experiments with npr-1 and N2 worm populations, however, show an advantage for solitary N2 in all food distribution environments that we tested. We incorporated additional strain43 specific behavioural parameters of npr-1 and N2 worms into our model and computationally identified N2’s higher feeding rate to be the key factor underlying its advantage, without which it is possible to recapitulate the advantage of collective foraging in patchy environments. Our work highlights the theoretical advantage of collective foraging due to group formation alone without long-range interactions, and the valuable role of modelling to guide experiments.

Journal article

Martineau CN, Brown AEX, Laurent P, 2020, Multidimensional phenotyping predicts lifespan and quantifies health in C. elegans, PLoS Computational Biology, Vol: 16, ISSN: 1553-734X

Ageing affects a wide range of phenotypes at all scales, but an objective measure of ageing remains challenging, even in simple model organisms. To measure the ageing process, we characterized the sequence of alterations of multiple phenotypes at organismal scale. Hundreds of morphological, postural, and behavioral features were extracted from high-resolution videos. Out of the 1019 features extracted, 896 are ageing biomarkers, defined as those that show a significant correlation with relative age (age divided by lifespan). We used support vector regression to predict age, remaining life and lifespan of individual C. elegans. The quality of these predictions (age R2 = 0.79; remaining life R2 = 0.77; lifespan R2 = 0.72) increased with the number of features added to the model, supporting the use of multiple features to quantify ageing. We quantified the rate of ageing as how quickly animals moved through a phenotypic space; we quantified health decline as the slope of the declining predicted remaining life. In both ageing dimensions, we found that short lived-animals aged faster than long-lived animals. In our conditions, for isogenic wild-type worms, the health decline of the individuals was scaled to their lifespan without significant deviation from the average for short- or long-lived animals.

Journal article

Essmann CL, Martinez-Martinez D, Pryor R, Leung K-Y, Krishnan KB, Lui PP, Greene NDE, Brown AEX, Pawar VM, Srinivasan MA, Cabreiro Fet al., 2020, Mechanical properties measured by Atomic Force Microscopy define health biomarkers in ageing C. elegans, Nature Communications, Vol: 11, Pages: 1-16, ISSN: 2041-1723

Genetic and environmental factors are key drivers regulating organismal lifespan but how these impact healthspan is less well understood. Techniques capturing biomechanical properties of tissues on a nano-scale level are providing new insights into disease mechanisms. Here, we apply Atomic Force Microscopy (AFM) to quantitatively measure the change in biomechanical properties associated with ageing Caenorhabditis elegans in addition to capturing high-resolution topographical images of cuticle senescence. We show that distinct dietary restriction regimes and genetic pathways that increase lifespan lead to radically different healthspan outcomes. Hence, our data support the view that prolonged lifespan does not always coincide with extended healthspan. Importantly, we identify the insulin signalling pathway in C. elegans and interventions altering bacterial physiology as increasing both lifespan and healthspan. Overall, AFM provides a highly sensitive technique to measure organismal biomechanical fitness and delivers an approach to screen for health-improving conditions, an essential step towards healthy ageing.

Journal article

Ding SS, Romenskyy M, Sarkisyan KS, Brown AEXet al., 2020, Measuring Caenorhabditis elegans spatial foraging and food intake using bioluminescent bacteria, Genetics, ISSN: 0016-6731

For most animals, feeding includes two behaviors: foraging to find a food patch and food intake once a patch is found. The nematode Caenorhabditis elegans is a useful model for studying the genetics of both behaviors. However, most methods of measuring feeding in worms quantify either foraging behavior or food intake but not both. Imaging the depletion of fluorescently labeled bacteria provides information on both the distribution and amount of consumption, but even after patch exhaustion a prominent background signal remains, which complicates quantification. Here, we used a bioluminescent Escherichia coli strain to quantify C. elegans feeding. With light emission tightly coupled to active metabolism, only living bacteria are capable of bioluminescence so the signal is lost upon ingestion. We quantified the loss of bioluminescence using N2 reference worms and eat-2 mutants, and found a nearly 100-fold increase in signal-to-background ratio and lower background compared to loss of fluorescence. We also quantified feeding using aggregating npr-1 mutant worms. We found that groups of npr-1 mutants first clear bacteria from within the cluster before foraging collectively for more food; similarly, during large population swarming, only worms at the migrating front are in contact with bacteria. These results demonstrate the usefulness of bioluminescent bacteria for quantifying feeding and for generating insights into the spatial pattern of food consumption.

Journal article

Feng W, Li Y, Dao P, Aburas J, Islam P, Elbaz B, Kolarzyk A, Brown AE, Kratsios Pet al., 2020, A terminal selector prevents a Hox transcriptional switch to safeguard motor neuron identity throughout life, eLife, Vol: 9, ISSN: 2050-084X

To become and remain functional, individual neuron types must select during development and maintain throughout life their distinct terminal identity features, such as expression of specific neurotransmitter receptors, ion channels and neuropeptides. Here, we report a molecular mechanism that enables cholinergic motor neurons (MNs) in the C. elegans ventral nerve cord to select and maintain their unique terminal identity. This mechanism relies on the dual function of the conserved terminal selector UNC-3 (Collier/Ebf). UNC-3 synergizes with LIN-39 (Scr/Dfd/Hox4-5) to directly co-activate multiple terminal identity traits specific to cholinergic MNs, but also antagonizes LIN-39's ability to activate terminal features of alternative neuronal identities. Loss of unc-3 causes a switch in the transcriptional targets of LIN-39, thereby alternative, not cholinergic MN-specific, terminal features become activated and locomotion defects occur. The strategy of a terminal selector preventing a transcriptional switch may constitute a general principle for safeguarding neuronal identity throughout life.

Journal article

Ding SS, Sarkisyan K, Brown A, 2019, Measuring C. elegans spatial foraging and food intake using bioluminescent bacteria, Publisher: bioRxiv

ABSTRACT For most animals, feeding includes two behaviours: foraging to find a food patch and food intake once a patch is found. The nematode Caenorhabditis elegans is a useful model for studying the genetics of both behaviours. However, most methods of measuring feeding in worms quantify either foraging behaviour or food intake but not both. Imaging the depletion of fluorescently labelled bacteria provides information on both the distribution and amount of consumption, but even after patch exhaustion a prominent background signal remains, which complicates quantification. Here, we used a bioluminescent Escherichia coli strain to quantify C. elegans feeding. With light emission tightly coupled to active metabolism, only living bacteria are capable of bioluminescence so the signal is lost upon ingestion. We quantified the loss of bioluminescence using N2 reference worms and eat-2 mutants, and found a nearly 100-fold increase in signal-to-background ratio and lower background compared to loss of fluorescence. We also quantified feeding using aggregating npr-1 mutant worms. We found that groups of npr-1 mutants first clear bacteria from each other before foraging collectively for more food; similarly, during high density swarming, only worms at the migrating front are in contact with bacteria. These results demonstrate the usefulness of bioluminescent bacteria for quantifying feeding and suggest a hygiene hypothesis for the function of C. elegans aggregation and swarming.

Working paper

Ding SS, Muhle L, Brown A, Schumacher L, Endres Ret al., 2019, Comparison of solitary and collective foraging strategies of Caenorhabditis elegansin patchy food distributions, Publisher: bioRxiv

Abstract The benefits of social behaviour in insects and vertebrates are well-documented in terms of mating success and predator avoidance. Social foraging has also been shown to benefit organisms in environments where food is patchily distributed, but whether this is true in the case where organisms do not rely on long-range communications to coordinate their social behaviour has been understudied. To address this question, we use the tractable laboratory model organism Caenorhabditis elegans , where a social strain ( npr-1 mutant) and a solitary strain (N2) are available for direct comparison of foraging strategies. We first develop an on-lattice minimal model for comparing social and solitary feeding strategies, finding that social agents benefit from feeding faster and more efficiently simply due to group formation. To compare these simulation results with real experimental data, we modify our minimal model to incorporate the specific feeding behaviours of the npr-1 and N2 strains. Surprisingly, the resultant strain-specific model predicts that the solitary strain performs better than the social one in all food distribution environments that we tested, which we confirm with lab experiments. Additional computational experiments identify the N2 strain’s higher feeding rate to be the key factor underlying its advantage over npr-1 worms. Our work highlights the difficulties in addressing questions of optimal behaviour, and the valuable role of modelling as a guiding principle.

Working paper

Ding SS, Schumacher L, Javer A, Endres R, Brown Aet al., 2019, Shared behavioral mechanisms underlie C. elegans aggregation and swarming, eLife, Vol: 8, ISSN: 2050-084X

In complex biological systems, simple individual-level behavioral rules can give rise to emergent group-level behavior. While collective behavior has been well studied in cells and larger organisms, the mesoscopic scale is less understood, as it is unclear which sensory inputs and physical processes matter a priori. Here, we investigate collective feeding in the roundworm C. elegans at this intermediate scale, using quantitative phenotyping and agent-based modeling to identify behavioral rules underlying both aggregation and swarming—a dynamic phenotype only observed at longer timescales. Using fluorescence multi-worm tracking, we quantify aggregation in terms of individual dynamics and population-level statistics. Then we use agent-based simulations and approximate Bayesian inference to identify three key behavioral rules for aggregation: cluster-edge reversals, a density-dependent switch between crawling speeds, and taxis towards neighboring worms. Our simulations suggest that swarming is simply driven by local food depletion but otherwise employs the same behavioral mechanisms as the initial aggregation.

Journal article

Javer A, Brown AEX, Kokkinos I, Rittscher Jet al., 2019, Identification of <i>C</i>. <i>elegans</i> Strains Using a Fully Convolutional Neural Network on Behavioural Dynamics, 15th European Conference on Computer Vision (ECCV), Publisher: SPRINGER INTERNATIONAL PUBLISHING AG, Pages: 455-464, ISSN: 0302-9743

Conference paper

Chew YL, Grundy LJ, Brown AEX, Beets I, Schafer WRet al., 2018, Neuropeptides encoded by nlp-49 modulate locomotion, arousal and egg-laying behaviours in Caenorhabditis elegans via the receptor SEB-3, Philosophical Transactions of the Royal Society of London: Biological Sciences, Vol: 373, ISSN: 0962-8436

Neuropeptide signalling has been implicated in a wide variety of biological processes in diverse organisms, from invertebrates to humans. The Caenorhabditis elegans genome has at least 154 neuropeptide precursor genes, encoding over 300 bioactive peptides. These neuromodulators are thought to largely signal beyond ‘wired’ chemical/electrical synapse connections, therefore creating a ‘wireless’ network for neuronal communication. Here, we investigated how behavioural states are affected by neuropeptide signalling through the G protein-coupled receptor SEB-3, which belongs to a bilaterian family of orphan secretin receptors. Using reverse pharmacology, we identified the neuropeptide NLP-49 as a ligand of this evolutionarily conserved neuropeptide receptor. Our findings demonstrate novel roles for NLP-49 and SEB-3 in locomotion, arousal and egg-laying. Specifically, high-content analysis of locomotor behaviour indicates that seb-3 and nlp-49 deletion mutants cause remarkably similar abnormalities in movement dynamics, which are reversed by overexpression of wild-type transgenes. Overexpression of NLP-49 in AVK interneurons leads to heightened locomotor arousal, an effect that is dependent on seb-3. Finally, seb-3 and nlp-49 mutants also show constitutive egg-laying in liquid medium and alter the temporal pattern of egg-laying in similar ways. Together, these results provide in vivo evidence that NLP-49 peptides act through SEB-3 to modulate behaviour, and highlight the importance of neuropeptide signalling in the control of behavioural states.This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.

Journal article

Larson SD, Gleeson P, Brown AEX, 2018, Connectome to behaviour: modelling Caenorhabditis elegans at cellular resolution, Philosophical Transactions of the Royal Society of London: Biological Sciences, Vol: 373, ISSN: 0962-8436

It has been 30 years since the ‘mind of the worm’ was published in Philosophical Transactions B (White et al. 1986 Phil. Trans. R. Soc. Lond. B 314, 1–340). Predicting Caenorhabditis elegans' behaviour from its wiring diagram has been an enduring challenge since then. This special theme issue of Philosophical Transactions B combines research from neuroscientists, physicists, mathematicians and engineers to discuss advances in neural activity imaging, behaviour quantification and multiscale simulations, and how they are bringing the goal of whole-animal modelling at cellular resolution within reach.

Journal article

Javer A, Ripoll-Sanchez L, Brown AE, 2018, Powerful and interpretable behavioural features for quantitative phenotyping of C. elegans, Philosophical Transactions B: Biological Sciences, Vol: 373, ISSN: 0962-8436

Behaviour is a sensitive and integrative readout of nervous system function and therefore an attractive measure for assessing the effects of mutation or drug treatment on animals. Video data provide a rich but high-dimensional representation of behaviour, and so the first step of analysis is often some form of tracking and feature extraction to reduce dimensionality while maintaining relevant information. Modern machine-learning methods are powerful but notoriously difficult to interpret, while handcrafted features are interpretable but do not always perform as well. Here, we report a new set of handcrafted features to compactly quantify Caenorhabditis elegans behaviour. The features are designed to be interpretable but to capture as much of the phenotypic differences between worms as possible. We show that the full feature set is more powerful than a previously defined feature set in classifying mutant strains. We then use a combination of automated and manual feature selection to define a core set of interpretable features that still provides sufficient power to detect behavioural differences between mutant strains and the wild-type. Finally, we apply the new features to detect time-resolved behavioural differences in a series of optogenetic experiments targeting different neural subsets.

Journal article

Javer A, Currie M, Lee CW, Hokanson J, Li K, Martineau C, Yemini E, Grundy L, Li C, Ch'ng Q, Schafer W, Nollen E, Kerr R, Brown AEet al., 2018, An open source platform for analyzing and sharing worm behavior data, Nature Methods, Vol: 15, Pages: 645-646, ISSN: 1548-7091

Journal article

Ding SS, Schumacher LJ, Javer AE, Endres RG, Brown AEXet al., 2018, Shared behavioral mechanisms underlie<i>C. elegans</i>aggregation and swarming

<jats:title>Abstract</jats:title><jats:p>In complex biological systems, simple individual-level behavioral rules can give rise to emergent group-level behavior. While such collective behavior has been well studied in cells and larger organisms, the mesoscopic scale is less understood, as it is unclear which sensory inputs and physical processes matter<jats:italic>a priori</jats:italic>. Here, we investigate collective feeding in the roundworm<jats:italic>C. elegans</jats:italic>at this intermediate scale, using quantitative phenotyping and agent-based modeling to identify behavioral rules underlying both aggregation and swarming—a dynamic phenotype only observed at longer timescales. Using fluorescent multi-worm tracking, we quantify aggregation behavior in terms of individual dynamics and population-level statistics. Based on our quantification, we use agent-based simulations and approximate Bayesian inference to identify three key behavioral rules that give rise to aggregation: cluster-edge reversals, a density-dependent switch between crawling speeds, and taxis towards neighboring worms. Our simulations suggest that swarming is simply driven by local food depletion but otherwise employs the same behavioral mechanisms as the initial aggregation. Hence, mesoscopic<jats:italic>C. elegans</jats:italic>uses mechanisms familiar from microscopic systems for aggregation, but implemented via more complex behaviors characteristic of macroscopic organisms.</jats:p>

Working paper

Chakraborty K, Vijayan K, Brown AEX, Discher DE, Loverde SMet al., 2018, Glassy worm-like micelles in solvent and shear mediated shape transitions., Soft Matter, Vol: 2018, ISSN: 1744-683X

The glassiness of polymer melts is generally considered to be suppressed by small dimensions, added solvent, and heat. Here, we suggest that glassiness persists at the nanoscale in worm-like micelles composed of amphiphilic diblock copolymers of poly(ethylene oxide)-polystyrene (PS). The glassiness of these worms is indicated by a lack of fluorescence recovery after photobleaching as well as micron-length rigid segments separated by hinges. The coarse-grained molecular dynamics studies probe the dynamics of the PS in these glassy worms. Addition of an organic solvent promotes a transition from hinged to fully flexible worms and to spheres or vesicles. Simulation demonstrates two populations of organic solvent in the core of the micelle-a solvent 'pool' in the micelle core and a second population that accumulates at the interface between the core and the corona. The stable heterogeneity of the residual solvent could explain the unusual hinged rigidity, but solvent removal during shear-extension could be more effective and yield - as observed - nearly straight worms without hinges.

Journal article

Brown AEX, de Bivort B, 2018, Ethology as a physical science, Nature Physics, Vol: 14, Pages: 653-657, ISSN: 1745-2473

The study of animal behaviour, ethology, is becoming more quantitative. New theory is emerging, driven by better imaging and novel representations of animal posture dynamics that span the vast range of relevant behavioural timescales.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00810715&limit=30&person=true