Imperial College London

Dr T Ben Britton

Faculty of EngineeringDepartment of Materials

Reader in Metallurgy and Microscopy
 
 
 
//

Contact

 

+44 (0)20 7594 2634b.britton Website

 
 
//

Location

 

B301Bessemer BuildingSouth Kensington Campus

//

Summary

 

Summary

I lead the Experimental Micromechanics Group, where we work to understand deformation and failure of materials used in energy and aerospace applications. We develop new experimental techniques and apply computation tools to aid our research.

I am Visiting Reader at Imperial College London and an Associate Professor at the University of British Columbia, Vancouver. I was an academic in the Department at Imperial from 2002-2021, and as of Feb 2021 I still lead activities in London.

I am a Researcher, Chartered Engineer and Chartered Scientist based in the Department of Materials at Imperial College London. My team and I work on understanding metals used in high-risk high-value applications, such as aerospace, oil & gas and nuclear power. I am a fellow of the Institute of Materials, Minerals and Mining (IOM3).

For research, I specialise in experimental micromechanical characterisation, focusing on understanding deformation at the small scale with electron microscopy, simulation and micro-mechanical testing. This is funded through my RAEng Research Fellowship on "Better understanding of materials to make safer reactors". I am a member of the Engineering Alloys Group, the Shell AIMS UTC, and the Rolls-Royce Nuclear UTC

I have recently been awarded the TMS Frank Crossley Award (2021), we well as the Imperial College President's Award and Medal as an Outstanding Early Career Researcher (2017) and a member of the Engineering Alloys Outstanding Research team (2017). In 2016, I was lucky to be one of the the 2016 Engineers Trust Young Engineer of the Year awardees by the RAEng (Imperial news story). In 2014, I was awarded the IOM3 silver medal which is in "recognition of an outstanding contribution to the broad field of materials science, engineering and technology, including promotion of their subject on a national or international basis." 

For more information, please visit my group website.

I used to lead a third year module called "MSE 307 Engineering Alloys" and I teach on a fourth year course "MSE 414 Nuclear Materials" on zirconium for nuclear power applications. I used to lead the MATE970023 course "Advanced Nuclear Reactors and Fusion", where I taught about next generation reactors. I also lecture to post graduates on electron microscopy (SEM, EDX, EBSD, and FIB - notes are available on my group website). I used to teach dislocations and deformation in MSE 104.

I joined the Department of Materials as a Nuclear Metallurgy Fellow in 2012 and I started my RAEng fellowship in 2015 when I was appointed as a Lecturer. I was promoted to Senior Lecturer in 2017. Previously I worked in the Department of Materials at the University of Oxford researching materials for fission and fusion power. My DPhil concerned the deformation behaviour of titanium alloys for aerospace applications and was completed in 2010 in Oxford.

I actively work on equity issues in STEM, with a focus on LGBTQ issues and am a Trustee of Pride in STEM.

You can find more about my work by following these links: the group website, and ORCID. I am on twitter: @BMatB. I blog on Medium: @bmatb.

Selected Publications

Journal Articles

Jiang J, Yang J, Zhang T, et al., 2015, On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction, Acta Materialia, Vol:97, ISSN:1873-2453, Pages:367-379

Guo Y, Collins DM, Tarleton E, et al., 2015, Measurements of stress fields near a grain boundary: exploring blocked arrays of dislocations in 3D, Acta Materialia, Vol:96, ISSN:1873-2453, Pages:229-236

Guo Y, Britton TB, Wilkinson AJ, 2014, Slip band-grain boundary interactions in commercial-purity titanium, Acta Materialia, Vol:76, ISSN:1873-2453, Pages:1-12

Ben Britton T, Jiang J, Karamched PS, et al., 2013, Probing Deformation and Revealing Microstructural Mechanisms with Cross-Correlation-Based, High-Resolution Electron Backscatter Diffraction, JOM, Vol:65, ISSN:1047-4838, Pages:1245-1253

Britton TB, Birosca S, Preuss M, et al., 2010, Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy, Scripta Materialia, Vol:62, ISSN:1359-6462, Pages:639-642

More Publications