Imperial College London


Faculty of MedicineSchool of Public Health

Research Assistant







UG1247 Praed StreetSt Mary's Campus





Publication Type

3 results found

Hamlet A, Jean K, Yactaco S, Benzler J, Cibrelus L, Ferguson N, Garske Tet al., 2019, POLICI: A web application for visualising and extracting yellow fever vaccination coverage in Africa, Vaccine, Vol: 37, Pages: 1384-1388, ISSN: 0264-410X

Recent yellow fever (YF) outbreaks have highlighted the increasing global risk of urban spread of the disease. In context of recurrent vaccine shortages, preventive vaccination activities require accurate estimates of existing population-level immunity. We present POLICI (POpulation-Level Immunization Coverage – Imperial), an interactive online tool for visualising and extracting YF vaccination coverage estimates in Africa.We calculated single year age-disaggregated sub-national population-level vaccination coverage for 1950–2050 across the African endemic zone by collating vaccination information and inputting it into a demographic model. This was then implemented on an open interactive web platform.POLICI interactively displays age-disaggregated, population-level vaccination coverages at the first subnational administrative level, through numerous downloadable and customisable visualisations. POLICI is available at offers an accessible platform for relevant stakeholders in global health to access and explore vaccination coverages. These estimates have already been used to inform the WHO strategy to Eliminate Yellow fever Epidemics (EYE).

Journal article

Hamlet A, Jean K, Perea W, Yactayo S, Biey J, Van Kerkhove M, Ferguson N, Garske Tet al., 2018, The seasonal influence of climate and environment on yellow fever transmission across Africa, PLoS Neglected Tropical Diseases, Vol: 12, ISSN: 1935-2727

Background:Yellow fever virus (YFV) is a vector-borne flavivirus endemic to Africa and Latin America. Ninety per cent of the global burden occurs in Africa where it is primarily transmitted by Aedes spp, with Aedes aegypti the main vector for urban yellow fever (YF). Mosquito life cycle and viral replication in the mosquito are heavily dependent on climate, particularly temperature and rainfall. We aimed to assess whether seasonal variations in climatic factors are associated with the seasonality of YF reports.Methodology/Principal findings:We constructed a temperature suitability index for YFV transmission, capturing the temperature dependence of mosquito behaviour and viral replication within the mosquito. We then fitted a series of multilevel logistic regression models to a dataset of YF reports across Africa, considering location and seasonality of occurrence for seasonal models, against the temperature suitability index, rainfall and the Enhanced Vegetation Index (EVI) as covariates alongside further demographic indicators. Model fit was assessed by the Area Under the Curve (AUC), and models were ranked by Akaike’s Information Criterion which was used to weight model outputs to create combined model predictions. The seasonal model accurately captured both the geographic and temporal heterogeneities in YF transmission (AUC = 0.81), and did not perform significantly worse than the annual model which only captured the geographic distribution. The interaction between temperature suitability and rainfall accounted for much of the occurrence of YF, which offers a statistical explanation for the spatio-temporal variability in transmission.Conclusions/Significance:The description of seasonality offers an explanation for heterogeneities in the West-East YF burden across Africa. Annual climatic variables may indicate a transmission suitability not always reflected in seasonal interactions. This finding, in conjunction with forecasted data, could highlight areas of

Journal article

Dorigatti I, Hamlet A, Aguas R, Cattarino L, Cori A, Donnelly CA, Garske T, Imai N, Ferguson NMet al., 2017, International risk of yellow fever spread from the ongoing outbreak in Brazil, December 2016 to May 2017, EUROSURVEILLANCE, Vol: 22, Pages: 1-4, ISSN: 1560-7917

States in south-eastern Brazil were recently affected by the largest Yellow Fever (YF) outbreak seen in a decade in Latin America. Here we provide a quantitative assessment of the risk of travel-related international spread of YF indicating that the United States, Argentina, Uruguay, Spain, Italy and Germany may have received at least one travel-related YF case capable of seeding local transmission. Mitigating the risk of imported YF cases seeding local transmission requires heightened surveillance globally.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00994749&limit=30&person=true