Imperial College London

DrArranHamlet

Faculty of MedicineSchool of Public Health

Research Associate
 
 
 
//

Contact

 

arran.hamlet14

 
 
//

Location

 

UG1247 Praed StreetSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

9 results found

Hamlet A, Ramos DG, Gaythorpe K, Romano APM, Garske T, Ferguson Net al., 2021, Seasonality of agricultural exposure as an important predictor of seasonal yellow fever spillover in Brazil, Nature Communications, Vol: 12, Pages: 1-11, ISSN: 2041-1723

Yellow fever virus (YFV) is a zoonotic arbovirus affecting both humans and non-human primates (NHP’s) in Africa and South America. Previous descriptions of YF’s seasonality have relied purely on climatic explanations, despite the high proportion of cases occurring in people involved in agriculture. We use a series of random forest classification models to predict the monthly occurrence of YF in humans and NHP’s across Brazil, by fitting four classes of covariates related to the seasonality of climate and agriculture (planting and harvesting), crop output and host demography. We find that models captured seasonal YF reporting in humans and NHPs when they considered seasonality of agriculture rather than climate, particularly for monthly aggregated reports. These findings illustrate the seasonality of exposure, through agriculture, as a component of zoonotic spillover. Additionally, by highlighting crop types and anthropogenic seasonality, these results could directly identify areas at highest risk of zoonotic spillover.

Journal article

Hogan AB, Winskill P, Watson OJ, Walker PGT, Whittaker C, Baguelin M, Brazeau NF, Charles GD, Gaythorpe KAM, Hamlet A, Knock E, Laydon DJ, Lees JA, Løchen A, Verity R, Whittles LK, Muhib F, Hauck K, Ferguson NM, Ghani ACet al., 2021, Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: a mathematical modelling analysis, Vaccine, Vol: 39, Pages: 2995-3006, ISSN: 0264-410X

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extended a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identified optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We found that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.

Journal article

Watson O, Alhaffar M, Mehchy Z, Whittaker C, Akil Z, Brazeau N, Cuomo-Dannenburg G, Hamlet A, Thompson H, Baguelin M, Fitzjohn R, Knock E, Lees J, Whittles L, Mellan T, Winskill P, COVID-19 Response Team IC, Howard N, Clapham H, Checchi F, Ferguson N, Ghani A, Walker P, Beals Eet al., 2021, Leveraging community mortality indicators to infer COVID-19 mortality and transmission dynamics in Damascus, Syria, Nature Communications, Vol: 12, Pages: 1-10, ISSN: 2041-1723

The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported considerably lower mortality rates than in Europe and the Americas. Motivated by reports of an overwhelmed health system, we estimate the likely under-ascertainment of COVID-19 mortality in Damascus, Syria. Using all-cause mortality data, we fit a mathematical model of COVID-19 transmission to reported mortality, estimating that 1.25% of COVID-19 deaths (sensitivity range 1.00% – 3.00%) have been reported as of 2 September 2020. By 2 September, we estimate that 4,380 (95% CI: 3,250 – 5,550) COVID-19 deaths in Damascus may have been missed, with 39.0% (95% CI: 32.5% – 45.0%) of the population in Damascus estimated to have been infected. Accounting for under-ascertainment corroborates reports of exceeded hospital bed capacity and is validated by community-uploaded obituary notifications, which confirm extensive unreported mortality in Damascus.

Journal article

Nouvellet P, Bhatia S, Cori A, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, Eales O, van Elsland S, NASCIMENTO F, Fitzjohn R, Gaythorpe K, Geidelberg L, green W, Hamlet A, Hauck K, Hinsley W, Imai N, Jeffrey, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Nedjati Gilani G, Parag K, Pons Salort M, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Watson O, Whittaker C, Whittles L, Xi X, Ferguson N, Donnelly Cet al., 2021, Reduction in mobility and COVID-19 transmission, Nature Communications, Vol: 12, ISSN: 2041-1723

In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts.Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world.Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation.In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.

Journal article

Jean K, Raad H, Gaythorpe KAM, Hamlet A, Mueller JE, Hogan D, Mengistu T, Whitaker HJ, Garske T, Hocine MNet al., 2021, Assessing the impact of preventive mass vaccination campaigns on yellow fever outbreaks in Africa: A population-level self-controlled case series study, PLOS MEDICINE, Vol: 18, ISSN: 1549-1277

Journal article

Hamlet A, Gaythorpe KAM, Garske T, Ferguson NMet al., 2021, Seasonal and inter-annual drivers of yellow fever transmission in South America, PLOS NEGLECTED TROPICAL DISEASES, Vol: 15, ISSN: 1935-2735

Journal article

Hamlet A, Jean K, Yactaco S, Benzler J, Cibrelus L, Ferguson N, Garske Tet al., 2019, POLICI: A web application for visualising and extracting yellow fever vaccination coverage in Africa, Vaccine, Vol: 37, Pages: 1384-1388, ISSN: 0264-410X

Recent yellow fever (YF) outbreaks have highlighted the increasing global risk of urban spread of the disease. In context of recurrent vaccine shortages, preventive vaccination activities require accurate estimates of existing population-level immunity. We present POLICI (POpulation-Level Immunization Coverage – Imperial), an interactive online tool for visualising and extracting YF vaccination coverage estimates in Africa.We calculated single year age-disaggregated sub-national population-level vaccination coverage for 1950–2050 across the African endemic zone by collating vaccination information and inputting it into a demographic model. This was then implemented on an open interactive web platform.POLICI interactively displays age-disaggregated, population-level vaccination coverages at the first subnational administrative level, through numerous downloadable and customisable visualisations. POLICI is available at https://polici.shinyapps.io/yellow_fever_africa/.POLICI offers an accessible platform for relevant stakeholders in global health to access and explore vaccination coverages. These estimates have already been used to inform the WHO strategy to Eliminate Yellow fever Epidemics (EYE).

Journal article

Hamlet A, Jean K, Perea W, Yactayo S, Biey J, Van Kerkhove M, Ferguson N, Garske Tet al., 2018, The seasonal influence of climate and environment on yellow fever transmission across Africa, PLoS Neglected Tropical Diseases, Vol: 12, ISSN: 1935-2727

Background:Yellow fever virus (YFV) is a vector-borne flavivirus endemic to Africa and Latin America. Ninety per cent of the global burden occurs in Africa where it is primarily transmitted by Aedes spp, with Aedes aegypti the main vector for urban yellow fever (YF). Mosquito life cycle and viral replication in the mosquito are heavily dependent on climate, particularly temperature and rainfall. We aimed to assess whether seasonal variations in climatic factors are associated with the seasonality of YF reports.Methodology/Principal findings:We constructed a temperature suitability index for YFV transmission, capturing the temperature dependence of mosquito behaviour and viral replication within the mosquito. We then fitted a series of multilevel logistic regression models to a dataset of YF reports across Africa, considering location and seasonality of occurrence for seasonal models, against the temperature suitability index, rainfall and the Enhanced Vegetation Index (EVI) as covariates alongside further demographic indicators. Model fit was assessed by the Area Under the Curve (AUC), and models were ranked by Akaike’s Information Criterion which was used to weight model outputs to create combined model predictions. The seasonal model accurately captured both the geographic and temporal heterogeneities in YF transmission (AUC = 0.81), and did not perform significantly worse than the annual model which only captured the geographic distribution. The interaction between temperature suitability and rainfall accounted for much of the occurrence of YF, which offers a statistical explanation for the spatio-temporal variability in transmission.Conclusions/Significance:The description of seasonality offers an explanation for heterogeneities in the West-East YF burden across Africa. Annual climatic variables may indicate a transmission suitability not always reflected in seasonal interactions. This finding, in conjunction with forecasted data, could highlight areas of

Journal article

Dorigatti I, Hamlet A, Aguas R, Cattarino L, Cori A, Donnelly CA, Garske T, Imai N, Ferguson NMet al., 2017, International risk of yellow fever spread from the ongoing outbreak in Brazil, December 2016 to May 2017, EUROSURVEILLANCE, Vol: 22, Pages: 1-4, ISSN: 1560-7917

States in south-eastern Brazil were recently affected by the largest Yellow Fever (YF) outbreak seen in a decade in Latin America. Here we provide a quantitative assessment of the risk of travel-related international spread of YF indicating that the United States, Argentina, Uruguay, Spain, Italy and Germany may have received at least one travel-related YF case capable of seeding local transmission. Mitigating the risk of imported YF cases seeding local transmission requires heightened surveillance globally.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00994749&limit=30&person=true