## Summary

My current research interests are the analysis of control and random dynamical systems in Reproducing Kernel Hilbert Spaces in view of developing data-based methods for the analysis and prediction of random dynamical systems and control strategies for nonlinear systems on the basis of observed data (rather than a pre-described model). I am particularly interested in developing a qualitative theory for dynamical systems in reproducing kernel Hilbert spaces with applications to systems with critical transitions.

In general, my research interests lie at the intersection(s) of:

* Control Theory

* Deterministic Dynamical Systems

* Learning Theory/Machine Learning

* Random Dynamical Systems

with a particular emphasis on the following problems:

- Kernel Methods for Dynamical Systems (and, in general, the intersection of the fields of Machine Learning and Dynamical Systems, click here and here for more details about this research direction).
- Control Theory from a Dynamical Systems Theory point of view (Dynamical Theory of Control)

## Publications

### Journals

Hamzi B, Owhadi H, 2021, Learning dynamical systems from data: A simple cross-validation perspective, part I: Parametric kernel flows, *Physica D: Nonlinear Phenomena*, Vol:421, ISSN:0167-2789, Pages:132817-132817

Klus S, Nueske F, Hamzi B, 2020, Kernel-based approximation of the koopman generator and schrodinger operator, *Entropy: International and Interdisciplinary Journal of Entropy and Information Studies*, Vol:22, ISSN:1099-4300, Pages:1-22

Giesl P, Hamzi B, Rasmussen M, et al. , 2020, Approximation of Lyapunov functions from noisy data, *Journal of Computational Dynamics*, Vol:7, ISSN:2158-2491, Pages:57-81