Imperial College London

DrBrankoBijeljic

Faculty of EngineeringDepartment of Earth Science & Engineering

Principal Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 6420b.bijeljic

 
 
//

Location

 

2.53Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

183 results found

Alhammadi AM, AlRatrout A, Singh K, Bijeljic B, Blunt MJet al., 2017, In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions., Scientific Reports, Vol: 7, ISSN: 2045-2322

We used X-ray micro-tomography to image the in situ wettability, the distribution of contact angles, at the pore scale in calcite cores from a producing hydrocarbon reservoir at subsurface conditions. The contact angle was measured at hundreds of thousands of points for three samples after twenty pore volumes of brine flooding.We found a wide range of contact angles with values both above and below 90°. The hypothesized cause of wettability alteration by an adsorbed organic layer on surfaces contacted by crude oil after primary drainage was observed with Scanning Electron Microscopy (SEM) and identified using Energy Dispersive X-ray (EDX) analysis. However, not all oil-filled pores were altered towards oil-wet conditions, which suggests that water in surface roughness, or in adjacent micro-porosity, can protect the surface from a strong wettability alteration. The lowest oil recovery was observed for the most oil-wet sample, where the oil remained connected in thin sheet-like layers in the narrower regions of the pore space. The highest recovery was seen for the sample with an average contact angle close to 90°, with an intermediate recovery in a more water-wet system, where the oil was trapped in ganglia in the larger regions of the pore space.

Journal article

Lin Q, Bijeljic B, Rieke H, Blunt MJet al., 2017, Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography, WATER RESOURCES RESEARCH, Vol: 53, Pages: 7457-7468, ISSN: 0043-1397

The experimental determination of capillary pressure drainage curves at the pore scale is ofvital importance for the mapping of reservoir fluid distribution. To fully characterize capillary drainage in acomplex pore space, we design a differential imaging-based porous plate (DIPP) method using X-ray micro-tomography. For an exemplar mm-scale laminated sandstone microcore with a porous plate, we quantifythe displacement from resolvable macropores and subresolution micropores. Nitrogen (N2) was injected asthe nonwetting phase at a constant pressure while the porous plate prevented its escape. The measuredporosity and capillary pressure at the imaged saturations agree well with helium measurements and experi-ments on larger core samples, while providing a pore-scale explanation of the fluid distribution. Weobserved that the majority of the brine was displaced by N2in macropores at low capillary pressures, fol-lowed by a further brine displacement in micropores when capillary pressure increases. Furthermore, wewere able to discern that brine predominantly remained within the subresolution micropores, such asregions of fine lamination. The capillary pressure curve for pressures ranging from 0 to 1151 kPa is providedfrom the image analysis compares well with the conventional porous plate method for a cm-scale core butwas conducted over a period of 10 days rather than up to few months with the conventional porous platemethod. Overall, we demonstrate the capability of our method to provide quantitative information on two-phase saturation in heterogeneous core samples for a wide range of capillary pressures even at scalessmaller than the micro-CT resolution

Journal article

AlRatrout A, Raeini AQ, Bijeljic B, Blunt MJet al., 2017, Automatic measurement of contact angle in pore-space images, Advances in Water Resources, Vol: 109, Pages: 158-169, ISSN: 0309-1708

A new approach is presented to measure the in-situ contact angle (θ) between immiscible fluids, applied to segmented pore-scale X-ray images. We first identify and mesh the fluid/fluid and fluid/solid interfaces. A Gaussian smoothing is applied to this mesh to eliminate artifacts associated with the voxelized nature of the image, while preserving large-scale features of the rock surface. Then, for the fluid/fluid interface we apply an additional smoothing and adjustment of the mesh to impose a constant curvature. We then track the three-phase contact line, and the two vectors that have a direction perpendicular to both surfaces: the contact angle is found from the dot product of these vectors where they meet at the contact line. This calculation can be applied at every point on the mesh at the contact line. We automatically generate contact angle values representing each invaded pore-element in the image with high accuracy.To validate the approach, we first study synthetic three-dimensional images of a spherical droplet of oil residing on a tilted flat solid surface surrounded by brine and show that our results are accurate to within 3° if the sphere diameter is 2 or more voxels. We then apply this method to oil/brine systems imaged at ambient temperature and reservoir pressure (10MPa) using X-ray microtomography (Singh et al., 2016). We analyse an image volume of diameter approximately 4.6  mm and 10.7  mm long, obtaining hundreds of thousands of values from a dataset with around 700 million voxels. We show that in a system of altered wettability, contact angles both less than and greater than 90° can be observed.This work provides a rapid method to provide an accurate characterization of pore-scale wettability, which is important for the design and assessment of hydrocarbon recovery and carbon dioxide storage.

Journal article

Raeini AQ, Bijeljic B, Blunt MJ, 2017, Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media, PHYSICAL REVIEW E, Vol: 96, ISSN: 2470-0045

A generalized network extraction workflow is developed for parameterizing three-dimensional (3D) images of porous media. The aim of this workflow is to reduce the uncertainties in conventional network modeling predictions introduced due to the oversimplification of complex pore geometries encountered in natural porous media. The generalized network serves as a coarse discretization of the surface generated from a medial-axis transformation of the 3D image. This discretization divides the void space into individual pores and then subdivides each pore into sub-elements called half-throat connections. Each half-throat connection is further segmented into corners by analyzing the medial axis curves of its axial plane. The parameters approximating each corner—corner angle, volume, and conductivity—are extracted at different discretization levels, corresponding to different wetting layer thickness and local capillary pressures during multiphase flow simulations. Conductivities are calculated using direct single-phase flow simulation so that the network can reproduce the single-phase flow permeability of the underlying image exactly. We first validate the algorithm by using it to discretize synthetic angular pore geometries and show that the network model reproduces the corner angles accurately. We then extract network models from micro-CT images of porous rocks and show that the network extraction preserves macroscopic properties, the permeability and formation factor, and the statistics of the micro-CT images.

Journal article

Singh K, Menke H, Andrew M, Lin Q, Rau C, Blunt MJ, Bijeljic Bet al., 2017, Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media, SCIENTIFIC REPORTS, Vol: 7, ISSN: 2045-2322

Understanding the pore-scale dynamics of two-phase fluid flow in permeable media is important in many processes such as water infiltration in soils, oil recovery, and geo-sequestration of CO2. The two most important processes that compete during the displacement of a non-wetting fluid by a wetting fluid are pore-filling or piston-like displacement and snap-off; this latter process can lead to trapping of the non-wetting phase. We present a three-dimensional dynamic visualization study using fast synchrotron X-ray micro-tomography to provide new insights into these processes by conducting a time-resolved pore-by-pore analysis of the local curvature and capillary pressure. We show that the time-scales of interface movement and brine layer swelling leading to snap-off are several minutes, orders of magnitude slower than observed for Haines jumps in drainage. The local capillary pressure increases rapidly after snap-off as the trapped phase finds a position that is a new local energy minimum. However, the pressure change is less dramatic than that observed during drainage. We also show that the brine-oil interface jumps from pore-to-pore during imbibition at an approximately constant local capillary pressure, with an event size of the order of an average pore size, again much smaller than the large bursts seen during drainage.

Journal article

Saif T, Lin Q, Butcher AR, Bijeljic B, Blunt MJet al., 2017, Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM, Applied Energy, Vol: 202, Pages: 628-647, ISSN: 0306-2619

The complexity of unconventional rock systems is expressed both in the compositional variance of the microstructure and the extensive heterogeneity of the pore space. Visualizing and quantifying the microstructure of oil shale before and after pyrolysis permits a more accurate determination of petrophysical properties which are important in modeling hydrocarbon production potential. We characterize the microstructural heterogeneity of oil shale using X-ray micro-tomography (µCT), automated ultra-high resolution scanning electron microscopy (SEM), MAPS Mineralogy (Modular Automated Processing System) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). The organic-rich Eocene Green River (Mahogany zone) oil shale is characterized using a multi-scale multi-dimensional workflow both before and after pyrolysis. Observations in 2-D and 3-D and across nm-µm-mm length scales demonstrate both heterogeneity and anisotropy at every scale. Image acquisition and analysis using µCT and SEM reveal a microstructure of alternating kerogen-rich laminations interbedded with layers of fine-grained inorganic minerals. MAPS Mineralogy combined with ultrafast measurements reveal mineralogic textures dominated by dolomite, calcite, K-feldspar, quartz, pyrite and illitic clays along with their spatial distribution, augmenting conventional mineral analysis. From high resolution Backscattered electron (BSE) images, intra-organic, inter-organic-mineral, intra- and inter-mineral pores are observed with varying sizes and geometries. By using FIB milling and SEM imaging sequentially and repetitively, 3-D data sets were reconstructed. By setting 3-D gradient and marker-based watershed transforms, the organic matter, minerals and pore phases (including pore-back artifacts) were segmented and visualized and the pore-size distribution was computed. Following pyrolysis, fractures from the mm-to-µm scales were observed with preferential propagation along the kerogen-ric

Journal article

Lin Q, Bijeljic B, Rieke H, Blunt Met al., 2017, Differential imaging of porous plate capillary drainage in laminated sandstone rock using X-ray micro-tomography, 79th EAGE Conference and Exhibition 2017 - Workshops, Publisher: European Association of Geoscientists & Engineers

The experimental determination of capillary pressure drainage curves at the pore scale is of vital importance for the mapping of reservoir fluid distribution. To fully characterize capillary drainage in a complex pore space, we design a differential imaging-based porous plate (DIPP) method using X-ray microtomography. For an exemplar mm-scale laminated sandstone microcore with a porous plate, we quantify the displacement from resolvable macropores and subresolution micropores. Nitrogen (N2) was injected as the nonwetting phase at a constant pressure while the porous plate prevented its escape. The measured porosity and capillary pressure at the imaged saturations agree well with helium measurements and experiments on larger core samples, while providing a pore-scale explanation of the fluid distribution. We observed that the majority of the brine was displaced by N2 in macropores at low capillary pressures, followed by a further brine displacement in micropores when capillary pressure increases. Furthermore, we were able to discern that brine predominantly remained within the subresolution micropores, such as regions of fine lamination. The capillary pressure curve for pressures ranging from 0 to 1151 kPa is provided from the image analysis compares well with the conventional porous plate method for a cm-scale core but was conducted over a period of 10 days rather than up to few months with the conventional porous plate method. Overall, we demonstrate the capability of our method to provide quantitative information on two-phase saturation in heterogeneous core samples for a wide range of capillary pressures even at scales smaller than the micro-CT resolution.

Conference paper

Boon M, Bijeljic B, Krevor S, 2017, Observations of the impact of rock heterogeneity on solute spreading and mixing, Water Resources Research, Vol: 53, Pages: 4624-4642, ISSN: 0043-1397

Rock heterogeneity plays an important role in solute spreading and mixing in hydrogeologic systems. Few observations, however, have been made that can spatially resolve these processes in 3-D, in consolidated rocks. We make observations of the spatially resolved steady state concentration of a sodium iodide solute while flowing brine through cylindrical rock cores using X-ray CT imaging. Three rocks with an increasing level of heterogeneity are chosen: a Berea sandstone, a Ketton carbonate, and an Indiana carbonate. The impact of heterogeneity on solute transport is analyzed by: (1) quantifying spreading and mixing using metrics such as the transverse dispersion coefficient, the dilution index, the reactor ratio, and the scalar dissipation rate and (2) visualizing and analyzing flow structures such as meandering, flow-focusing, and flow-splitting using isoconcentration contour maps. The transverse dispersion coefficient, Dt, and the variation in Dt throughout the rock core, increases with Peclét number (Pe) and rock heterogeneity. The reactor ratio indicates that mixing is Fickian for the Berea sandstone and Ketton carbonate, but diverges for the Indiana carbonate. The temporal evolution of the scalar dissipation rate, a measure of the mixing rate, remains close to that of Fickian mixing for the Berea and Ketton rocks but not for the Indiana. Heterogeneous rock features are observed to cause meandering, focusing, or splitting of the plume depending on Pe.

Journal article

Saif T, Lin Q, Bijeljic B, Blunt MJet al., 2017, Microstructural imaging and characterization of oil shale before and after pyrolysis, FUEL, Vol: 197, Pages: 562-574, ISSN: 0016-2361

The microstructural evaluation of oil shale is challenging which demands the use of several complementary methods. In particular, an improved insight into the pore network structure and connectivity before, during, and after oil shale pyrolysis is critical to understanding hydrocarbon flow behavior and enhancing recovery. In this experimental study, bulk analyses are combined with traditional and advanced imaging methods to comprehensively characterize the internal microstructure and chemical composition of the world’s richest oil shale deposit, the Green River Formation (Mahogany Zone). Image analysis in two dimensions (2-D) using optical and scanning electron microscopy (SEM), and in three dimensions (3-D) using X-ray microtomography (µCT) reveals a complex and variable fine-grained microstructure dominated by organic-rich parallel laminations of the order of 10 µm thick which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We also report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature (300–500 °C) at 12 µm and 2 µm voxel sizes. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 400 and 500 °C with the formation of micro-scale connected pore channels developing principally along the kerogen-rich lamellar structures. Given the complexity and heterogeneity of oil shale, we also characterize the representative size at which porosity remains constant. Our results provide a direct observation of pore and microfracture development during oil shale pyrolysis and

Journal article

Al-Khulaifi Y, Lin Q, Blunt MJ, Bijeljic Bet al., 2017, Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography, ENVIRONMENTAL SCIENCE & TECHNOLOGY, Vol: 51, Pages: 4108-4116, ISSN: 0013-936X

We study dissolution in a chemically heterogeneous medium consisting of two minerals with contrasting initial structure and transport properties. We perform a reactive transport experiment using CO2-saturated brine at reservoir conditions in a millimeter-scale composite core composed of Silurian dolomite and Ketton limestone (calcite) arranged in series. We repeatedly image the composite core using X-ray microtomography (XMT) and collect effluent to assess the individual mineral dissolution. The mineral dissolution from image analysis was comparable to that measured from effluent analysis using inductively coupled plasma mass spectrometry (ICP-MS). We find that the ratio of the effective reaction rate of calcite to that of dolomite decreases with time, indicating the influence of dynamic transport effects originating from changes in pore structure coupled with differences in intrinsic reaction rates. Moreover, evolving flow and transport heterogeneity in the initially heterogeneous dolomite is a key determinant in producing a two-stage dissolution in the calcite. The first stage is characterized by a uniform dissolution of the pore space, while the second stage follows a single-channel growth regime. This implies that spatial memory effects in the medium with a heterogeneous flow characteristic (dolomite) can change the dissolution patterns in the medium with a homogeneous flow characteristic (calcite).

Journal article

Menke HP, Andrew MG, Blunt MJ, Bijlejic Bet al., 2017, Dynamic pore-scale reservoir-condition imaging of reaction in carbonates using synchrotron fast tomography, Journal of Visualized Experiments, Vol: 120, ISSN: 1940-087X

Synchrotron fast tomography was used to dynamically image dissolution of limestone in the presence of CO2-saturated brine at reservoir conditions. 100 scans were taken at a 6.1 µm resolution over a period of 2 hours. Underground storage permanence is a major concern for carbon capture and storage. Pumping CO2 into carbonate reservoirs has the potential to dissolve geologic seals and allow CO2 to escape. However, the dissolution processes at reservoir conditions are poorly understood. Thus, time-resolved experiments are needed to observe and predict the nature and rate of dissolution at the pore scale. Synchrotron fast tomography is a method of taking high-resolution time-resolved images of complex pore structures much more quickly than traditional µ-CT . The Diamond Lightsource Pink Beam was used to dynamically image dissolution of limestone in the presence of CO2-saturated brine at reservoir conditions. 100 scans were taken at a 6.1 µm resolution over a period of 2 hours. The images were segmented and the porosity and permeability were measured using image analysis and network extraction. Porosity increased uniformly along the length of the sample; however, the rate of increase of both porosity and permeability slowed at later times.

Journal article

Menke HP, Bijeljic B, Blunt M, 2017, Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: effect of initial pore structure and initial brine pH, Geochimica et Cosmochimica Acta, Vol: 204, Pages: 267-285, ISSN: 1872-9533

We study the impact of brine acidity and initial pore structure on the dynamics of fluid/solid reaction at high Péclet numbers and low Damköhler numbers. A laboratory μ-CT scanner was used to image the dissolution of Ketton, Estaillades, and Portland limestones in the presence of CO2-acidified brine at reservoir conditions (10 MPa and 50°C) at two injected acid strengths for a period of 4 hours. Each sample was scanned between 6 and 10 times at ∼4 μm resolution and multiple effluent samples were extracted. The images were used as inputs into flow simulations, and analysed for dynamic changes in porosity, permeability, and reaction rate. Additionally, the effluent samples were used to verify the image-measured porosity changes.We find that initial brine acidity and pore structure determine the type of dissolution. Dissolution is either uniform where the porosity increases evenly both spatially and temporally, or occurs as channelling where the porosity increase is concentrated in preferential flow paths. Ketton, which has a relatively homogeneous pore structure, dissolved uniformly at pH = 3.6 but showed more channelized flow at pH = 3.1. In Estaillades and Portland, increasingly complex carbonates, channelized flow was observed at both acidities with the channel forming faster at lower pH. It was found that the effluent pH, which is higher than that injected, is a reasonably good indicator of effective reaction rate during uniform dissolution, but a poor indicator during channelling. The overall effective reaction rate was up to 18 times lower than the batch reaction rate measured on a flat surface at the effluent pH, with the lowest reaction rates in the samples with the most channelized flow, confirming that transport limitations are the dominant mechanism in determining reaction dynamics at the fluid/solid boundary.

Journal article

Lin Q, Al-Khulaifi Y, Blunt M, Bijeljic Bet al., 2016, Quantification of sub-resolution porosity in carbonate rocks by applying high-salinity contrast brine using X-ray microtomography differential imaging, Advances in Water Resources, Vol: 96, Pages: 306-322, ISSN: 0309-1708

Characterisation of the pore space in carbonate reservoirs and aquifers is of utmost importance in a number of applications such as enhanced oil recovery, geological carbon storage and contaminant transport. We present a new experimental methodology that uses high-salinity contrast brine and differential imaging acquired by X-ray tomography to non-invasively obtain three-dimensional spatially resolved information on porosity and connectivity of two rock samples, Portland and Estaillades limestones, including sub-resolution micro-porosity. We demonstrate that by injecting 30 wt% KI brine solution, a sufficiently high phase contrast can be achieved allowing accurate three-phase segmentation based on differential imaging. This results in spatially resolved maps of the solid grain phase, sub-resolution micro-pores within the grains, and macro-pores. The total porosity values from the three-phase segmentation for two carbonate rock samples are shown to be in good agreement with Helium porosity measurements. Furthermore, our flow-based method allows for an accurate estimate of pore connectivity and a distribution of porosity within the sub-resolution pores.

Journal article

Al Nahari Alhashmi Z, Blunt MJ, Bijeljic B, 2016, The impact of pore structure heterogeneity, transport, and reaction conditions on fluid/fluid reaction rate studied on images of pore space, Transport in Porous Media, Vol: 115, Pages: 215-237, ISSN: 1573-1634

We perform direct numerical simulation using a pore-scale fluid–fluid reactive transport model (Alhashmi et al. in J Contam Hydrol 179:171–181, 2015. doi:10.1016/j.jconhyd.2015.06.004) to investigate the impact of pore structure heterogeneity on the effective reaction rate in different porous media. We simulate flow, transport, and reaction in three pore-scale images: a beadpack, Bentheimer sandstone, and Doddington sandstone for a range of transport and reaction conditions. We compute the reaction rate, velocity distributions, and dispersion coefficient comparing them with the results for non-reactive transport. The rate of reaction is a subtle combination of the amount of mixing and spreading that cannot be predicted from the non-reactive dispersion coefficient. We demonstrate how the flow field heterogeneity affects the effective reaction rate. Dependent on the intrinsic flow field heterogeneity characteristic and the flow rate, reaction may: (a) occur throughout the zones where both resident and injected particles exist (for low Péclet number and a homogeneous flow field), (b) preferentially occur at the trailing edge of the plume (for high Péclet number and a homogeneous flow field), or (c) be disfavored in slow-moving zones (for high Péclet number and a heterogeneous flow field).

Journal article

Pereira Nunes JP, Bijeljic B, Blunt MJ, 2016, Pore-space structure and average dissolution rates: A simulation study, Water Resources Research, Vol: 52, Pages: 7198-7212, ISSN: 0043-1397

We study the influence of the pore-space geometry on sample-averaged dissolution rates in millimeter-scale carbonate samples undergoing reaction-controlled mineral dissolution upon the injection of a CO2 -saturated brine. The representation of the pore space is obtained directly from micro-CT images with a resolution of a few microns. Simulations are performed with a particle tracking approach on images of three porous rocks of increasing pore-space complexity: a bead pack, a Ketton oolite, and an Estaillades limestone. Reactive transport is simulated with a hybrid approach that combines a Lagrangian method for transport and reaction with the Eulerian flow field obtained by solving the incompressible Navier-Stokes equations directly on the voxels of three-dimensional images. Particle advection is performed with a semianalytical streamline method and diffusion is simulated via a random walk. Mineral dissolution is defined in terms of the particle flux through the pore-solid interface, which can be related analytically to the batch (intrinsic) reaction rate. The impact of the flow heterogeneity on reactive transport is illustrated in a series of simulations performed at different flow rates. The average dissolution rates depend on both the heterogeneity of the sample and on the flow rate. The most heterogeneous rock may exhibit a decrease of up to two orders of magnitude in the sample-averaged reaction rates in comparison with the batch rate. Furthermore, we provide new insights for the dissolution regime that would be traditionally characterized as uniform. In most cases, at the pore-scale, dissolution preferentially enlarges fast-flow channels which greatly restricts the effective surface available for reaction.

Journal article

Boon M, Bijeljic B, Niu B, Krevor Set al., 2016, Observations of 3-D transverse dispersion and dilution in natural consolidated rock by X-ray tomography, Advances in Water Resources, Vol: 96, Pages: 266-281, ISSN: 0309-1708

Recent studies have demonstrated the importance of transverse dispersion for dilution and mixing of solutes but most observations have remained limited to two-dimensional sand-box models. We present a new core-flood test to characterize solute transport in 3-D natural-rock media. A device consisting of three annular regions was used for fluid injection into a cylindrical rock core. Pure water was injected into the center and outer region and a NaI solution into the middle region. Steady state transverse dispersion of NaI was visualized with an X-ray medical CT-scanner for a range of Peclét numbers. Three methods were used to calculate Dt: (1) fitting an analytical solution, (2) analyzing the second-central moment, and (3) analyzing the dilution index and reactor ratio. Transverse dispersion decreased with distance due to flow focusing. Furthermore, Dt in the power-law regime showed sub-linear behavior. Overall, the reactor ratios were high confirming the homogeneity of Berea sandstone.

Journal article

Meyer DW, Bijeljic B, 2016, Pore-scale dispersion: bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior, Physical Review E, Vol: 94, ISSN: 1539-3755

We devise an efficient methodology to provide a universal statistical description of advection-dominated dispersion (Péclet→∞) in natural porous media including carbonates. First, we investigate the dispersion of tracer particles by direct numerical simulation (DNS). The transverse dispersion is found to be essentially determined by the tortuosity and it approaches a Fickian limit within a dozen characteristic scales. Longitudinal dispersion was found to be Fickian in the limit for bead packs and superdiffusive for all other natural media inspected. We demonstrate that the Lagrangian velocity correlation length is a quantity that characterizes the spatial variability for transport. Finally, a statistical transport model is presented that sheds light on the connection between pore-scale characteristics and the resulting macroscopic transport behavior. Our computationally efficient model accurately reproduces the transport behavior in longitudinal direction and approaches the Fickian limit in transverse direction.

Journal article

Saif T, Lin Q, Singh K, Bijeljic B, Blunt MJet al., 2016, Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography, Geophysical Research Letter, Vol: 43, Pages: 6799-6807, ISSN: 0094-8276

The structure and connectivity of the pore space during the pyrolysis of oil shales determines hydrocarbon flow behavior and ultimate recovery. We image the time evolution of the pore and microfracture networks during oil shale pyrolysis using synchrotron X-ray microtomography. Immature Green River (Mahogany Zone) shale samples were thermally matured under vacuum conditions at temperatures up to 500°C while being periodically imaged with a 2μmvoxel size. The structural transformation of both organic-rich and organic-lean layers within the shale was quantified. The images reveal a dramatic change in porosity accompanying pyrolysis between 390 and 400°C with the formation of micron-scale heterogeneous pores. With a further increase in temperature, the pores steadily expand resulting in connected microfracture networks that predominantly develop along the kerogen-rich laminations.

Journal article

Honari A, Zecca M, Vogt SJ, Iglauer S, Bijeljic B, Johns ML, May EFet al., 2016, The Impact of Residual Water on CH4-CO2 Dispersion in Consolidated Rock Cores, International Journal of Greenhouse Gas Control, Vol: 50, Pages: 100-111, ISSN: 1750-5836

Assessment of the viability of enhanced gas recovery (EGR), in which CO2 is injected into natural gas reservoirs, requires accurate and appropriate reservoir simulations. These necessitate provision of parameters describing dispersion between the fluids. Here we systematically measure fluid dispersion in various rock cores (sandstones and carbonates), both dry and at irreducible water saturation, at reservoir conditions. In this manner we evaluate the impact of the irreducible water on the miscible displacement processes. As such this represents the first measurement of dispersion as a function of water saturation for supercritical gases in consolidated media. Complementary measurements of water spatial distribution along the rock axis, as well as the pore size distribution occupied by the water were performed using magnetic resonance techniques. Irreducible water was found to increase dispersivity by a factor of up to 7.3. The dispersion coefficient (K) was measured as a function of velocity and the data for both dry and water-containing samples were successfully combined on a K - Péclet number (Pe) plot, enabling ready future inclusion into EGR reservoir models. The power-law dependence of K upon Pe produced an exponent of 1.2 for dry and water-saturated sandstones and 1.4 for dry and water-saturated carbonates, consistent with literature (Bijeljic et al., 2011; Honari et al., 2015).

Journal article

Nunes JPP, Bijeljic B, Blunt MJ, 2016, Simulating carbonate dissolution with digital rock physics, Third EAGE/SBGf Workshop 2016 Quantitative Seismic Interpretation of Lacustrine Carbonates, Pages: 56-59

The increase in CO2-injection activities for Capture Carbon and Sequestration (CCS) and Enhanced Oil Recovery (EOR) is pushing the industry and the academia to explore the implications of rock-fluid interactions in full-scale development projects of carbonate reservoirs. Some of the questions are: Do reactions occur at rates that make a substantial impact on petrophysical properties? Are they relevant for CCS and/or oil recovery? How do they impact monitoring strategies? Carbonate reservoirs are notoriously difficult to characterize. Their abrupt facies variations give rise to drastic changes in the petrophysical and mechanical properties of the reservoir. Such heterogeneity, when further associated with variations in rock mineralogy due to diagenetic processes, results in a challenging scenario to model from the pore- to the field-scale. Micro-CT imaging is one of the most promising technologies to characterize porous rocks. The understanding of reactive and non-reactive transport at the pore scale is being pushed forward by recent developments in both imaging capability - 3D images with resolution of a few microns - and in modelling techniques - flow simulations in giga-cell models. We present a streamline-based pore-scale simulation method to predict the evolution of petrophysical properties of carbonate cores subjected to CO2 injection at reservoir conditions.

Conference paper

Singh K, Bijeljic B, Blunt MJ, 2016, Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock, Water Resources Research, Vol: 52, Pages: 1716-1728, ISSN: 1944-7973

Journal article

Menke HP, Andrew MG, Blunt MJ, Bijeljic Bet al., 2016, Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography - effect of initial pore structure and flow conditions, Chemical Geology, Vol: 428, Pages: 15-26, ISSN: 1872-6836

We investigate the impact of initial pore structure and velocity field heterogeneity on the dynamics of fluid/solid reaction at high Péclet numbers (fast flow) and low Damköhler number (relatively slow reaction rates). The Diamond Lightsource Pink Beam was used to image dissolution of Estaillades and Portland limestones in the presence of CO2-saturated brine at reservoir conditions (10 MPa and 50 °C representing ~1 km aquifer depth) at two flow rates for a period of 2 h. Each sample was scanned between 51 and 94 times at 4.76-μm resolution and the dynamic changes in porosity, permeability, and reaction rate were examined using image analysis and flow modelling. We find that the porosity can either increase uniformly through time along the length of the samples, or may exhibit a spatially and temporally varying increase that is attributed to channel formation, a process that is distinct from wormholing, depending on initial pore structure and flow conditions. The dissolution regime was structure-dependent: Estaillades with a higher porosity showed more uniform dissolution, while the lower porosity Portland experienced channel formation. The effective reaction rates were up to two orders of magnitude lower than those measured on a flat substrate with no transport limitations, indicating that the transport of reactant and product is severely hampered away from fast flow channels.

Journal article

Pereira Nunes JP, Blunt MJ, Bijeljic B, 2016, Pore-scale simulation of carbonate dissolution in micro-CT images, Journal of Geophysical Research: Solid Earth, Vol: 121, Pages: 558-576, ISSN: 2169-9356

We present a particle-based method to simulate carbonate dissolution at the pore scale directly on the voxels of three-dimensional micro-CT images. The flow field is computed on the images by solving the incompressible Navier-Stokes equations. Rock-fluid interaction is modeled using a three-step approach: solute advection, diffusion, and reaction. Advection is simulated with a semianalytical pore-scale streamline tracing algorithm, diffusion by random walk is superimposed, while the reaction rate is defined by the flux of particles through the pore-solid interface. We derive a relationship between the local particle flux and the independently measured batch calcite dissolution rate. We validate our method against a dynamic imaging experiment where a Ketton oolite is imaged during CO2-saturated brine injection at reservoir conditions. The image-calculated increases in porosity and permeability are predicted accurately, and the spatial distribution of the dissolution front is correctly replicated. The experiments and simulations are performed at a high flow rate, in the uniform dissolution regime – Pe ≫ 1 and PeDa ≪ 1—thus extending the reaction throughout the sample. Transport is advection dominated, and dissolution is limited to regions with significant inflow of solute. We show that the sample-averaged reaction rate is 1 order of magnitude lower than that measured in batch reactors. This decrease is the result of restrictions imposed on the flux of solute to the solid surface by the heterogeneous flow field, at the millimeter scale.

Journal article

Porta GM, Bijeljic B, Blunt MJ, Guadagnini Aet al., 2015, Continuum-scale characterization of solute transport based on pore-scale velocity distributions, Geophysical Research Letters, Vol: 42, Pages: 7537-7545, ISSN: 1944-8007

We present a methodology to characterize a continuum-scale model of transport in porous media on the basis of pore-scale distributions of velocities computed in three-dimensional pore-space images. The methodology is tested against pore-scale simulations of flow and transport for a bead pack and a sandstone sample. We employ a double-continuum approach to describe transport in mobile and immobile regions. Model parameters are characterized through inputs resulting from the micron-scale reconstruction of the pore space geometry and the related velocity field. We employ the outputs of pore-scale analysis to (i) quantify the proportion of mobile and immobile fluid regions and (ii) assign the velocity distribution in an effective representation of the medium internal structure. Our results (1) show that this simple conceptual model reproduces the spatial profiles of solute concentration rendered by pore-scale simulation without resorting to model calibration and (2) highlight the critical role of pore-scale velocities in the characterization of the model parameters.

Journal article

Pereira Nunes JP, Bijeljic B, Blunt MJ, 2015, Time-of-Flight Distributions and Breakthrough Curves in Heterogeneous Porous Media Using a Pore-Scale Streamline Tracing Algorithm, TRANSPORT IN POROUS MEDIA, Vol: 109, Pages: 317-336, ISSN: 0169-3913

Journal article

Raeini AQ, Bijeljic B, Blunt MJ, 2015, Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images, ADVANCES IN WATER RESOURCES, Vol: 83, Pages: 102-110, ISSN: 0309-1708

Journal article

Andrew M, Menke H, Blunt MJ, Bijeljic Bet al., 2015, The imaging of dynamic multiphase fluid flow using synchrotron-based x-ray microtomography at reservoir conditions, Transport in Porous Media, Vol: 110, Pages: 1-24, ISSN: 1573-1634

Fast synchrotron-based X-ray microtomography was used to image the injection ofsuper-critical CO2 under subsurface conditions into a brine-saturated carbonate sample at thepore-scale with a voxel size of 3.64µm and a temporal resolution of 45 s. Capillary pressurewas measured from the images by finding the curvature of terminal menisci of both connectedand disconnected CO2 clusters. We provide an analysis of three individual dynamic drainageevents at elevated temperatures and pressures on the tens of seconds timescale, showing nonlocalinterface recession due to capillary pressure change, and both local and distal (non-local)snap-off. The measured capillary pressure change is not sufficient to explain snap-off in thissystem, as the disconnected CO2 has a much lower capillary pressure than the connectedCO2 both before and after the event. Disconnected regions instead preserve extremely lowdynamic capillary pressures generated during the event. Snap-off due to these dynamic effectsis not only controlled by the pore topography and throat radius, but also by the local fluidarrangement. Whereas disconnected fluid configurations produced by local snap-off wererapidly reconnected with the connected CO2 region, distal snap-off produced much morelong-lasting fluid configurations, showing that dynamic forces can have a persistent impacton the pattern and sequence of drainage events.

Journal article

Andrew MG, Menke HP, Blunt MJ, Bijeljic Bet al., 2015, The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-ray Microtomography at Reservoir Conditions, Transport in Porous Media, Vol: 110, Pages: 1-24, ISSN: 1573-1634

Journal article

Alhashmi Z, Blunt MJ, Bijeljic B, 2015, Predictions of Dynamic Changes in Reaction Rates as aConsequence of Incomplete Mixing Using Pore-scale Reactive TransportModeling on Images of Porous Media, Journal of Contaminant Hydrology, Vol: 179, Pages: 171-181, ISSN: 1873-6009

We present a pore scale model capable of simulating fluid/fluid reactive transport on images of porous media from first principles. We use a streamline-based particle tracking method for simulating flow and transport, while for reaction to occur, both reactants must be within a diffusive distance of each other during a time-step. We assign a probability of reaction (Pr), as a function of the reaction rate constant (kr) and the diffusion length. Firstly, we validate our model for reaction against analytical solutions for the bimolecular reaction (A + B → C) in a free fluid. Then, we simulate transport and reaction in a beadpack to validate the model through predicting the fluid/fluid reaction experimental results provided by Gramling et al. (2002). Our model accurately predicts the experimental data, as it takes into account the degree of incomplete mixing present at the sub-pore (image voxel) level, in contrast to advection–dispersion–reaction equation (ADRE) model that over-predicts pore scale mixing. Finally, we show how our model can predict dynamic changes in the reaction rate accurately accounting for the local geometry, topology and flow field at the pore scale. We demonstrate the substantial difference between the predicted early-time reaction rate in comparison to the ADRE model.

Journal article

Muljadi B, Blunt MJ, Raeini A, Bijeljic Bet al., 2015, The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation, Advances in Water Resources, Vol: 95, Pages: 329-340, ISSN: 1872-9657

The effect of pore-scale heterogeneity on non-Darcy flow behaviour is investigated by means of direct flow simulations on 3-D images of a beadpack, Bentheimer sandstone and Estaillades carbonate. The critical Reynolds number indicating the cessation of the creeping Darcy flow regime in Estaillades carbonate is two orders of magnitude smaller than in Bentheimer sandstone, and is three orders of magnitude smaller than in the beadpack. It is inferred from the examination of flow field features that the emergence of steady eddies in pore space of Estaillades at elevated fluid velocities accounts for the early transition away from the Darcy flow regime. The non-Darcy coefficient β, the onset of non-Darcy flow, and the Darcy permeability for all samples are obtained and compared to available experimental data demonstrating the predictive capability of our approach. X-ray imaging along with direct pore-scale simulation of flow provides a viable alternative to experiments and empirical correlations for predicting non-Darcy flow parameters such as the β factor, and the onset of non-Darcy flow.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00235651&limit=30&person=true&page=4&respub-action=search.html