Imperial College London

ProfessorBenoitChachuat

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Process Systems Engineering
 
 
 
//

Contact

 

b.chachuat Website

 
 
//

Location

 

609Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

178 results found

Jing R, Li Y, Wang M, Chachuat B, Lin J, Guo Met al., 2021, Coupling biogeochemical simulation and mathematical optimisation towards eco-industrial energy systems design, APPLIED ENERGY, Vol: 290, ISSN: 0306-2619

Journal article

Rodriguez-Vallejo DF, Valente A, Guillen-Gosalbez G, Chachuat Bet al., 2021, Economic and life-cycle assessment of OME3-5 as transport fuel: a comparison of production pathways, SUSTAINABLE ENERGY & FUELS, Vol: 5, Pages: 2504-2516, ISSN: 2398-4902

Journal article

Quek VC, Shah N, Chachuat B, 2021, Plant-wide assessment of high-pressure membrane contactors in natural gas sweetening – Part I: Model development, Separation and Purification Technology, Vol: 258, Pages: 1-13, ISSN: 1383-5866

This paper presents a predictive mathematical model of high-pressure membrane contactor, with a view to developing a plant-wide model of natural gas sweetening including amine regeneration. We build upon an existing model of high-pressure membrane contactor by Quek et al. [Chem Eng Res Des 132:1005–1019, 2018], which uses a combination of 1-d and 2-d mass-balance equations to predict the CO2 absorption flux and membrane wetting under lean solvent operation. For the first time, quantitative predictions of the CO2 absorption flux can be made under both lean and semi-lean operations. A 1-d energy balance that accounts for the solvent evaporative losses and the exothermic CO2 absorption into the amine is solved alongside the mass-balance equations, in order to predict the solvent temperature profile inside the contactor. The evaporative losses of water and amines can be quantified separately, as well as the absorptive losses of light hydrocarbons with the amine solvent. The model’s predictive capability is tested against data from a lab-scale module and a pilot-scale module that is operated under industrially relevant conditions at a natural gas processing facility in Malaysia. A close agreement between model predictions and measurements of the CO2 absorption flux, solvent temperature profile, and hydrocarbon loss is observed for a wide range of gas and solvent flowrates and compositions, thereby validating the modeling assumptions. The contactor model is combined in a plant-wide model of natural gas sweetening in the companion paper, where it is used for process integration and analysis.

Journal article

Quek VC, Shah N, Chachuat B, 2021, Plant-wide assessment of high-pressure membrane contactors in natural gas sweetening – Part II: Process analysis, Separation and Purification Technology, Vol: 258, Pages: 1-11, ISSN: 1383-5866

This paper presents a model-based assessment of a natural gas sweetening process combining high-pressure membrane contactor with conventional amine regeneration. The analysis builds on a mathematical model of the membrane contactor developed in the companion paper, which is capable of quantitative predictions of the CO2 and hydrocarbon absorption in the amine solvent and the solvent evaporative losses to the treated gas. The predictive capability of the plant-wide model is tested against data from a pilot plant operated under industrially relevant conditions at a natural gas processing facility in Malaysia, showing a close agreement of the predictions with the CO2 outlet purity and the energy consumption at various CO2 loading in the amine solvent. This enables a model-based analysis of various operational decisions on the plant-wide solvent losses and hydrocarbon recovery from the rich amine. A new semi-lean process configuration that replaces the energy-intensive stripper column by a simple flash separator is shown to reduce the overall energy consumption significantly while still meeting sales gas specification. This new configuration forms the basis for the scale-up of a commercial natural gas sweetening process, which shows a high intensification potential in terms of volume footprint and energy duty compared to conventional amine treating plants.

Journal article

Karia T, Adjiman CS, Chachuat B, 2021, Global Optimization of Mixed-Integer Polynomial Programs via Quadratic Reformulation, Computer Aided Chemical Engineering, Pages: 655-661

Mixed-integer polynomial programs (MIPOPs) frequently arise in chemical engineering applications such as pooling, blending and operations planning. Many global optimization solvers rely on mixed-integer linear (MIP) relaxations of MIPOPs and solve them repeatedly as part of a branch-and-bound algorithm using commercial MIP solvers. GUROBI, one of the prominent MIP solvers, recently added the capability to solve mixed-integer quadratically-constrained quadratic programs (MIQCQPs). This paper investigates global optimization of MIPOPs via their reformulation as MIQCQPs followed by their solution to global optimality using GUROBI. The effectiveness of this approach is tested on 60 instances of MIPOPs selected from the library MINLPLib. The performance of the MIQCQP reformulation approach is compared to the state-of-the-art global solvers BARON, ANTIGONE and SCIP in GAMS. For the case of single threading, a reduction of 28% and 42% compared to SCIP and ANTIGONE respectively is observed. This approach, therefore, holds promise for integration into existing global solvers to handle MIPOPs.

Book chapter

Baaqel H, Hallett JP, Guillén-Gosálbez G, Chachuat Bet al., 2021, Uncertainty analysis in life-cycle assessment of early-stage processes and products: a case study in dialkyl-imidazolium ionic liquids, Computer Aided Chemical Engineering, Pages: 785-790

This paper presents a methodology for combining foreground and background uncertainty in the life-cycle assessment (LCA) of processes and products at a low technology-readiness level. We compare the LCA of two ionic liquids, 1-butyl-3-methyl-imidazoliumtetrafluoroborate [bmim][BF4] and 1-butyl-3-methyl-imidazolium hexafluorophosphate [bmim][PF6]. The nominal scenario predicts that [bmim][BF4] generates lower end-point environmental impacts than [bmim][PF6]. However, the uncertainty ranges around these nominal predictions overlap significantly, with [bmim][BF4] causing higher impacts than those of [bmim][PF6] in up to 30% of the uncertainty scenarios. On top of this, accounting for uncertainty in the foreground data more than doubles the estimated impact ranges in several damage categories. This case study, therefore, demonstrates the need for combining foreground and background data uncertainty for more reliable life-cycle assessments.

Book chapter

Kusumo KP, Kuriyan K, García-Muñoz S, Shah N, Chachuat Bet al., 2021, Continuous-Effort Approach to Model-Based Experimental Designs, Computer Aided Chemical Engineering, Pages: 867-873

Model-based design of experiments is a technique for accelerating the development of mathematical models. Through maximally informative experiments, time and resources for estimating uncertain model parameters are minimized. This article presents a method for computing effort-based experimental designs, whereby designs are akin to experimental recipes. As well as identifying which experiments are the most informative, the optimal experimental effort to dedicate to each experiment is also optimized. Upon discretizing the experimental design space and treating the efforts as continuous decision variables, this method leads to convex optimization problems regardless of the model structure, which is ideal for large, parallel experimental campaigns. The case study of a batch reactor model with four parameters is presented to illustrate the methodology.

Book chapter

Kusumo KP, Morrissey J, Mitchell H, Shah N, Chachuat Bet al., 2021, A Design Centering Methodology for Probabilistic Design Space, 16th IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM), Publisher: ELSEVIER, Pages: 79-84, ISSN: 2405-8963

Conference paper

Medina EIS, Vallejo DR, Chachuat B, Sundmacher K, Petsagkourakis P, del Rio-Chanona EAet al., 2021, Acyclic modular flowsheet optimization using multiple trust regions and Gaussian process regression, Computer Aided Chemical Engineering, Pages: 1117-1123

This paper presents an algorithm to optimize process flowsheets using Gaussian processes regression and trust regions. We exploit the modular structure of the flowsheet by training separate Gaussian processes (GPs) for each module based on data generated by a process simulator. These GPs are embedded into an optimization model, whose outcome is used to adapt the position and size of the trust region at each iteration. A complication that arises because of the multiple trust regions is that the optimization problem may become infeasible, in which case a feasibility (restoration) problem is invoked. An inherent advantage of this approach is that it removes the need for simulating the complete flowsheet at any point. We demonstrate these ideas on the case-study of an extractive distillation system in order to minimize its total annualized cost (TAC). The performance shows a robust strategy to address flowsheet optimization problems without recycles.

Book chapter

Shah SL, Bakshi BR, Liu J, Georgakis C, Chachuat B, Braatz RD, Young BRet al., 2020, Meeting the challenge of water sustainability: The role of process systems engineering, AICHE JOURNAL, Vol: 67, ISSN: 0001-1541

Journal article

Rio-Chanona EAD, Petsagkourakis P, Bradford E, Graciano JEA, Chachuat Bet al., 2020, Modifier adaptation meets bayesian optimization and derivative-free optimization, Publisher: arXiv

This paper investigates a new class of modifier-adaptation schemes toovercome plant-model mismatch in real-time optimization of uncertain processes.The main contribution lies in the integration of concepts from the areas ofBayesian optimization and derivative-free optimization. The proposed schemesembed a physical model and rely on trust-region ideas to minimize risk duringthe exploration, while employing Gaussian process regression to capture theplant-model mismatch in a non-parametric way and drive the exploration by meansof acquisition functions. The benefits of using an acquisition function,knowing the process noise level, or specifying a nominal process model areillustrated on numerical case studies, including a semi-batch photobioreactoroptimization problem.

Working paper

Uribe-Rodriguez A, Castro PM, Gonzalo G-G, Chachuat Bet al., 2020, Global optimization of large-scale MIQCQPs via cluster decomposition: Application to short-term planning of an integrated refinery-petrochemical complex, Computers and Chemical Engineering, Vol: 140, Pages: 1-18, ISSN: 0098-1354

Integrated refinery-petrochemical facilities are complex systems that require advanced decision-support tools for optimal short-term planning of their operations. The problem can be formulated as a mixed-integer quadratically constrained quadratic program (MIQCQP), in which discrete decisions select operating modes for the process units, while the entire process network is represented by input-output relationships based on bilinear expressions describing yields and stream properties, pooling equations, fuels blending indices and cost indicators. We develop a novel decomposition-based algorithm for deterministic global optimization that divides the network into small clusters according to their functionality. Inside each cluster, we derive a mixed-integer linear programming (MILP) relaxation based on piecewise McCormick envelopes, dynamically partitioning the variables that belong to the cluster and reducing their domains through optimality-based bound tightening. Results for an industrial case study in Colombia show profit improvements above 10% and significantly reduced optimality gaps compared with the state-of-the-art global optimization solvers BARON and ANTIGONE.

Journal article

Baqeel H, Diaz I, Tulus V, Chachuat B, Guillén-Gosálbez G, Hallett Jet al., 2020, Role of life-cycle externalities in the valuation of protic ionic liquids – a case study in biomass pretreatment solvents, Green Chemistry, Vol: 22, Pages: 3132-3140, ISSN: 1463-9262

Ionic liquids have found their way into many applications where they show a high potential to replace traditional chemicals. But there are concerns over their ecological impacts (toxicity and biodegradability) and high cost, which have limited their use so far. The outcome of existing techno-economic and life-cycle assessments comparing ionic liquids with existing solvents has proven hard to interpret due to the many metrics used and trade-offs between them. For the first time, this paper couples the concept of monetization with detailed process simulation and life-cycle assessment to estimate the true cost of ionic liquids. A comparative case study on four solvents used in lignocellulosic biomass pretreatment is conducted: triethylammonium hydrogen sulfate [TEA][HSO4], 1-methylimidazolium hydrogen sulfate [HMIM][HSO4], acetone from fossil sources, and glycerol from renewable sources. The results show that the total monetized cost of production accounting for externalities can be more than double the direct costs estimated using conventional economic assessment methods. The ionic liquid [TEA][HSO4] is found to have the lowest total cost, while the renewable solvent glycerol presents the highest total cost. We expect this methodology to provide a starting point for future research and development in sustainable ionic liquids

Journal article

Al-Qahtani A, Gonzalez-Garay A, Bernardi A, Galan-Martin A, Pozo C, Mac Dowell N, Chachuat B, Guillen-Gosalbez Get al., 2020, Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today's transportation-power nexus, APPLIED ENERGY, Vol: 265, ISSN: 0306-2619

Journal article

Rodríguez-Vallejo DF, Guillén-Gosálbez G, Chachuat B, 2020, What is the true cost of producing propylene from methanol? the role of externalities, ACS Sustainable Chemistry & Engineering, Vol: 8, Pages: 3072-3081, ISSN: 2168-0485

The demand for olefins has increased steadily in recent years, with a propylene demand around 100 million tons per year and an expected annual growth of 3–4%. Most propylene is presently produced via steam cracking of naphtha, but on-purpose processes based on selective propane dehydrogenation or utilizing methanol as an intermediate are also being investigated and deployed. The coal-to-propylene route in particular has gained wide interest in China. This paper presents an assessment of such emerging propylene production routes from methanol by combining detailed process simulation with life-cycle assessment and monetization of the environmental impacts. Though presenting a competitive direct production cost, the coal-to-propylene route has by far the highest total monetized cost after accounting for the human health and ecosystem quality externalities. As for the natural-gas-to-propylene route, it has about double the total monetized cost of conventional steam cracking of naphtha or propane dehydrogenation because of high human health and resource depletion externalities. These results provide a clear indication that both the coal-to-propylene and natural-gas-to-propylene routes are unsustainable. They also highlight the importance of accounting for negative externalities in assessing the techno-economic performance of industrial processes as it can radically change the outcome of the analysis.

Journal article

Mutran VM, Ribeiro CO, Nascimento CO, Chachuat Bet al., 2020, Risk-conscious optimization model to support bioenergy investment in the Brazilian sugarcane industry, Applied Energy, Vol: 258, Pages: 1-15, ISSN: 0306-2619

The past decades have seen a diversification of the sugarcane industry with the emergence of new technology to produce bioenergy from by-product and waste process streams. Given Brazil’s ambitious goal of reducing green-house gas emissions by over 40% below 2005 levels by 2030, it is of paramount importance to develop reliable decision-making systems in order to stimulate investment in these low-carbon technologies. This paper seeks to develop a more accurate optimization model to inform risk-conscious investment decisions for bioenergy generation capacity in sugarcane mills. The main objective is for the model to enable a better understanding of how Brazilian government policies, such as the electricity price in the regulated market, may impact these investments, by taking into account the uncertainty in sugar, ethanol and spot electricity markets and the interdependency between production and investment decisions in terms of saleable product mix. The proposed methodology combines portfolio optimization theory with superstructure process modeling and it relies on simple surrogates derived from a detailed sugarcane plant simulator to retain computational tractability and enable scenario analysis. The case study of an existing sugarcane plant is used to demonstrate the methodology and illustrate how the model can assist decision-makers. In all of the scenarios assessed, the model recommends investment in extra bioelectricity capacity via the anaerobic digestion of vinasse but advises against investment in second-generation ethanol production via the hydrolysis of surplus bagasse. Furthermore, the decision to upgrade the cogeneration system with a condensation turbine is highly sensitive to the electricity price practiced in the regulated market, capacity constraints on the sugar-ethanol mix, and the accepted level of risk. Another key insight drawn from the case study is that recent market conditions have favored a production focused on the sugar business, maki

Journal article

Gopaluni RB, Tulsyan A, Chachuat B, Huang B, Lee JM, Amjad F, Damarla SK, Kim JW, Lawrence NPet al., 2020, Modern Machine Learning Tools for Monitoring and Control of Industrial Processes: A Survey, 21st IFAC World Congress on Automatic Control - Meeting Societal Challenges, Publisher: ELSEVIER, Pages: 225-236, ISSN: 2405-8963

Conference paper

Uribe-Rodriguez A, Castro PM, Chachuat B, Guillen-Gozalbez Get al., 2020, Global Optimization of Refinery - petrochemical Operations via Process Clustering Decomposition, Editors: Pierucci, Manenti, Bozzano, Manca, Publisher: ELSEVIER SCIENCE BV, Pages: 1297-1302

Book chapter

Baaqel H, Tulus V, Chachuat B, Guillen-Gosalbez G, Hallett Jet al., 2020, Uncovering the True Cost of Ionic Liquids using Monetization, Editors: Pierucci, Manenti, Bozzano, Manca, Publisher: ELSEVIER SCIENCE BV, Pages: 1825-1830

Book chapter

Kusumo KP, Gomoescu L, Paulen R, Garcia-Munoz S, Pantelides CC, Shah N, Chachuat Bet al., 2020, Nested Sampling Strategy for Bayesian Design Space Characterization, Editors: Pierucci, Manenti, Bozzano, Manca, Publisher: ELSEVIER SCIENCE BV, Pages: 1957-1962

Book chapter

Paulen R, Gomoescu L, Chachuat B, 2020, Nested Sampling Approach to Set-membership Estimation, 21st IFAC World Congress on Automatic Control - Meeting Societal Challenges, Publisher: ELSEVIER, Pages: 7228-7233, ISSN: 2405-8963

Conference paper

Bernardi A, Chen Y, Chadwick D, Chachuat Bet al., 2020, Direct DME Synthesis from Syngas: a Technoeconomic Model-based Investigation, Editors: Pierucci, Manenti, Bozzano, Manca, Publisher: ELSEVIER SCIENCE BV, Pages: 655-660

Book chapter

Kusumo KP, Gomoescu L, Paulen R, García Muñoz S, Pantelides CC, Shah N, Chachuat Bet al., 2019, Bayesian approach to probabilistic design space characterization: a nested sampling strategy, Industrial & Engineering Chemistry Research, Vol: 59, Pages: 2396-2408, ISSN: 0888-5885

Quality by design in pharmaceutical manufacturing hinges on computational methods and tools that are capable of accurate quantitative prediction of the design space. This paper investigates Bayesian approaches to design space characterization, which determine a feasibility probability that can be used as a measure of reliability and risk by the practitioner. An adaptation of nested sampling—a Monte Carlo technique introduced to compute Bayesian evidence—is presented. The nested sampling algorithm maintains a given set of live points through regions with increasing probability feasibility until reaching a desired reliability level. It furthermore leverages efficient strategies from Bayesian statistics for generating replacement proposals during the search. Features and advantages of this algorithm are demonstrated by means of a simple numerical example and two industrial case studies. It is shown that nested sampling can outperform conventional Monte Carlo sampling and be competitive with flexibility-based optimization techniques in low-dimensional design space problems. Practical aspects of exploiting the sampled design space to reconstruct a feasibility probability map using machine learning techniques are also discussed and illustrated. Finally, the effectiveness of nested sampling is demonstrated on a higher-dimensional problem, in the presence of a complex dynamic model and significant model uncertainty.

Journal article

González-Garay A, Pozo C, Galán-Martín Á, Brechtelsbauer C, Chachuat B, Chadha D, Hale C, Hellgardt K, Kogelbauer A, Matar OK, McDowell N, Shah N, Guillén-Gosálbez Get al., 2019, Assessing the performance of UK universities in the field of chemical engineering using data envelopment analysis, Education for Chemical Engineers, Vol: 29, Pages: 29-41, ISSN: 1749-7728

University rankings have become an important tool to compare academic institutions within and across countries. Yet, they rely on aggregated scores based on subjective weights which render them sensitive to experts’ preferences and not fully transparent to final users. To overcome this limitation, we apply Data Envelopment Analysis (DEA) to evaluate UK universities in the field of chemical engineering as a case study, using data retrieved from two national rankings. DEA is a non-parametric approach developed for the multi-criteria assessment of entities that avoids the use of subjective weightings and aggregated scores; this is accomplished by calculating an efficiency index, on the basis of which universities can be classified as either ‘efficient’ or ‘inefficient’. Our analysis shows that the Higher Education Institutions (HEI) occupying the highest positions in the chemical engineering rankings might not be the most efficient ones, and vice versa, which highlights the need to complement the use of rankings with other analytical tools. Overall, DEA provides further insight into the assessment of HEIs, allowing institutions to better understand their weaknesses and strengths, while pinpointing sources of inefficiencies where improvement efforts must be directed.

Journal article

Wang Y, Markides CN, Chachuat B, 2019, Optimization-based investigations of a two-phase thermofluidic oscillator for low-grade heat conversion, BMC Chemical Engineering, Vol: 1, ISSN: 2524-4175

BackgroundThe non-inertive-feedback thermofluidic engine (NIFTE) is a two-phase thermofluidic oscillator capable of utilizing heat supplied at a steady temperature to induce persistent thermal-fluid oscillations. The NIFTE is appealing in its simplicity and ability to operate across small temperature differences, reported as low as 30 ∘C in early prototypes. But it is also expected that the NIFTE will exhibit low efficiencies relative to conventional heat recovery technologies that target higher-grade heat conversion. Mathematical modeling can help assess the full potential of the NIFTE technology.ResultsOur analysis is based on a nonlinear model of the NIFTE, which we extend to encompass irreversible thermal losses. Both models predict that a NIFTE may exhibit multiple cyclic steady states (CSS) for certain design configurations, either stable or unstable, a behavior that had never been hypothesized. A parametric analysis of the main design parameters of the NIFTE is then performed for both models. The results confirm that failure to include the irreversible thermal losses in the NIFTE model can grossly overpredict its performance, especially over extended parameter domains. Lastly, we use the NIFTE model with irreversible thermal losses to assess the optimization potential of this technology by conducting a multi-objective optimization. Our results reveal that most of the optimization potential is achievable via targeted modifications of three design parameters only. The Pareto frontier between exergetic efficiency and power output is also found to be highly sensitive to these optimized parameters.ConclusionsThe NIFTE is of practical relevance to a range of applications, including the development of solar-driven pumps to support small-holder irrigation in the developing world. Given its low capital cost, potential improvements greater than 50% in efficiency or power output are significant for the uptake of this technology. Conventional heat recovery technologies a

Journal article

Ogunnaike BA, Chachuat B, 2019, Preface to the Dominique Bonvin Festschrift, INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, Vol: 58, Pages: 13421-13422, ISSN: 0888-5885

Journal article

Rodríguez-Vallejo DF, Galán-Martín Á, Guillén-Gosálbez G, Chachuat Bet al., 2019, Data envelopment analysis approach to targeting in sustainable chemical process design: application to liquid fuels, AIChE Journal, Vol: 65, ISSN: 0001-1541

This article presents a framework for combining data envelopment analysis with process systems engineering tools, aiming to improve the sustainability of chemical processes. Given a set of chemical processes, each characterized by performance indicators, the framework discriminates between efficient and inefficient processes in regard to these indicators. We develop an approach to quantifying the closest targets for an inefficient process to become efficient, while preventing unrealistic targets by accounting for thermodynamic limitations represented as mass and energy flow constraints. We demonstrate the capabilities of the framework by assessing a methanol production process with captured CO2 and fossil-based H2, in comparison to 10 alternatives. The methanol fuel is found to be suboptimal in comparison with other fuels. Making it competitive would require a significant (unrealistic in the short term) reduction in H2 price. Alternatively, the methanol fuel could become competitive upon combining fossil-based H2 with sustainably produced H2 via wind-powered electrolysis. © 2018 American Institute of Chemical Engineers AIChE J, 00: 000–000, 2018.

Journal article

Bernardi A, Gomoescu L, Wang J, Pantelides CC, Chadwick D, Chachuat Bet al., 2019, Kinetic Model Discrimination for Methanol and DME Synthesis using Bayesian Estimation, 12th International-Federation-of-Automatic-Control (IFAC) Symposium on Dynamics and Control of Process Systems including Biosystems (DYCOPS), Publisher: ELSEVIER SCIENCE BV, Pages: 335-340, ISSN: 2405-8963

Conference paper

Mutran VM, Ribeiro CO, Nascimento COA, Chachuat Bet al., 2019, Risk-conscious approach to optimizing bioenergy investments in the Brazilian sugarcane industry, Editors: Kiss, Zondervan, Lakerveld, Ozkan, Publisher: ELSEVIER SCIENCE BV, Pages: 361-366, ISBN: 978-0-12-819939-8

Book chapter

Rodriguez-Vallejo DF, Galan-Martin A, Guillen-Gosalbez G, Chachuat Bet al., 2019, Targeting of sustainable chemical processes using data envelopment analysis: application to liquid fuels for transportation, Editors: Kiss, Zondervan, Lakerveld, Ozkan, Publisher: ELSEVIER SCIENCE BV, Pages: 331-336, ISBN: 978-0-12-819939-8

Book chapter

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00668622&limit=30&person=true