Publications
116 results found
Curran L, de Marvao A, Inglese P, et al., 2023, A phenotypic taxonomy of hypertrophic cardiomyopathy
<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Hypertrophic cardiomyopathy (HCM) is an important cause of sudden cardiac death associated with heterogeneous structural phenotypes but there is no systematic framework for classifying morphology or assessing associated risks. In this study we quantitatively survey genotype-phenotype associations in HCM to derive a data-driven taxonomy of disease expression for automated patient stratification.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>An observational, single-centre study enrolled 436 HCM patients (median age 60 years; 28.8% women) with clinical, genetic and imaging data. An independent cohort of 60 HCM patients from Singapore (median age 59 years; 11% women) and a normative reference population from UK Biobank (n = 16,691, mean age 55 years; 52.5% women) with equivalent data were also recruited. We used machine learning to analyse the three dimensional structure of the left ventricle from cardiac magnetic resonance imaging and build a tree-based classification of HCM phenotypes. Genotype and mortality risk distributions were projected on the tree.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The prevalence of pathogenic or likely pathogenic variants for HCM (P/LP) was 24.6%, while 66% were genotype negative. Carriers of P/LP variants had lower left ventricular mass, but greater basal septal hypertrophy, with reduced lifespan (mean follow-up 9.9 years) compared to genotype negative individuals (hazard ratio: 2.66; 95% confidence interval [CI]: 1.42-4.96;<jats:italic>P</jats:italic>< 0.002). Four main phenotypic branches were identified using unsupervised learning of three dimensional shape: 1) non-sarcomeric hypertrophy with co-existing hypertension; 2) diffuse and basal asymmetric hypertrophy associated w
Tadros R, Zheng SL, Grace C, et al., 2023, Large scale genome-wide association analyses identify novel genetic loci and mechanisms in hypertrophic cardiomyopathy., medRxiv
Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. We here report results from the largest HCM genome-wide association study (GWAS) and multi-trait analysis (MTAG) including 5,900 HCM cases, 68,359 controls, and 36,083 UK Biobank (UKB) participants with cardiac magnetic resonance (CMR) imaging. We identified a total of 70 loci (50 novel) associated with HCM, and 62 loci (32 novel) as sociated with relevant left ventricular (LV) structural or functional traits. Amongst the common variant HCM loci, we identify a novel HCM disease gene, SVIL , which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants cause HCM. Mendelian randomization analyses support a causal role of increased LV contractility in both obstructive and non-obstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, the findings significantly increase our understanding of the genetic basis and molecular mechanisms of HCM, with potential implications for disease management.
Pillinger T, Osimo EF, de Marvao A, et al., 2023, Effect of polygenic risk for schizophrenia on cardiac structure and function: a UK Biobank observational study, The Lancet Psychiatry, Vol: 10, Pages: 98-107, ISSN: 2215-0366
BACKGROUND: Cardiovascular disease is a major cause of excess mortality in people with schizophrenia. Several factors are responsible, including lifestyle and metabolic effects of antipsychotics. However, variations in cardiac structure and function are seen in people with schizophrenia in the absence of cardiovascular disease risk factors and after accounting for lifestyle and medication. Therefore, we aimed to explore whether shared genetic causes contribute to these cardiac variations. METHODS: For this observational study, we used data from the UK Biobank and included White British or Irish individuals without diagnosed schizophrenia with variable polygenic risk scores for the condition. To test the association between polygenic risk score for schizophrenia and cardiac phenotype, we used principal component analysis and regression. Robust regression was then used to explore the association between the polygenic risk score for schizophrenia and individual cardiac phenotypes. We repeated analyses with fibro-inflammatory pathway-specific polygenic risk scores for schizophrenia. Last, we investigated genome-wide sharing of common variants between schizophrenia and cardiac phenotypes using linkage disequilibrium score regression. The primary outcome was principal component regression. FINDINGS: Of 33 353 individuals recruited, 32 279 participants had complete cardiac MRI data and were included in the analysis, of whom 16 625 (51·5%) were female and 15 654 (48·5%) were male. 1074 participants were excluded on the basis of incomplete cardiac MRI data (for all phenotypes). A model regressing polygenic risk scores for schizophrenia onto the first five cardiac principal components of the principal components analysis was significant (F=5·09; p=0·00012). Principal component 1 captured a pattern of increased cardiac volumes, increased absolute peak diastolic strain rates, and reduced ejection fractions; polygenic risk
Jones RE, Zaidi HA, Hammersley DJ, et al., 2023, Comprehensive phenotypic characterization of late gadolinium enhancement predicts sudden cardiac death in coronary artery disease, JACC: Cardiovascular Imaging, ISSN: 1936-878X
BackgroundLate gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) offers the potential to noninvasively characterize the phenotypic substrate for sudden cardiac death (SCD).ObjectivesThe authors assessed the utility of infarct characterization by CMR, including scar microstructure analysis, to predict SCD in patients with coronary artery disease (CAD).MethodsPatients with stable CAD were prospectively recruited into a CMR registry. LGE quantification of core infarction and the peri-infarct zone (PIZ) was performed alongside computational image analysis to extract morphologic and texture scar microstructure features. The primary outcome was SCD or aborted SCD.ResultsOf 437 patients (mean age: 64 years; mean left ventricular ejection fraction [LVEF]: 47%) followed for a median of 6.3 years, 49 patients (11.2%) experienced the primary outcome. On multivariable analysis, PIZ mass and core infarct mass were independently associated with the primary outcome (per gram: HR: 1.07 [95% CI: 1.02-1.12]; P = 0.002 and HR: 1.03 [95% CI: 1.01-1.05]; P = 0.01, respectively), and the addition of both parameters improved discrimination of the model (Harrell’s C-statistic: 0.64-0.79). PIZ mass, however, did not provide incremental prognostic value over core infarct mass based on Harrell’s C-statistic or risk reclassification analysis. Severely reduced LVEF did not predict the primary endpoint after adjustment for scar mass. On scar microstructure analysis, the number of LGE islands in addition to scar transmurality, radiality, interface area, and entropy were all associated with the primary outcome after adjustment for severely reduced LVEF and New York Heart Association functional class of >1. No scar microstructure feature remained associated with the primary endpoint when PIZ mass and core infarct mass were added to the regression models.ConclusionsComprehensive LGE characterization independently predicted SCD risk beyond conventional predictors used in im
Hammersley DJ, Jones RE, Mach L, et al., 2022, Effect of Diabetes Mellitus on Clinical Phenotype and Cardiovascular Mortality in Non-Ischaemic Dilated Cardiomyopathy, Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322
Lota A, Hazebroek M, Theotokis P, et al., 2022, Genetic architecture of acute myocarditis and the overlap with inherited cardiomyopathy, Circulation, Vol: 146, Pages: 1123-1134, ISSN: 0009-7322
Background: Acute myocarditis is an inflammatory condition that may herald the onset of dilated (DCM) or arrhythmogenic cardiomyopathy (ACM). We investigated the frequency and clinical consequences of DCM and ACM genetic variants in a population-based cohort of patients with acute myocarditis. Methods: Population-based cohort of 336 consecutive patients with acute myocarditis enrolled in London and Maastricht. All participants underwent targeted DNA-sequencing for well-characterised cardiomyopathy-associated genes with comparison to healthy controls (n=1053) sequenced on the same platform. Case ascertainment in England was assessed against national hospital admission data. The primary outcome was all-cause mortality. Results: Variants that would be considered pathogenic if found in a patient with DCM or ACM were identified in 8% of myocarditis cases compared to <1% of healthy controls (p=0.0097). In the London cohort (n=230; median age 33years; 84% men), patients were representative of national myocarditis admissions (median age 32years; 71% men; 66% case ascertainment), and there was enrichment of rare truncating variants (tv) in ACM-associated genes (3.1% cases vs 0.4% controls; odds ratio 8.2; p=0.001). This was driven predominantly by desmoplakin (DSP)-tv in patients with normal LV ejection fraction and ventricular arrhythmia. In Maastricht (n=106; median age 54years; 61% men), there was enrichment of rare truncating variants in DCM-associated genes, particularly TTN-tv found in 7% (all with LVEF<50%) compared to 1% in controls (OR 3.6; p=0.0116). Across both cohorts over a median of 5.0 years (IQR 3.9-7.8), all-cause mortality was 5.4%. Two thirds of deaths were cardiovascular, due to worsening heart failure (92%) or sudden cardiac death (8%). The 5-year mortality risk was 3.3% in genotype negative patients versus 11.1% for genotype positive patients (Padjusted=0.08). Conclusions: We identified DCM- or ACM-associated genetic variants in 8% of patients wit
Meng Q, Bai W, Liu T, et al., 2022, MulViMotion: shape-aware 3D myocardial motion tracking from multi-view cardiac MRI, IEEE Transactions on Medical Imaging, Vol: 41, Pages: 1961-1974, ISSN: 0278-0062
Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods.
Cheng HLH, Andreica E-C, Martin A, et al., 2022, Improving management pathway for pregnant women with palpitations in a tertiary hospital, Publisher: WILEY, Pages: 164-165, ISSN: 1470-0328
Thanaj M, Mielke J, McGurk K, et al., 2022, Genetic and environmental determinants of diastolic heart function, Nature Cardiovascular Research, Vol: 1, Pages: 361-371, ISSN: 2731-0590
Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends onmyocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processesand is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiacmotion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wideassociation study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomericfunction under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes wereindependent predictors of diastolic function and we found a causal relationship between genetically-determined ventricularstiffness and incident heart failure. Our results provide insights into the genetic and environmental factors influencing diastolicfunction that are relevant for identifying causal relationships and potential tractable targets.
Howard LSGE, He J, Watson GMJ, et al., 2022, Supplementation with Iron in Pulmonary Arterial Hypertension: Two Randomized Crossover Trials (vol 18, pg 981, 2021), ANNALS OF THE AMERICAN THORACIC SOCIETY, Vol: 19, Pages: 703-703, ISSN: 1546-3222
McGurk KA, Zheng SL, Henry A, et al., 2022, Correspondence on "ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG)" by Miller et al, Genetics in Medicine, Vol: 24, Pages: 744-746, ISSN: 1098-3600
Jia X, Thorley A, Chen W, et al., 2022, Learning a Model-Driven Variational Network for Deformable Image Registration, IEEE TRANSACTIONS ON MEDICAL IMAGING, Vol: 41, Pages: 199-212, ISSN: 0278-0062
- Author Web Link
- Cite
- Citations: 5
Leo I, Nakou E, de Marvao A, et al., 2022, Imaging in Women with Heart Failure: Sex-specific Characteristics and Current Challenges., Card Fail Rev, Vol: 8, ISSN: 2057-7540
Cardiovascular disease (CVD) represents a significant threat to women's health. Heart failure (HF) is one CVD that still has an increasing incidence and about half of all cases involve women. HF is characterised by strong sex-specific features in aetiology, clinical manifestation and outcomes. Women are more likely to have hypertensive heart disease and HF with preserved ejection fraction, they experience worse quality of life but have a better overall survival rate. Women's hearts also have unique morphological characteristics that should be considered during cardiovascular assessment. It is important to understand and highlight these sex-specific features to be able to provide a tailored diagnostic approach and therapeutic management. The aim of this article is to review these aspects together with the challenges and the unique characteristics of different imaging modalities used for the diagnosis and follow-up of women with HF.
Osimo E, Sweeney M, De Marvao A, et al., 2021, Adipose tissue dysfunction, inflammation, and insulin resistance: alternative pathways to cardiac remodelling in schizophrenia. A multimodal, case-control study, Translational Psychiatry, Vol: 11, Pages: 1-9, ISSN: 2158-3188
Cardiovascular diseases are the leading cause of death in schizophrenia. Patients with schizophrenia show evidence of concentric cardiac remodelling (CCR), defined as an increase in left-ventricular mass over end-diastolic volumes. CCR is a predictor of cardiac disease, but the molecular pathways leading to this in schizophrenia are unknown. We aimed to explore the relevance of hypertensive and non-hypertensive pathways to CCR and their potential molecular underpinnings in schizophrenia. In this multimodal case–control study, we collected cardiac and whole-body fat magnetic resonance imaging (MRI), clinical measures, and blood levels of several cardiometabolic biomarkers known to potentially cause CCR from individuals with schizophrenia, alongside healthy controls (HCs) matched for age, sex, ethnicity, and body surface area. Of the 50 participants, 34 (68%) were male. Participants with schizophrenia showed increases in cardiac concentricity (d = 0.71, 95% CI: 0.12, 1.30; p = 0.01), indicative of CCR, but showed no differences in overall content or regional distribution of adipose tissue compared to HCs. Despite the cardiac changes, participants with schizophrenia did not demonstrate activation of the hypertensive CCR pathway; however, they showed evidence of adipose dysfunction: adiponectin was reduced (d = −0.69, 95% CI: −1.28, −0.10; p = 0.02), with evidence of activation of downstream pathways, including hypertriglyceridemia, elevated C-reactive protein, fasting glucose, and alkaline phosphatase. In conclusion, people with schizophrenia showed adipose tissue dysfunction compared to body mass-matched HCs. The presence of non-hypertensive CCR and a dysmetabolic phenotype may contribute to excess cardiovascular risk in schizophrenia. If our results are confirmed, acting on this pathway could reduce cardiovascular risk and resultant life-years lost in people with schizophrenia.
Lota AS, Hazebroek M, Theotokis P, et al., 2021, Genetic Overlap of Acute Myocarditis and Inherited Cardiomyopathy, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322
De Marvao A, McGurk K, Zheng S, et al., 2021, Outcomes and phenotypic expression of rare variants in hypertrophic cardiomyopathy genes in over 200,000 adults, ESC Congress 2021, Publisher: European Society of Cardiology, Pages: 1731-1731, ISSN: 0195-668X
BackgroundHypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomere-encoding genes, but little is known about the clinical significance of these variants in the general population.PurposeTo determine the population prevalence of HCM-associated sarcomeric variants, characterise their phenotypic manifestations, estimate penetrance, and identify associations between sarcomeric variants and clinical outcomes, we performed an observational study of 218,813 adults in the UK Biobank (UKBB), of whom 200,584 have whole exome sequencing (WES).MethodsWe carried out an integrated analysis of WES and cardiac magnetic resonance (CMR) imaging in UK Biobank participants stratified by sarcomere-encoding variant status. Computer vision techniques were used to automatically segment the four chambers of the heart (Figure 1). Cardiac motion analysis was used to derive strain and strain rates. Regional analysis of left ventricular wall thickness was performed using three-dimensional modelling of these segmentations.ResultsMedian age at recruitment was 58 (IQR 50–63 years), and participants were followed up for a median of 10.8 years (IQR 9.9–11.6 years) with a total of 19,507 primary clinical events reported.The prevalence of rare variants (allele frequency <0.ehab724.17314) in HCM-associated sarcomere-encoding genes in 200,584 participants was 2.9% (n=5,727; 1 in 35), and the prevalence of pathogenic or likely pathogenic variants (SARC-P/LP) was 0.24% (n=474, 1 in 423).SARC-P/LP variants were associated with increased risk of death or major adverse cardiac events (MACE) compared to controls (HR 1.68, 95% CI 1.37–2.06, p<0.001), mainly due to heart failure endpoints (Figure 2: cumulative hazard curves with zoomed plots for lifetime risk of A) death and MACE or B) heart failure, stratified by genotype; genotype negative (SARC-NEG), carriers of indeterminate sarcomeric variants (SARC-IND) or SARC-P/LP; C) Forest plot of comparative lifetime risk of c
Thorley A, Jia X, Chang HJ, et al., 2021, Nesterov accelerated ADMM for fast diffeomorphic image registration, International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Publisher: SPRINGER INTERNATIONAL PUBLISHING AG, Pages: 150-160, ISSN: 0302-9743
Deterministic approaches using iterative optimisation have been historically successful in diffeomorphic image registration (DiffIR). Although these approaches are highly accurate, they typically carry a significant computational burden. Recent developments in stochastic approaches based on deep learning have achieved sub-second runtimes for DiffIR with competitive registration accuracy, offering a fast alternative to conventional iterative methods. In this paper, we attempt to reduce this difference in speed whilst retaining the performance advantage of iterative approaches in DiffIR. We first propose a simple iterative scheme that functionally composes intermediate non-stationary velocity fields to handle large deformations in images whilst guaranteeing diffeomorphisms in the resultant deformation. We then propose a convex optimisation model that uses a regularisation term of arbitrary order to impose smoothness on these velocity fields and solve this model with a fast algorithm that combines Nesterov gradient descent and the alternating direction method of multipliers (ADMM). Finally, we leverage the computational power of GPU to implement this accelerated ADMM solver on a 3D cardiac MRI dataset, further reducing runtime to less than 2 s. In addition to producing strictly diffeomorphic deformations, our methods outperform both state-of-the-art deep learning-based and iterative DiffIR approaches in terms of dice and Hausdorff scores, with speed approaching the inference time of deep learning-based methods.
Simoes Monteiro de Marvao A, McGurk K, Zheng S, et al., 2021, Phenotypic expression and outcomes in individuals with rare genetic variants of hypertrophic cardiomyopathy, Journal of the American College of Cardiology, Vol: 78, Pages: 1097-1110, ISSN: 0735-1097
Background: Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomereencoding genes, but little is known about the clinical significance of these variants in thegeneral population.Objectives: To compare lifetime outcomes and cardiovascular phenotypes according to thepresence of rare variants in sarcomere-encoding genes amongst middle-aged adults.Methods: We analysed whole exome sequencing and cardiac magnetic resonance (CMR)imaging in UK Biobank participants stratified by sarcomere-encoding variant status.Results: The prevalence of rare variants (allele frequency <0.00004) in HCM-associatedsarcomere-encoding genes in 200,584 participants was 2.9% (n=5,712; 1 in 35), and theprevalence of variants pathogenic or likely pathogenic for HCM (SARC-HCM-P/LP) was0.25% (n=493, 1 in 407). SARC-HCM-P/LP variants were associated with increased risk ofdeath or major adverse cardiac events compared to controls (HR 1.69, 95% CI 1.38 to 2.07,p<0.001), mainly due to heart failure endpoints (HR 4.23, 95% CI 3.07 to 5.83, p<0.001). In21,322 participants with CMR, SARC-HCM-P/LP were associated with asymmetric increasein left ventricular maximum wall thickness (10.9±2.7 vs 9.4±1.6 mm, p<0.001) buthypertrophy (≥13mm) was only present in 18.4% (n=9/49, 95% CI 9 to 32%). SARC-HCMP/LP were still associated with heart failure after adjustment for wall thickness (HR 6.74,95% CI 2.43 to 18.7, p<0.001).Conclusions: In this population of middle-aged adults, SARC-HCM-P/LP variants have lowaggregate penetrance for overt HCM but are associated with increased risk of adversecardiovascular outcomes and an attenuated cardiomyopathic phenotype. Although absoluteevent rates are low, identification of these variants may enhance risk stratification beyondfamilial disease.
Bleakley C, de Marvao A, Athayde A, et al., 2021, The Impact of Norepinephrine on Myocardial Perfusion in Critical Illness, JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, Vol: 34, Pages: 1019-1020, ISSN: 0894-7317
- Author Web Link
- Cite
- Citations: 1
Halliday BP, de Marvao A, Thilaganathan B, 2021, Peripartum cardiomyopathy and pre-eclampsia: two tips of the same iceberg, EUROPEAN JOURNAL OF HEART FAILURE, Vol: 23, Pages: 2070-2072, ISSN: 1388-9842
Bleakley C, de Marvao A, Morosin M, et al., 2021, Utility of echocardiographic right ventricular subcostal strain in critical care, EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, Vol: 23, Pages: 820-828, ISSN: 2047-2404
- Author Web Link
- Cite
- Citations: 1
Thanaj M, Mielke J, McGurk KA, et al., 2021, Genetic and environmental determinants of diastolic heart function, Publisher: Cold Spring Harbor Laboratory
<jats:title>ABSTRACT</jats:title><jats:p>Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of UK Biobank and perform a genome-wide association study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomeric function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent predictors of diastolic function and we found a causal relationship between ventricular stiffness and heart failure. Our results provide novel insights into the genetic and environmental factors influencing diastolic function that are relevant for identifying causal relationships and tractable targets in heart failure.</jats:p>
Bleakley C, Singh S, de Marvao A, et al., 2021, Reply to: RV dysfunction in Covid-19 ARDS: Is there a difference in the impact of mechanical ventilation and ECMO?, INTERNATIONAL JOURNAL OF CARDIOLOGY, Vol: 332, Pages: 239-239, ISSN: 0167-5273
de Marvao A, Alexander D, Bucciarelli-Ducci C, et al., 2021, Heart disease in women: a narrative review, ANAESTHESIA, Vol: 76, Pages: 118-130, ISSN: 0003-2409
- Author Web Link
- Cite
- Citations: 6
Howard LSGE, He J, Watson GMJ, et al., 2021, Supplementation with iron in pulmonary arterial hypertension: two randomized crossover trials., Annals of the American Thoracic Society, Vol: 18, Pages: 981-988, ISSN: 1546-3222
RATIONALE: Iron deficiency, in the absence of anaemia, is common in patients with idiopathic and heritable pulmonary arterial hypertension (PAH) and is associated with a worse clinical outcome. Oral iron absorption may be impeded by elevated circulating hepcidin levels. The safety and benefit of parenteral iron replacement in this patient population is unclear. OBJECTIVES: To evaluate the safety and efficacy of parenteral iron replacement in pulmonary arterial hypertension. METHODS: In two randomised, double blind, placebo-controlled 12 week crossover studies, 39 patients in Europe received a single infusion of ferric carboxymaltose (Ferinject®) 1000 mg (or 15 mg/kg if weight < 66.7Kg) or saline as placebo and 17 patients in China received iron dextran (Cosmofer®) 20 mg iron/kg body weight or saline placebo. All patients had idiopathic or heritable PAH and iron deficiency at entry as defined by: a serum ferritin < 37 µg/l or iron < 10.3 µmol/l or transferrin saturations < 16.4%. RESULTS: Both iron treatments were well tolerated and improved iron status. Analysed separately and combined, there was no effect on any measure of exercise capacity (using cardiopulmonary exercise testing or 6 minute walk test) or cardio-pulmonary haemodynamics, as assessed by right heart catheterisation, cardiac magnetic resonance or plasma NT-proBNP, at 12 weeks. CONCLUSION: Iron repletion by administration of a slow release iron preparation as a single infusion to PAH patients with iron deficiency without overt anaemia was well tolerated but provided no significant clinical benefit at 12 weeks. Clinical trial registered with ClinicalTrials.gov (NCT01447628).
de Marvao A, McGurk KA, Zheng SL, et al., 2021, Outcomes and phenotypic expression of rare variants in hypertrophic cardiomyopathy genes amongst UK Biobank participants, Publisher: Cold Spring Harbor Laboratory
<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomere-encoding genes, but little is known about the clinical significance of these variants in the general population.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We compared outcomes and cardiovascular phenotypes in UK Biobank participants with whole exome sequencing stratified by sarcomere-encoding variant status.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The prevalence of rare variants (allele frequency <0.00004) in HCM-associated sarcomere-encoding genes in 200,584 participants was 2.9% (n=5,727; 1 in 35), of which 0.24% (n=474, 1 in 423) were pathogenic or likely pathogenic variants (SARC-P/LP). SARC-P/LP variants were associated with increased risk of death or major adverse cardiac events compared to controls (HR 1.68, 95% CI 1.37-2.06, p<0.001), mainly due to heart failure (HR 4.40, 95% CI 3.22-6.02, p<0.001) and arrhythmia (HR 1.55, 95% CI 1.18-2.03, p=0.002). In 21,322 participants with cardiac magnetic resonance imaging, SARC-P/LP were associated with increased left ventricular maximum wall thickness (10.9±2.7 vs 9.4±1.6 mm, p<0.001) and concentric remodelling (mass/volume ratio: 0.63±0.12 vs 0.58±0.09 g/mL, p<0.001), but hypertrophy (≥13mm) was only present in 16% (n=7/43, 95% CI 7-31%). Other rare sarcomere-encoding variants had a weak effect on wall thickness (9.5±1.7 vs 9.4±1.6 mm, p=0.002) with no combined excess cardiovascular risk (HR 1.00 95% CI 0.92-1.08, p=0.9).</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>In the general population, SARC-P/LP variants have low aggregate penetrance for overt HCM bu
Mazzarotto F, Hawley MH, Beltrami M, et al., 2021, Systematic large-scale assessment of the genetic architecture of left ventricular non-compaction reveals diverse aetiologies, Genetics in Medicine, Vol: 23, Pages: 856-864, ISSN: 1098-3600
Purpose: To characterise the genetic architecture of left ventricular non-compaction (LVNC) and investigate the extent to which it may represent a distinct pathology or a secondary phenotype associated with other cardiac diseases.Methods: We performed rare variant association analysis with 840 LVNC cases and 125,748 gnomAD population controls, and compared results to similar analyses on dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Results: We observed substantial genetic overlap indicating that LVNC often represents a phenotypic variation of DCM or HCM. In contrast, truncating variants (TV) in MYH7, ACTN2 and PRDM16 were uniquely associated with LVNC and may reflect a distinct LVNC aetiology. In particular, MYH7 TV, generally considered non-pathogenic for cardiomyopathies, were 20-fold enriched in LVNC cases over controls. MYH7 TV heterozygotes identified in the UK Biobank and healthy volunteer cohorts also displayed significantly greater non-compaction compared to matched controls. RYR2 exon deletions and HCN4 transmembrane variants were also enriched in LVNC, supporting prior reports of association with arrhythmogenic LVNC phenotypes.Conclusions: LVNC is characterised by substantial genetic overlap with DCM/HCM but is also associated with distinct non-compaction and arrhythmia aetiologies. These results will enable enhanced application of LVNC genetic testing and help to distinguish pathological from physiological non-compaction.
Ware J, Tadros R, Francis C, et al., 2021, Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect, Nature Genetics, Vol: 53, Pages: 128-134, ISSN: 1061-4036
The heart muscle diseases hypertrophic (HCM) and dilated (DCM) cardiomyopathies are leading causes of sudden death and heart failure in young otherwise healthy individuals. We conducted genome-wide association studies (GWAS) and multi-trait analyses in HCM (1,733 cases), DCM (5,521 cases), and nine left ventricular (LV) traits in 19,260 UK Biobank participants with structurally-normal hearts. We identified 16 loci associated with HCM, 13 with DCM, and 23 with LV traits. We show strong genetic correlations between LV traits and cardiomyopathies, with opposing effects in HCM and DCM. Two-sample Mendelian randomization supports a causal association linking increased contractility with HCM risk. A polygenic risk score (PRS) explains a significant portion of phenotypic variability in carriers of HCM-causing rare variants. Our findings thus provide evidence that PRS may account for variability in Mendelian diseases. More broadly, we provide insights into how genetic pathways may lead to distinct disorders through opposing genetic effects.
Zhang X, Walsh R, Whiffin N, et al., 2021, Disease-specific variant pathogenicity prediction significantly improves variant interpretation in inherited cardiac conditions, Genetics in Medicine, Vol: 23, Pages: 69-79, ISSN: 1098-3600
Background: Accurate discrimination of benign and pathogenic rare variation remains a priority for clinical genome interpretation. State-of-the-art machine learning tools are useful for genome-wide variant prioritisation but remain imprecise. Since the relationship between molecular consequence and likelihood of pathogenicity varies between genes with distinct molecular mechanisms, we hypothesised that a disease-specific classifier may outperform existing genome-wide tools. Methods: We present a novel disease-specific variant classification tool, CardioBoost, that estimates the probability of pathogenicity for rare missense variants in inherited cardiomyopathies and arrhythmias, trained with variants of known clinical effect. To benchmark against state-of-the-art genome-wide pathogenicity classification tools, we assessed classification of hold-out test variants using both overall performance metrics, and metrics of high-confidence (>90%) classifications relevant to variant interpretation. We further evaluated the prioritisation of variants associated with disease and patient clinical outcomes, providing validations that are robust to potential mis-classification in gold-standard reference datasets.Results: CardioBoost has higher discriminating power than published genome-wide variant classification tools in distinguishing between pathogenic and benign variants based on overall classification performance measures with the highest area under the Precision-Recall Curve as 91% for cardiomyopathies and as 96% for inherited arrhythmias. When assessed at high-confidence (>90%) classification thresholds, prediction accuracy is improved by at least 120% over existing tools for both cardiomyopathies and arrhythmias, with significantly improved sensitivity and specificity. Finally, CardioBoost improves prioritisation of variants significantly associated with disease, and stratifies survival of patients with cardiomyopathies, confirming biologically relevant vari
Lu W, Jia X, Chen W, et al., 2021, One-stage Multi-task Detector for 3D Cardiac MR Imaging, 25th International Conference on Pattern Recognition (ICPR), Publisher: IEEE COMPUTER SOC, Pages: 1949-1955, ISSN: 1051-4651
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.