Imperial College London

DrArranHamlet

Faculty of MedicineSchool of Public Health

Visiting Researcher
 
 
 
//

Contact

 

arran.hamlet14

 
 
//

Location

 

UG1247 Praed StreetSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

46 results found

Cuomo-Dannenburg G, McCain K, McCabe R, Unwin HJT, Doohan P, Nash RK, Hicks JT, Charniga K, Geismar C, Lambert B, Nikitin D, Skarp J, Wardle J, Kont M, Bhatia S, Imai N, van Elsland S, Cori A, Morgenstern Cet al., 2023, Marburg virus disease outbreaks, mathematical models, and disease parameters: a systematic review, Lancet Infectious Diseases, ISSN: 1473-3099

Recent Marburg virus disease (MVD) outbreaks in Equatorial Guinea and Tanzania highlighted the importance of better understanding this highly lethal infectious pathogen. We conducted a systematic review (PROSPERO CRD42023393345), reported according to PRISMA guidelines, of peer-reviewed papers reporting historical outbreaks, modelling studies and epidemiological parameters focused on MVD. We searched PubMed and Web of Science until 31/03/2023. Two reviewers evaluated all titles and abstracts, with consensus-based decision-making. To ensure agreement, 31% (13/42) of studies were double-extracted and a custom-designed quality assessment questionnaire was used for risk of bias assessment. We present detailed information on 478 reported cases and 385 deaths from MVD. Analysis of historical outbreaks and seroprevalence estimates suggests the possibility of undetected MVD outbreaks, asymptomatic transmission and/or cross-reactivity with other pathogens. Only one study presented a mathematical model of MVD transmission. We estimate an unadjusted, pooled total random effect case fatality ratio for MVD of 61.9% (95% CI: 38.8-80.6%, I^2=93%). We identify important epidemiological parameters relating to transmission and natural history for which there are few estimates. This review and the accompanying database provide a comprehensive overview of MVD epidemiology, and identify key knowledge gaps, contributing crucial information for mathematical models to support future MVD epidemic responses.

Journal article

Giotis E, 2023, Serological evidence of virus infection in Eidolon helvum fruit bats: implications for bushmeat consumption in Nigeria, Frontiers in Public Health, Vol: 11, ISSN: 2296-2565

Introduction: The Eidolon helvum fruit bat is one of the most widely distributed fruit bats in Africa and known to be a reservoir for several pathogenic viruses that can cause disease in animals and humans. To assess the risk of zoonotic spillover, we conducted a serological survey of 304 serum samples from E. helvum bats that were captured for human consumption in Makurdi, Nigeria.Methods: Using pseudotyped viruses, we screened 304 serum samples for neutralizing antibodies against viruses from the Coronaviridae, Filoviridae, Orthomyxoviridae and Paramyxoviridae families.Results: We report the presence of neutralizing antibodies against henipavirus lineage GH-M74a virus (odds ratio 6.23; p < 0.001), Nipah virus (odds ratio 4.04; p = 0.00031), bat influenza H17N10 virus (odds ratio 7.25; p < 0.001) and no significant association with Ebola virus (odds ratio 0.56; p = 0.375) in this bat cohort.Conclusion: The data suggest a potential risk of zoonotic spillover including the possible circulation of highly pathogenic viruses in E. helvum populations. These findings highlight the importance of maintaining sero-surveillance of E. helvum, and the necessity for further, more comprehensive investigations to monitor changes in virus prevalence, distribution over time, and across different geographic locations.

Journal article

Hamlet A, Begley K, Miko S, Stewart L, Tellier W, Gonzalez-De Leon J, Booth H, Lippman S, Kahler A, Roundtree A, Hatada A, Lindquist S, Melius B, Goldoft M, Mattioli M, Holshue Met al., 2023, Notes from the Field: Gastrointestinal Illness Among Hikers on the Pacific Crest Trail - Washington, August-October 2022., MMWR Morb Mortal Wkly Rep, Vol: 72, Pages: 997-998

Journal article

Lipton BA, Oltean HN, Capron RB, Hamlet A, Montgomery SP, Chancey RJ, Konold VJL, Steffl KEet al., 2023, Baylisascaris procyonis Roundworm Infection in Child with Autism Spectrum Disorder, Washington, USA, 2022, EMERGING INFECTIOUS DISEASES, Vol: 29, Pages: 1232-1235, ISSN: 1080-6040

Journal article

McCabe R, Sheppard R, Abdelmagid N, Ahmed A, Alabdeen IZ, Brazeau N, Abd Elhameed AEA, Bin-Ghouth AS, Hamlet A, AbuKoura R, Barnsley G, Hay J, Alhaffar M, Besson EK, Saje SM, Sisay BG, Gebreyesus SH, Sikamo AP, Worku A, Ahmed YS, Mariam DH, Sisay MM, Checchi F, Dahab M, Endris BS, Ghani A, Walker P, Donnelly C, Watson Oet al., 2023, Alternative epidemic indicators for COVID-19 in three settings with incomplete death registration systems, Science Advances, Vol: 23, Pages: 1-10, ISSN: 2375-2548

Not all COVID-19 deaths are officially reported, and particularly in low-income and humanitarian settings, the magnitude of reporting gaps remains sparsely characterized. Alternative data sources, including burial site worker reports, satellite imagery of cemeteries, and social media–conducted surveys of infection may offer solutions. By merging these data with independently conducted, representative serological studies within a mathematical modeling framework, we aim to better understand the range of underreporting using examples from three major cities: Addis Ababa (Ethiopia), Aden (Yemen), and Khartoum (Sudan) during 2020. We estimate that 69 to 100%, 0.8 to 8.0%, and 3.0 to 6.0% of COVID-19 deaths were reported in each setting, respectively. In future epidemics, and in settings where vital registration systems are limited, using multiple alternative data sources could provide critically needed, improved estimates of epidemic impact. However, ultimately, these systems are needed to ensure that, in contrast to COVID-19, the impact of future pandemics or other drivers of mortality is reported and understood worldwide.

Journal article

Whittaker C, Hamlet A, Sherrard-Smith E, Winskill P, Cuomo-Dannenburg G, Walker PGT, Sinka M, Pironon S, Kumar A, Ghani A, Bhatt S, Churcher TSet al., 2023, Seasonal dynamics of Anopheles stephensi and its implications for mosquito detection and emergent malaria control in the Horn of Africa, Proceedings of the National Academy of Sciences of USA, Vol: 120, Pages: 1-9, ISSN: 0027-8424

Invasion of the malaria vector Anopheles stephensi across the Horn of Africa threatens control efforts across the continent, particularly in urban settings where the vector is able to proliferate. Malaria transmission is primarily determined by the abundance of dominant vectors, which often varies seasonally with rainfall. However, it remains unclear how An. stephensi abundance changes throughout the year, despite this being a crucial input to surveillance and control activities. We collate longitudinal catch data from across its endemic range to better understand the vector's seasonal dynamics and explore the implications of this seasonality for malaria surveillance and control across the Horn of Africa. Our analyses reveal pronounced variation in seasonal dynamics, the timing and nature of which are poorly predicted by rainfall patterns. Instead, they are associated with temperature and patterns of land use; frequently differing between rural and urban settings. Our results show that timing entomological surveys to coincide with rainy periods is unlikely to improve the likelihood of detecting An. stephensi. Integrating these results into a malaria transmission model, we show that timing indoor residual spraying campaigns to coincide with peak rainfall offers little improvement in reducing disease burden compared to starting in a random month. Our results suggest that unlike other malaria vectors in Africa, rainfall may be a poor guide to predicting the timing of peaks in An. stephensi-driven malaria transmission. This highlights the urgent need for longitudinal entomological monitoring of the vector in its new environments given recent invasion and potential spread across the continent.

Journal article

Caicedo E-Y, Charniga K, Rueda A, Dorigatti I, Mendez Y, Hamlet A, Carrera J-P, Cucunubá ZMet al., 2023, Correction: The epidemiology of Mayaro virus in the Americas: A systematic review and key parameter estimates for outbreak modelling., PLoS Neglected Tropical Diseases, Vol: 17, Pages: 1-2, ISSN: 1935-2727

[This corrects the article DOI: 10.1371/journal.pntd.0009418.].

Journal article

Whittaker C, Watson O, Alvarez-Moreno C, Angkasekwinai N, Boonyasiri A, Triana LC, Chanda D, Charoenpong L, Chayakulkeeree M, Cooke G, Croda J, Cucunubá ZM, Djaafara A, Estofolete CF, Grillet M-E, Faria N, Costa SF, Forero-Peña DA, Gibb DM, Gordon A, Hamers RL, Hamlet A, Irawany V, Jitmuang A, Keurueangkul N, Kimani TN, Lampo M, Levin A, Lopardo G, Mustafa R, Nayagam AS, Ngamprasertchai T, Njeri NIH, Nogueira ML, Ortiz-Prado E, Perroud Jr MW, Phillips AN, Promsin P, Qavi A, Rodger AJ, Sabino EC, Sangkaew S, Sari D, Sirijatuphat R, Sposito AC, Srisangthong P, Thompson H, Udwadia Z, Valderrama-Beltrán S, Winskill P, Ghani A, Walker P, Hallett Tet al., 2022, Understanding the Potential Impact of Different Drug Properties On SARS-CoV-2 Transmission and Disease Burden: A Modelling Analysis, Clinical Infectious Diseases, Vol: 75, Pages: e224-e233, ISSN: 1058-4838

BackgroundThe public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear.MethodsUsing a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care, we explore the public-health impact of different potential therapeutics, under a range of scenarios varying healthcare capacity, epidemic trajectories; and drug efficacy in the absence of supportive care.ResultsThe impact of drugs like dexamethasone (delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics.ConclusionsAdvances in the treatment of COVID-19 to date have been focussed on hospitalised-patients and predicated on an assumption of adequate access to supportive care. Therapeutics delivered earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priority.

Journal article

Hamlet A, Dengela D, Tongren JE, Tadesse FG, Bousema T, Sinka M, Seyoum A, Irish SR, Armistead JS, Churcher Tet al., 2022, The potential impact of Anopheles stephensi establishment on the transmission of Plasmodium falciparum in Ethiopia and prospective control measures, BMC Medicine, Vol: 20, ISSN: 1741-7015

BackgroundSub-Saharan Africa has seen substantial reductions in cases and deaths due to malaria over the past two decades. While this reduction is primarily due to an increasing expansion of interventions, urbanisation has played its part as urban areas typically experience substantially less malaria transmission than rural areas. However, this may be partially lost with the invasion and establishment of Anopheles stephensi. An. stephensi, the primary urban malaria vector in Asia, was first detected in Africa during 2012 in Djibouti and was subsequently identified in Ethiopia in 2016, and later in Sudan and Somalia. In Djibouti, malaria cases have increased 30-fold from 2012 to 2019 though the impact in the wider region remains unclear.MethodsHere we have adapted an existing model of mechanistic malaria transmission to estimate the increase in vector density required to explain the trends in malaria cases seen in Djibouti. To account for the observed plasticity in An. stephensi behaviour, and the unknowns of how it will establish in a novel environment, we sample behavioural parameters in order to account for a wide range of uncertainty. This quantification is then applied to Ethiopia, considering temperature-dependent extrinsic incubation periods, pre-existing vector-control interventions and Plasmodium falciparum prevalence in order to assess the potential impact of An. stephensi establishment on P. falciparum transmission. Following this, we estimate the potential impact of scaling up ITN (insecticide treated nets)/IRS (indoor residual spraying) and implementing piperonyl butoxide (PBO) ITNs and larval source management,, as well as their economic costs.ResultsWe estimate that annual P. falciparum malaria cases could increase by 50% (95% CI 14-90) if no additional interventions are implemented. The implementation of sufficient control measures to reduce malaria transmission to pre-stephensi levels will cost hundreds of millions of USD. ConclusionsSubstantial hete

Journal article

Shah H, Murray K, Hamlet A, Carrasco LRet al., 2022, Exploring agricultural land-use and childhood malaria associations in sub-Saharan Africa, Scientific Reports, Vol: 12, ISSN: 2045-2322

Agriculture in Africa is rapidly expanding but with this comes potential disbenefits for the environment and human health. Here, we retrospectively assess whether childhood malaria in sub-Saharan Africa varies across differing agricultural land uses after controlling for socio-economic and environmental confounders. Using a multi-model inference hierarchical modelling framework, we found that rainfed cropland was associated with increased malaria in rural (OR 1.10, CI 1.03 – 1.18) but not urban areas, while irrigated or post flooding cropland was associated with malaria in urban (OR 1.09, CI 1.00 – 1.18) but not rural areas. In contrast, although malaria was associated with complete forest cover (OR 1.35, CI 1.24 – 1.47), the presence of natural vegetation in agricultural lands potentially reduces the odds of malaria depending on rural-urban context. In contrast, no associations with malaria were observed for natural vegetation interspersed with cropland (veg-dominant mosaic). Agricultural expansion through rainfed or irrigated cropland may increase childhood malaria in rural or urban contexts in sub-Saharan Africa but retaining some natural vegetation within croplands could help mitigate this risk and provide environmental co-benefits.

Journal article

Sherrard-Smith E, Winskill P, Hamlet A, 2022, Optimising the deployment of vector control tools against malaria: a data-informed modelling study (vol 6, pg e100, 2022), LANCET PLANETARY HEALTH, Vol: 6, Pages: E191-E191

Journal article

Polonsky JA, Bhatia S, Fraser K, Hamlet A, Skarp J, Stopard IJ, Hugonnet S, Kaiser L, Lengeler C, Blanchet K, Spiegel Pet al., 2022, Feasibility, acceptability, and effectiveness of non-pharmaceutical interventions against infectious diseases among crisis-affected populations: a scoping review, Infectious Diseases of Poverty, Vol: 11, Pages: 1-19, ISSN: 2049-9957

BackgroundNon-pharmaceutical interventions (NPIs) are a crucial suite of measures to prevent and control infectious disease outbreaks. Despite being particularly important for crisis-affected populations and those living in informal settlements, who typically reside in overcrowded and resource limited settings with inadequate access to healthcare, guidance on NPI implementation rarely takes the specific needs of such populations into account. We therefore conducted a systematic scoping review of the published evidence to describe the landscape of research and identify evidence gaps concerning the acceptability, feasibility, and effectiveness of NPIs among crisis-affected populations and informal settlements.MethodsWe systematically reviewed peer-reviewed articles published between 1970 and 2020 to collate available evidence on the feasibility, acceptability, and effectiveness of NPIs in crisis-affected populations and informal settlements. We performed quality assessments of each study using a standardised questionnaire. We analysed the data to produce descriptive summaries according to a number of categories: date of publication; geographical region of intervention; typology of crisis, shelter, modes of transmission, NPI, research design; study design; and study quality.ResultsOur review included 158 studies published in 85 peer-reviewed articles. Most research used low quality study designs. The acceptability, feasibility, and effectiveness of NPIs was highly context dependent. In general, simple and cost-effective interventions such as community-level environmental cleaning and provision of water, sanitation and hygiene services, and distribution of items for personal protection such as insecticide-treated nets, were both highly feasible and acceptable. Logistical, financial, and human resource constraints affected both the implementation and sustainability of measures. Community engagement emerged as a strong factor contributing to the effectiveness of NPIs. Con

Journal article

Li SL, Acosta AL, Hill SC, Brady OJ, de Almeida MAB, Cardoso JDC, Hamlet A, Mucci LF, de Deus JT, Iani FCM, Alexander NS, Wint GRW, Pybus OG, Kraemer MUG, Faria NR, Messina JPet al., 2022, Mapping environmental suitability of Haemagogus and Sabethes spp. mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil, PLoS Neglected Tropical Diseases, Vol: 16, ISSN: 1935-2727

BackgroundYellow fever (YF) is an arboviral disease which is endemic to Brazil due to a sylvatic transmission cycle maintained by infected mosquito vectors, non-human primate (NHP) hosts, and humans. Despite the existence of an effective vaccine, recent sporadic YF epidemics have underscored concerns about sylvatic vector surveillance, as very little is known about their spatial distribution. Here, we model and map the environmental suitability of YF’s main vectors in Brazil, Haemagogus spp. and Sabethes spp., and use human population and NHP data to identify locations prone to transmission and spillover risk.Methodology/Principal findingsWe compiled a comprehensive set of occurrence records on Hg. janthinomys, Hg. leucocelaenus, and Sabethes spp. from 1991–2019 using primary and secondary data sources. Linking these data with selected environmental and land-cover variables, we adopted a stacked regression ensemble modelling approach (elastic-net regularized GLM, extreme gradient boosted regression trees, and random forest) to predict the environmental suitability of these species across Brazil at a 1 km x 1 km resolution. We show that while suitability for each species varies spatially, high suitability for all species was predicted in the Southeastern region where recent outbreaks have occurred. By integrating data on NHP host reservoirs and human populations, our risk maps further highlight municipalities within the region that are prone to transmission and spillover.Conclusions/SignificanceOur maps of sylvatic vector suitability can help elucidate potential locations of sylvatic reservoirs and be used as a tool to help mitigate risk of future YF outbreaks and assist in vector surveillance. Furthermore, at-risk regions identified from our work could help disease control and elucidate gaps in vaccination coverage and NHP host surveillance.

Journal article

Whittaker C, Walker PGT, Alhaffar M, Hamlet A, Djaafara BA, Ghani A, Ferguson N, Dahab M, Checchi F, Watson OJet al., 2021, Under-reporting of deaths limits our understanding of true burden of covid-19, BMJ-BRITISH MEDICAL JOURNAL, Vol: 375, ISSN: 0959-535X

Journal article

Hamlet A, Ramos DG, Gaythorpe K, Romano APM, Garske T, Ferguson Net al., 2021, Seasonality of agricultural exposure as an important predictor of seasonal yellow fever spillover in Brazil, Nature Communications, Vol: 12, Pages: 1-11, ISSN: 2041-1723

Yellow fever virus (YFV) is a zoonotic arbovirus affecting both humans and non-human primates (NHP’s) in Africa and South America. Previous descriptions of YF’s seasonality have relied purely on climatic explanations, despite the high proportion of cases occurring in people involved in agriculture. We use a series of random forest classification models to predict the monthly occurrence of YF in humans and NHP’s across Brazil, by fitting four classes of covariates related to the seasonality of climate and agriculture (planting and harvesting), crop output and host demography. We find that models captured seasonal YF reporting in humans and NHPs when they considered seasonality of agriculture rather than climate, particularly for monthly aggregated reports. These findings illustrate the seasonality of exposure, through agriculture, as a component of zoonotic spillover. Additionally, by highlighting crop types and anthropogenic seasonality, these results could directly identify areas at highest risk of zoonotic spillover.

Journal article

Caicedo Y, Charniga K, Rueda A, Dorigatti I, Hamlet A, Mendez Y, Carrera J-P, Cucunuba, Cucunuba Perez Zet al., 2021, The epidemiology of Mayaro virus in the Americas: a systematic review and key parameter estimates for outbreak modelling, PLoS Neglected Tropical Diseases, Vol: 15, ISSN: 1935-2727

Mayaro virus (MAYV) is an arbovirus that is endemic to tropical forests in Central and South America, particularly within the Amazon basin. In recent years, concern has increased regarding MAYV’s ability to invade urban areas and cause epidemics across the region. We conducted a systematic literature review to characterise the evolutionary history of MAYV, its transmission potential, and exposure patterns to the virus. We analysed data from the literature on MAYV infection to produce estimates of key epidemiological parameters, including the generation time and the basic reproduction number, R0. We also estimated the force-of-infection (FOI) in epidemic and endemic settings. Seventy-six publications met our inclusion criteria. Evidence of MAYV infection in humans, animals, or vectors was reported in 14 Latin American countries. Nine countries reported evidence of acute infection in humans confirmed by viral isolation or reverse transcription-PCR (RT-PCR). We identified at least five MAYV outbreaks. Seroprevalence from population based cross-sectional studies ranged from 21% to 72%. The estimated mean generation time of MAYV was 15.2 days (95% CrI: 11.7–19.8) with a standard deviation of 6.3 days (95% CrI: 4.2–9.5). The per-capita risk of MAYV infection (FOI) ranged between 0.01 and 0.05 per year. The mean R0 estimates ranged between 2.1 and 2.9 in the Amazon basin areas and between 1.1 and 1.3 in the regions outside of the Amazon basin. Although MAYV has been identified in urban vectors, there is not yet evidence of sustained urban transmission. MAYV’s enzootic cycle could become established in forested areas within cities similar to yellow fever virus.

Journal article

Hogan AB, Winskill P, Watson OJ, Walker PGT, Whittaker C, Baguelin M, Brazeau NF, Charles GD, Gaythorpe KAM, Hamlet A, Knock E, Laydon DJ, Lees JA, Løchen A, Verity R, Whittles LK, Muhib F, Hauck K, Ferguson NM, Ghani ACet al., 2021, Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: a mathematical modelling analysis, Vaccine, Vol: 39, Pages: 2995-3006, ISSN: 0264-410X

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extended a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identified optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We found that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.

Journal article

Watson O, Alhaffar M, Mehchy Z, Whittaker C, Akil Z, Brazeau N, Cuomo-Dannenburg G, Hamlet A, Thompson H, Baguelin M, Fitzjohn R, Knock E, Lees J, Whittles L, Mellan T, Winskill P, COVID-19 Response Team IC, Howard N, Clapham H, Checchi F, Ferguson N, Ghani A, Walker P, Beals Eet al., 2021, Leveraging community mortality indicators to infer COVID-19 mortality and transmission dynamics in Damascus, Syria, Nature Communications, Vol: 12, Pages: 1-10, ISSN: 2041-1723

The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported considerably lower mortality rates than in Europe and the Americas. Motivated by reports of an overwhelmed health system, we estimate the likely under-ascertainment of COVID-19 mortality in Damascus, Syria. Using all-cause mortality data, we fit a mathematical model of COVID-19 transmission to reported mortality, estimating that 1.25% of COVID-19 deaths (sensitivity range 1.00% – 3.00%) have been reported as of 2 September 2020. By 2 September, we estimate that 4,380 (95% CI: 3,250 – 5,550) COVID-19 deaths in Damascus may have been missed, with 39.0% (95% CI: 32.5% – 45.0%) of the population in Damascus estimated to have been infected. Accounting for under-ascertainment corroborates reports of exceeded hospital bed capacity and is validated by community-uploaded obituary notifications, which confirm extensive unreported mortality in Damascus.

Journal article

Raslan N, Hamlet A, Kumari V, 2021, Mental health and psychosocial support in conflict: children's protection concerns and intervention outcomes in Syria, CONFLICT AND HEALTH, Vol: 15, ISSN: 1752-1505

Journal article

Hogan AB, Winskill P, Watson OJ, Walker PGT, Whittaker C, Baguelin M, Brazeau NF, Charles GD, Gaythorpe KAM, Hamlet A, Knock E, Laydon DJ, Lees JA, Løchen A, Verity R, Whittles LK, Muhib F, Hauck K, Ferguson NM, Ghani ACet al., 2021, Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: a mathematical modelling analysis, Publisher: Cold Spring Harbor Laboratory

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extended a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identified optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We found that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.

Working paper

Gaythorpe KAM, Hamlet A, Jean K, Ramos DG, Cibrelus L, Garske T, Ferguson Net al., 2021, The global burden of yellow fever, ELIFE, Vol: 10, ISSN: 2050-084X

Journal article

Nouvellet P, Bhatia S, Cori A, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, Eales O, van Elsland S, NASCIMENTO F, Fitzjohn R, Gaythorpe K, Geidelberg L, green W, Hamlet A, Hauck K, Hinsley W, Imai N, Jeffrey, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Nedjati Gilani G, Parag K, Pons Salort M, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Watson O, Whittaker C, Whittles L, Xi X, Ferguson N, Donnelly Cet al., 2021, Reduction in mobility and COVID-19 transmission, Nature Communications, Vol: 12, ISSN: 2041-1723

In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts.Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world.Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation.In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.

Journal article

Jean K, Raad H, Gaythorpe KAM, Hamlet A, Mueller JE, Hogan D, Mengistu T, Whitaker HJ, Garske T, Hocine MNet al., 2021, Assessing the impact of preventive mass vaccination campaigns on yellow fever outbreaks in Africa: A population-level self-controlled case series study, PLOS MEDICINE, Vol: 18, ISSN: 1549-1277

Journal article

Hamlet A, Gaythorpe KAM, Garske T, Ferguson NMet al., 2021, Seasonal and inter-annual drivers of yellow fever transmission in South America, PLOS NEGLECTED TROPICAL DISEASES, Vol: 15, ISSN: 1935-2735

Journal article

Fu H, Wang H, Xi X, Boonyasiri A, Wang Y, Hinsley W, Fraser KJ, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewé T, Dighe A, Winskill P, van Elsland SL, Ainslie KEC, Baguelin M, Bhatt S, Boyd O, Brazeau NF, Cattarino L, Charles G, Coupland H, Cucunubá ZM, Cuomo-Dannenburg G, Donnelly CA, Dorigatti I, Eales OD, Fitzjohn RG, Flaxman S, Gaythorpe KAM, Ghani AC, Green WD, Hamlet A, Hauck K, Haw DJ, Jeffrey B, Laydon DJ, Lees JA, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag KV, Ragonnet-Cronin M, Riley S, Schmit N, Thompson HA, Unwin HJT, Verity R, Vollmer MAC, Volz E, Walker PGT, Walters CE, Waston OJ, Whittaker C, Whittles LK, Imai N, Bhatia S, Ferguson NMet al., 2021, A database for the epidemic trends and control measures during the first wave of COVID-19 in mainland China, International Journal of Infectious Diseases, Vol: 102, Pages: 463-471, ISSN: 1201-9712

Objectives: This data collation effort aims to provide a comprehensive database to describe the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19)across main provinces in China. Methods: From mid-January to March 2020, we extracted publicly available data on the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted a descriptive analysis of the epidemics in the six most-affected provinces. Results: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends were different across provinces. Compared to Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as local transmission of COVID-19 declined, switching the focus of measures to testing and quarantine of inbound travellers could help to sustain the control of the epidemic. Conclusions: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database with these indicators and information on control measures provides useful source for exploring further research and policy planning for response to the COVID-19 epidemic.

Journal article

Caicedo E-Y, Charniga K, Rueda A, Dorigatti I, Mendez Y, Hamlet A, Carrera J-P, Cucunubá ZMet al., 2020, The epidemiology of Mayaro virus in the Americas: A systematic review and key parameter estimates for outbreak modelling, Publisher: Public Library of Science

<jats:title>Abstract</jats:title><jats:p>Mayaro virus (MAYV) is an arbovirus that is endemic to tropical forests in Central and South America, particularly within the Amazon basin. In recent years, concern has increased regarding MAYV’s ability to invade urban areas and cause epidemics across the region. We conducted a systematic literature review to characterise the evolutionary history of MAYV, its transmission potential, and exposure patterns to the virus. We analysed data from the literature on MAYV infection to produce estimates of key epidemiological parameters, including the generation time and the basic reproduction number, <jats:italic>R</jats:italic><jats:sub>0</jats:sub>. We also estimated the force-of-infection (FOI) in epidemic and endemic settings. Seventy-six publications met our inclusion criteria. Evidence of MAYV infection in humans, animals, or vectors was reported in 14 Latin American countries. Nine countries reported evidence of acute infection in humans confirmed by viral isolation or reverse transcription-PCR (RT-PCR). We identified at least five MAYV outbreaks. Seroprevalence from population based cross-sectional studies ranged from 21% to 72%. The estimated mean generation time of MAYV was 15.2 days (95% CrI: 11.7-19.8) with a standard deviation of 6.3 days (95% CrI: 4.2-9.5). The per-capita risk of MAYV infection (FOI) ranged between 0.01 and 0.05 per year, producing <jats:italic>R</jats:italic><jats:sub>0</jats:sub> estimates between 1.1 and 2.9 in endemic settings. In an outbreak in Santa Cruz, Bolivia, <jats:italic>R</jats:italic><jats:sub>0</jats:sub> was estimated at 2.2 (95% CrI: 0.8-4.8). Although MAYV has been identified in urban vectors, there is not yet evidence of sustained urban transmission. MAYV’s enzootic cycle could become established in forested areas within cities similar to yellow fever virus.</jats:p><jats:sec&

Working paper

Grassly NC, Pons-Salort M, Parker EPK, White PJ, Ferguson NM, Imperial College COVID-19 Response Teamet al., 2020, Comparison of molecular testing strategies for COVID-19 control: a mathematical modelling study, Lancet Infectious Diseases, Vol: 20, Pages: 1381-1389, ISSN: 1473-3099

BACKGROUND: WHO has called for increased testing in response to the COVID-19 pandemic, but countries have taken different approaches and the effectiveness of alternative strategies is unknown. We aimed to investigate the potential impact of different testing and isolation strategies on transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We developed a mathematical model of SARS-CoV-2 transmission based on infectiousness and PCR test sensitivity over time since infection. We estimated the reduction in the effective reproduction number (R) achieved by testing and isolating symptomatic individuals, regular screening of high-risk groups irrespective of symptoms, and quarantine of contacts of laboratory-confirmed cases identified through test-and-trace protocols. The expected effectiveness of different testing strategies was defined as the percentage reduction in R. We reviewed data on the performance of antibody tests reported by the Foundation for Innovative New Diagnostics and examined their implications for the use of so-called immunity passports. FINDINGS: If all individuals with symptoms compatible with COVID-19 self-isolated and self-isolation was 100% effective in reducing onwards transmission, self-isolation of symptomatic individuals would result in a reduction in R of 47% (95% uncertainty interval [UI] 32-55). PCR testing to identify SARS-CoV-2 infection soon after symptom onset could reduce the number of individuals needing to self-isolate, but would also reduce the effectiveness of self-isolation (around 10% would be false negatives). Weekly screening of health-care workers and other high-risk groups irrespective of symptoms by use of PCR testing is estimated to reduce their contribution to SARS-CoV-2 transmission by 23% (95% UI 16-40), on top of reductions achieved by self-isolation following symptoms, assuming results are available at 24 h. The effectiveness of test and trace depends strongly on coverage and the timelines

Journal article

Thompson H, Imai N, Dighe A, Ainslie K, Baguelin M, Bhatia S, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Z, Cuomo-Dannenburg G, Djaafara B, Dorigatti I, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Hallett T, Hamlet A, Haw D, Hayes S, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Mousa A, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Wang Y, Watson O, Whittaker C, Whittles L, Winskill P, Xi X, Donnelly C, Ferguson Net al., 2020, SARS-CoV-2 infection prevalence on repatriation flights from Wuhan City, China, Journal of Travel Medicine, Vol: 27, Pages: 1-3, ISSN: 1195-1982

We estimated SARS-CoV-2 infection prevalence in cohorts of repatriated citizens from Wuhan to be 0.44% (95% CI: 0.19%–1.03%). Although not representative of the wider population we believe these estimates are helpful in providing a conservative estimate of infection prevalence in Wuhan City, China, in the absence of large-scale population testing early in the epidemic.

Journal article

Gaythorpe KAM, Hamlet ATP, Jean K, Ramos DG, Cibrelus L, Garske T, Ferguson NMet al., 2020, The global burden of yellow fever

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Yellow fever (YF) is a viral haemorrhagic fever endemic in tropical regions of Africa and South America. Current intervention policies, namely the Eliminate Yellow fever Epidemics (EYE) strategy are actioned through vaccination. However, the stockpiles and production mean that vaccination can be in short supply. As such, intervention strategies need to be optimised; one of the tools for doing this is mathematical modelling.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We fit a generalised linear model of YF reports to occurrence data available from 1987 to 2019 in Africa and South America and available serology survey data to estimate the force of infection across the continents. Then, using demographic and vaccination data, we examine the impact of interventions.</jats:p></jats:sec><jats:sec><jats:title>Findings</jats:title><jats:p>We estimate that in 2018 there were approximately 51,000 (95%CrI [31,000 - 82,000]) deaths due to YF in Africa and South America. When we examine the impact of mass vaccination campaigns in Africa, these amount to approximately 10,000 (95%CrI [6,000 - 17,000]) deaths averted in 2018 due to mass vaccination activities in Africa; this corresponds to a 47% reduction (95%CrI [10% - 77%]).</jats:p></jats:sec><jats:sec><jats:title>Interpretation</jats:title><jats:p>We find that the majority, 92% (95%CrI [89% - 95%]), of global burden occurs in Africa and that mass vaccination activities have significantly reduced the current deaths per year due to YF. This methodology allows us to evaluate the effectiveness of vaccination campaigns past, present and future and illustrates the need for continued vigilance and surveillance of YF.</jats:p></jats:sec><jats:sec><jats:title>Fu

Journal article

Monod M, Blenkinsop A, Xi X, Herbert D, Bershan S, Tietze S, Bradley V, Chen Y, Coupland H, Filippi S, Ish-Horowicz J, McManus M, Mellan T, Gandy A, Hutchinson M, Unwin H, Vollmer M, Weber S, Zhu H, Bezancon A, Ferguson N, Mishra S, Flaxman S, Bhatt S, Ratmann O, Ainslie K, Baguelin M, Boonyasiri A, Boyd O, Cattarino L, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Djaafara A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Green W, Hamlet A, Jeffrey B, Knock E, Laydon D, Nedjati Gilani G, Nouvellet P, Parag K, Siveroni I, Thompson H, Verity R, Walters C, Donnelly C, Okell L, Bhatia S, Brazeau N, Eales O, Haw D, Imai N, Jauneikaite E, Lees J, Mousa A, Olivera Mesa D, Skarp J, Whittles Let al., 2020, Report 32: Targeting interventions to age groups that sustain COVID-19 transmission in the United States, Pages: 1-32

Following ini􀀂al declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementa􀀂on of non-pharmaceu􀀂cal inter-ven􀀂ons, it is s􀀂ll not known how they are impacted by changing contact pa􀀁erns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impact the loosening of interven􀀂ons such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanis􀀂cally to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age specific contact pa􀀁erns and use this rich rela􀀂onship to reconstruct accurate trans-mission dynamics. Contrary to anecdotal evidence, we find li􀀁le support for age-shi􀀃s in contact and transmission dynamics over 􀀂me. We es􀀂mate that, un􀀂l August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infec􀀂ons in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0-9. In areas with con􀀂nued, community-wide transmission, our transmission model predicts that re-opening kindergartens and el-ementary schools could facilitate spread and lead to considerable excess COVID-19 a􀀁ributable deaths over a 90-day period. These findings indicate that targe􀀂ng interven􀀂ons to adults aged 20-49 are an important con-sidera􀀂on in hal􀀂ng resurgent epidemics, and preven􀀂ng COVID-19-a􀀁ributable deaths when kindergartens and elementary schools reopen.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00994749&limit=30&person=true