Imperial College London

DrAnqiWang

Faculty of EngineeringDepartment of Chemical Engineering

Research Associate
 
 
 
//

Contact

 

anqi.wang16

 
 
//

Location

 

ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

11 results found

Tan R, Wang A, Ye C, Li J, Liu D, Darwich BP, Petit L, Fan Z, Wong T, Alvarez-Fernandez A, Furedi M, Guldin S, Breakwell CE, Klusener PAA, Kucernak AR, Jelfs KE, McKeown NB, Song Qet al., 2023, Thin film composite membranes with regulated crossover and water migration for long-life aqueous redox flow batteries., Advanced Science, Vol: 10, Pages: 1-11, ISSN: 2198-3844

Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems.

Journal article

Wang A, Tan R, Liu D, Lu J, Wei X, Alvarez-Fernandez A, Ye C, Breakwell C, Guldin S, Kucernak AR, Jelfs KE, Brandon NP, McKeown NB, Song Qet al., 2023, Ion-selective microporous polymer membranes with hydrogen-bond and salt-bridge networks for aqueous organic redox flow batteries, Advanced Materials, Vol: 35, Pages: 1-12, ISSN: 0935-9648

Redox flow batteries (RFBs) have great potential for long-duration grid-scale energy storage. Ion conducting membranes are a crucial component in RFBs, allowing charge-carrying ions to transport while preventing the cross-mixing of redox couples. Commercial Nafion membranes are widely used in RFBs, but their unsatisfactory ionic and molecular selectivity as well as high costs limit the performance and the widespread deployment of this technology. To extend the longevity and reduce the cost of RFB systems, inexpensive ion-selective membranes are highly desired that concurrently deliver low ionic resistance and high selectivity towards redox-active species. In this work, high-performance RFB membranes are fabricated from blends of carboxylate- and amidoxime-functionalized polymers of intrinsic microporosity (PIMs) that exploit the beneficial properties of both polymers. The enthalpy-driven formation of cohesive interchain interactions, including hydrogen bonds and salt bridges, facilitates the microscopic miscibility of the blends, while ionizable functional groups within the sub-nanometer pores allow optimization of membrane ion transport functions. The resulting microporous membranes demonstrate fast cation conduction with low crossover of redox-active molecular species, enabling improved power ratings and reduced capacity fade in aqueous RFBs using anthraquinone and ferrocyanide as redox couples. This article is protected by copyright. All rights reserved.

Journal article

Mizrahi Rodriguez K, Wu W-N, Alebrahim T, Cao Y, Freeman BD, Harrigan D, Jhalaria M, Kratochvil A, Kumar S, Lee WH, Lee YM, Lin H, Richardson JM, Song Q, Sundell B, Thür R, Vankelecom I, Wang A, Wang L, Wiscount C, Smith ZPet al., 2022, Multi-lab study on the pure-gas permeation of commercial polysulfone (PSf) membranes: Measurement standards and best practices, Journal of Membrane Science, Vol: 659, Pages: 1-13, ISSN: 0376-7388

Gas-separation membranes are a critical industrial component for a low-carbon and energy-efficient future. As a result, many researchers have been testing membrane materials over the past several decades. Unfortunately, almost all membrane-based testing systems are home-built, and there are no widely accepted material standards or testing protocols in the literature, making it challenging to accurately compare experimental results. In this multi-lab study, ten independent laboratories collected high-pressure pure-gas permeation data for H2, O2, CH4, and N2 in commercial polysulfone (PSf) films. Equipment information, testing procedures, and permeation data from all labs were collected to provide (1) accepted H2, O2, CH4, and N2 permeability values at 35 °C in PSf as a reference standard, (2) statistical analysis of lab-to-lab uncertainties in evaluating permeability, and (3) a list of best practices for sample preparation, equipment set-up, and permeation testing using constant-volume variable-pressure apparatuses. Results summarized in this work provide a reference standard and recommended testing protocols for pure-gas testing of membrane materials.

Journal article

Wang A, Tan R, Breakwell C, Wei X, Fan Z, Ye C, Malpass-Evans R, Liu T, Zwijnenburg M, Jelfs K, McKeown N, Chen J, Song Qet al., 2022, Solution-processable redox-active polymers of intrinsic microporosity for electrochemical energy storage, Journal of the American Chemical Society, Vol: 144, Pages: 17198-17208, ISSN: 0002-7863

Redox-active organic materials have emerged as promising alternatives to conventional inorganicelectrode materials in electrochemical devices for energy storage. However, the deployment of redoxactive organic materials in practical lithium-ion battery devices is hindered by their undesired solubilityin electrolyte solvents, sluggish charge transfer and mass transport, as well as processing complexity.Here, we report a new molecular engineering approach to prepare redox-active polymers of intrinsicmicroporosity (PIMs) that possess an open network of sub-nanometer pores and abundant accessiblecarbonyl-based redox sites for fast lithium-ion transport and storage. Redox-active PIMs can be solutionprocessed into thin films and polymer-carbon composites with a homogeneously dispersedmicrostructure, while remaining insoluble in electrolyte solvents. Solution-processed redox-active PIMelectrodes demonstrate improved cycling performance in lithium-ion batteries with no apparent capacitydecay. Redox-active PIMs with combined properties of intrinsic microporosity, reversible redox activityand solution processability may have broad utility in a variety of electrochemical devices for energystorage, sensors and electronic applications.

Journal article

Ye C, Tan R, Wang A, Chen J, Comesaña Gándara B, Breakwell C, Alvarez-Fernandez A, Fan Z, Weng J, Bezzu CG, Guldin S, Brandon N, Kucernak A, Jelfs K, McKeown N, Song Qet al., 2022, Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes, Angewandte Chemie International Edition, Vol: 61, ISSN: 1433-7851

Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized polymers of intrinsic microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport selectivity. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.

Journal article

Ye C, Wang A, Breakwell C, Tan R, Bezzu G, Hunter-Sellars E, Williams D, Brandon N, Klusener P, Kucernak A, Jelfs K, McKeown N, Song Qet al., 2022, Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes, Nature Communications, Vol: 13, ISSN: 2041-1723

Redox flow batteries using aqueous organic-based electrolytes are promising candidates for developing cost-effective grid-scale energy storage devices. However, a significant drawback of these batteries is the cross-mixing of active species through the membrane, which causes battery performance degradation. To overcome this issue, here we report size-selective ion-exchange membranes prepared by sulfonation of a spirobifluorene-based microporous polymer and demonstrate their efficient ion sieving functions in flow batteries. The spirobifluorene unit allows control over the degree of sulfonation to optimize the transport of cations, whilst the microporous structure inhibits the crossover of organic molecules via molecular sieving. Furthermore, the enhanced membrane selectivity mitigates the crossover-induced capacity decay whilst maintaining good ionic conductivity for aqueous electrolyte solution at pH 9, where the redox-active organic molecules show long-term stability. We also prove the boosting effect of the membranes on the energy efficiency and peak power density of the aqueous redox flow battery, which shows stable operation for about 120 h (i.e., 2100 charge-discharge cycles at 100 mA cm−2) in a laboratory-scale cell.

Journal article

Xia Y, Ouyang M, Yufit V, Tan R, Regoutz A, Wang A, Mao W, Chakrabarti B, Kavei A, Song Q, Kucernak A, Brandon Net al., 2022, A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture, Nature Communications, Vol: 13, Pages: 1-13, ISSN: 2041-1723

With the rapid development of renewable energy harvesting technologies, there is a significant demand for long-duration energy storage technologies that can be deployed at grid scale. In this regard, polysulfide-air redox flow batteries demonstrated great potential. However, the crossover of polysulfide is one significant challenge. Here, we report a stable and cost-effective alkaline-based hybrid polysulfide-air redox flow battery where a dual-membrane-structured flow cell design mitigates the sulfur crossover issue. Moreover, combining manganese/carbon catalysed air electrodes with sulfidised Ni foam polysulfide electrodes, the redox flow battery achieves a maximum power density of 5.8 mW cm-2 at 50% state of charge and 55 °C. An average round-trip energy efficiency of 40% is also achieved over 80 cycles at 1 mA cm-2. Based on the performance reported, techno-economic analyses suggested that energy and power costs of about 2.5 US$/kWh and 1600 US$/kW, respectively, has be achieved for this type of alkaline polysulfide-air redox flow battery, with significant scope for further reduction.

Journal article

Zuo P, Li Y, Wang A, Tan R, Liu Y, Liang X, Sheng F, Tang G, Ge L, Wu L, Song Q, McKeown NB, Yang Z, Xu Tet al., 2020, Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage, Angewandte Chemie International Edition, Vol: 59, Pages: 9564-9573, ISSN: 1433-7851

Membranes with fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton-exchange membrane (PEM) fuel cells and redox flow batteries. Here we report a new approach to designing solution-processable ion-selective polymer membranes with both intrinsic microporosity and ion-conductive functionality. This was achieved by synthesizing polymers with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively-charged subnanometer-sized confined ionic channels. The facilitated transport of protons and cations through these membranes, as well as high selectivity towards nanometer-sized redox-active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell. This membrane design strategy paves the way for producing a new-generation of ion-exchange membranes for electrochemical energy conversion and storage applications.

Journal article

Zhao EW, Liu T, Jónsson E, Lee J, Temprano I, Jethwa RB, Wang A, Smith H, Carretero-González J, Song Q, Grey CPet al., 2020, In situ NMR metrology reveals reaction mechanisms in redox flow batteries., Nature, Vol: 579, Pages: 224-228, ISSN: 0028-0836

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption1. Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density2,3. Thus, fundamental insight at the molecular level is required to improve performance4,5. Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4'-((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the 1H NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the 1H NMR shift of the water resonance) and the line broadening of the 1H shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.

Journal article

Tan R, Wang A, Malpass-Evans R, Williams R, Zhao EW, Liu T, Ye C, Zhou X, Darwich BP, Fan Z, Turcani L, Jackson E, Chen L, Chong SY, Li T, Jelfs KE, Cooper AI, Brandon NP, Grey CP, McKeown NB, Song Qet al., 2020, Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage, Nature Materials, Vol: 19, Pages: 195-202, ISSN: 1476-1122

Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.

Journal article

Tan R, Wang A, Malpass-Evans R, Williams R, Zhao EW, Liu T, Ye C, Zhou X, Darwich BP, Fan Z, Turcani L, Jackson E, Chen L, Chong SY, Li T, Jelfs KE, Cooper AI, Brandon NP, Grey CP, McKeown NB, Song Qet al., 2020, Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage (December, 10.1038/S41563-019-0536-8, 2019), NATURE MATERIALS, Vol: 19, Pages: 251-251, ISSN: 1476-1122

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01249980&limit=30&person=true