Imperial College London

DrBrianAppelbe

Faculty of Natural SciencesDepartment of Physics

Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 7651b.appelbe07 Website

 
 
//

Location

 

740Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@phdthesis{Appelbe:2011,
author = {Appelbe, BD},
title = {Nuclear Fusion Reaction Kinetics and Ignition Processes in Z Pinches},
year = {2011}
}

RIS format (EndNote, RefMan)

TY  - THES
AB - This thesis presents work on two topics related to nuclear fusion in plasmas.The first topic is the energy spectrum of products of fusion reactions in plasmas,called the production spectrum. The second is an investigation of the fusion reactionprocesses in high energy density Z pinch plasmas and the feasibility of ignition ofsuch plasmas.A method is presented for the derivation of production spectra for plasmas withvarious distributions of ion velocities. The method is exact, requiring the solution ofa 5 dimensional integral and is suitable for both isotropic and anisotropic distributions.It is shown that many of the integrals can be solved analytically. The solutionsare used to study the spectra of neutron energies produced by deuterium-deuteriumand deuterium-tritium reactions. It is found that for maxwellian distributions of ionsthe neutron spectrum is asymmetric with a longer high energy tail when comparedwith gaussian approximations of the spectrum.Deuterium and deuterium-tritium Z pinch plasmas are studied computationallyusing a hybrid code in which the fuel is modelled as a magnetohydrodynamic (MHD)fluid and fast ions are modelled as discrete particle-in-cell (PIC) particles. Usinga Z pinch model in which the magnetic and thermal pressures are in equilibriumit is found that significant energy gain can be achieved for currents greater than50MA. Deuterium gas puff experiments with a 15MA current are also analysedcomputationally in order to determine the reaction mechanism. The results of MHDsimulations in 3 dimensions are post-processed with a PIC code to model reactionsoccurring due to the acceleration of deuterium ions by large electric fields. It isfound that reactions due to this beam-target mechanism represent a small fraction(0.0001) of the number of thermonuclear reactions.
AU - Appelbe,BD
PY - 2011///
TI - Nuclear Fusion Reaction Kinetics and Ignition Processes in Z Pinches
ER -