Imperial College London

DrBinZhou

Faculty of MedicineSchool of Public Health

Research Fellow
 
 
 
//

Contact

 

b.zhou13

 
 
//

Location

 

Sir Michael Uren HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

50 results found

NCD Risk Factor Collaboration NCD-RisC, 2017, Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults., Lancet, Vol: 390, Pages: 2627-2642, ISSN: 0140-6736

BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m(2) per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m(2) per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m(2) per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m(2) per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m(2) per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Tre

Journal article

Kenge AP, Bentham J, Zhou B, Bixby H, Taddei C, Chan Q, Elliott P, Ezzati M, Mbanya JCNet al., 2017, Trends in obesity and diabetes across regions in Africa from 1980 to 2014: an analysis of pooled population-based studies., International Journal of Epidemiology, Vol: 46, Pages: 1421-1432, ISSN: 1464-3685

Background: The 2016 Dar Es Salaam Call to Action on Diabetes and other NCDs advocates national multi-sectoral NCD strategies and action plans based on available data and information from countries of sub-Saharan Africa and beyond. We estimated trends, from 1980 to 2014, in age-standardised mean body mass index (BMI) and diabetes prevalence in these countries in order to assess the co-progression and assist policy formulation.Methods: We pooled data from African and world-wide population-based studies which measured height, weight, and biomarkers to assess diabetes status in adults aged >18 years. A Bayesian hierarchical model was used to estimate trends, by sex, for 200 countries and territories including 53 countries across five African regions, (central, eastern, northern, southern and western) in mean BMI and diabetes prevalence (defined as either fasting plasma glucose of >7.0 mmol/L, history of diabetes diagnosis, or use of insulin or oral glucose control agents). ResultsAfrican data came from 245 population-based surveys (1.2 million participants) for BMI and 76 surveys (182 000 participants) for diabetes prevalence estimates. Countries with the highest number of data sources for BMI were South Africa (n=17), Nigeria (n=15) and Egypt (n=13); and for diabetes estimates, Tanzania (n=8), Tunisia (n=7), Cameroon, Egypt and South Africa (all n=6). The age-standardised mean BMI increased from 21.0 kg/m2 (95% credible interval: 20.3-21.7) to 23.0 kg/m2 (22.7-23.3) in men, and from 21.9 kg/m2 (21.3-22.5) to 24.9 kg/m2 (24.6-25.1) in women. The age-standardised prevalence of diabetes increased from 3.4% (1.5-6.3) to 8.5% (6.5-10.8) in men, and from 4.1% (2.0-7.5) to 8.9 % (6.9-11.2) in women. Estimates in northern and southern regions were mostly higher than the global average; those in central, eastern and western regions were lower than global averages. A positive association (correlation coefficient ≃0.9) was observed between mean BMI and diabetes prevalence

Journal article

Ezzati M, Zhou B, Riley L, Stevens GA, Hajifathalian K, Danaei G, NCD Risk Factor Collaborationet al., 2017, Challenges of monitoring global diabetes prevalence, Lancet Diabetes and Endocrinology, ISSN: 2213-8595

Journal article

Ezzati M, Zhou B, Riley L, Stevens GA, Hajifathalian K, Danaei G, NCD Risk Factor Collaborationet al., 2017, Challenges of monitoring global diabetes prevalence, Lancet Diabetes and Endocrinology, Vol: 5, Pages: 162-162, ISSN: 2213-8595

Journal article

Ueda P, Woodward M, Lu Y, Hajifathalian K, Al-Wotayan R, Aguilar-Salinas CA, Ahmadvand A, Azizi F, Bentham J, Cifkova R, Di Cesare M, Eriksen L, Farzadfar F, Ferguson TS, Ikeda N, Khalili D, Khang YH, Lanska V, León-Muñoz L, Magliano DJ, Margozzini P, Msyamboza KP, Mutungi G, Oh K, Oum S, Rodríguez-Artalejo F, Rojas-Martinez R, Valdivia G, Wilks R, Shaw JE, Stevens GA, Tolstrup JS, Zhou B, Salomon JA, Ezzati M, Danaei Get al., 2017, Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys., Lancet Diabetes and Endocrinology, Vol: 5, Pages: 196-213, ISSN: 2213-8595

BACKGROUND: Worldwide implementation of risk-based cardiovascular disease (CVD) prevention requires risk prediction tools that are contemporarily recalibrated for the target country and can be used where laboratory measurements are unavailable. We present two cardiovascular risk scores, with and without laboratory-based measurements, and the corresponding risk charts for 182 countries to predict 10-year risk of fatal and non-fatal CVD in adults aged 40-74 years. METHODS: Based on our previous laboratory-based prediction model (Globorisk), we used data from eight prospective studies to estimate coefficients of the risk equations using proportional hazard regressions. The laboratory-based risk score included age, sex, smoking, blood pressure, diabetes, and total cholesterol; in the non-laboratory (office-based) risk score, we replaced diabetes and total cholesterol with BMI. We recalibrated risk scores for each sex and age group in each country using country-specific mean risk factor levels and CVD rates. We used recalibrated risk scores and data from national surveys (using data from adults aged 40-64 years) to estimate the proportion of the population at different levels of CVD risk for ten countries from different world regions as examples of the information the risk scores provide; we applied a risk threshold for high risk of at least 10% for high-income countries (HICs) and at least 20% for low-income and middle-income countries (LMICs) on the basis of national and international guidelines for CVD prevention. We estimated the proportion of men and women who were similarly categorised as high risk or low risk by the two risk scores. FINDINGS: Predicted risks for the same risk factor profile were generally lower in HICs than in LMICs, with the highest risks in countries in central and southeast Asia and eastern Europe, including China and Russia. In HICs, the proportion of people aged 40-64 years at high risk of CVD ranged from 1% for South Korean women to 42% for

Journal article

Zhou B, Bentham J, Di Cesare M, Bixby H, Danaei G, Cowan MJ, Paciorek CJ, Singh G, Hajifathalian K, Bennett JE, Taddei C, Bilano V, Carrillo-Larco RM, Djalalinia S, Khatibzadeh S, Lugero C, Peykari N, Zhang WZ, Lu Y, Stevens GA, Riley LM, Bovet P, Elliott P, Gu D, Ikeda N, Jackson RT, Joffres M, Kengne AP, Laatikainen T, Lam TH, Laxmaiah A, Liu J, Miranda JJ, Mondo CK, Neuhauser HK, Sundstrom J, Smeeth L, Soric M, Woodward M, Ezzati Met al., 2016, Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1,479 population-based measurement studies with 19.1 million participants, The Lancet, Vol: 389, Pages: 37-55, ISSN: 0140-6736

BackgroundRaised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood pressure of 140 mm Hg or higher or diastolic blood pressure of 90 mm Hg or higher.MethodsFor this analysis, we pooled national, subnational, or community population-based studies that had measured blood pressure in adults aged 18 years and older. We used a Bayesian hierarchical model to estimate trends from 1975 to 2015 in mean systolic and mean diastolic blood pressure, and the prevalence of raised blood pressure for 200 countries. We calculated the contributions of changes in prevalence versus population growth and ageing to the increase in the number of adults with raised blood pressure.FindingsWe pooled 1479 studies that had measured the blood pressures of 19·1 million adults. Global age-standardised mean systolic blood pressure in 2015 was 127·0 mm Hg (95% credible interval 125·7–128·3) in men and 122·3 mm Hg (121·0–123·6) in women; age-standardised mean diastolic blood pressure was 78·7 mm Hg (77·9–79·5) for men and 76·7 mm Hg (75·9–77·6) for women. Global age-standardised prevalence of raised blood pressure was 24·1% (21·4–27·1) in men and 20·1% (17·8–22·5) in women in 2015. Mean systolic and mean diastolic blood pressure decreased substantially from 1975 to 2015 in high-income western and Asia Pacific countries, moving these countries from having some of the highest worldwide blood pressure in 1975 to the lowest in 2015. Mean blood pressure also decreased in women in central and eastern Europe, Latin America and the Caribbean, and, more recently, central Asia, Middle East, and north Africa, but the es

Journal article

Bentham J, Di Cesare M, Stevens GA, Zhou B, Bixby H, Cowan M, Fortunato L, Bennett J, Danaei G, Hajifathalian K, Lu Y, Riley LM, Laxmaiah A, Kontis V, Paciorek CJ, Riboli E, Ezzati M, Chan Q, Elliott P, Gunter M, Hihtaniemi IT, Murphy N, Norat T, Riboli E, Vineis P, NCD Risk Factor Collaboration NCD-RisCet al., 2016, A century of trends in adult human height, eLife, Vol: 5, ISSN: 2050-084X

Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3–19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8–144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.

Journal article

Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, Bixby H, Cowan MJ, Ali MK, Taddei C, Lo W-C, Reis-Santos B, Stevens GA, Riley LM, Miranda JJ, Bjerregaard P, Rivera JA, Fouad HM, Ma G, Mbanya JCN, McGarvey ST, Mohan V, Onat A, Ramachandran A, Ben Romdhane H, Paciorek CJ, Bennett JE, Ezzati M, Abdeen ZA, Kadir KA, Abu-Rmeileh NM, Acosta-Cazares B, Adams R, Aekplakorn W, Aguilar-Salinas CA, Agyemang C, Ahmadvand A, Al-Othman AR, Alkerwi A, Amouyel P, Amuzu A, Andersen LB, Anderssen SA, Anjana RM, Aounallah-Skhiri H, Aris T, Arlappa N, Arveiler D, Assah FK, Avdicova M, Azizi F, Balakrishna N, Bandosz P, Barbagallo CM, Barcelo A, Batieha AM, Baur LA, Ben Romdhane H, Benet M, Bernabe-Ortiz A, Bharadwaj S, Bhargava SK, Bi Y, Bjerregaard P, Bjertness E, Bjertness MB, Bjorkelund C, Blokstra A, Bo S, Boehm BO, Boissonnet CP, Bovet P, Brajkovich I, Breckenkamp J, Brenner H, Brewster LM, Brian GR, Bruno G, Bugge A, Cabrera de Leon A, Can G, Candido APC, Capuano V, Carlsson AC, Carvalho MJ, Casanueva FF, Casas J-P, Caserta CA, Castetbon K, Chamukuttan S, Chaturvedi N, Chen C-J, Chen F, Chen S, Cheng C-Y, Chetrit A, Chiou S-T, Cho Y, Chudek J, Cifkova R, Claessens F, Concin H, Cooper C, Cooper R, Costanzo S, Cottel D, Cowell C, Crujeiras AB, D'Arrigo G, Dallongeville J, Dankner R, Dauchet L, de Gaetano G, De Henauw S, Deepa M, Dehghan A, Deschamps V, Dhana K, Di Castelnuovo AF, Djalalinia S, Doua K, Drygas W, Du Y, Dzerve V, Egbagbe EE, Eggertsen R, El Ati J, Elosua R, Erasmus RT, Erem C, Ergor G, Eriksen L, Escobedo-de la Pena J, Fall CH, Farzadfar F, Felix-Redondo FJ, Ferguson TS, Fernandez-Berges D, Ferrari M, Ferreccio C, Feskens EJM, Finn JD, Foeger B, Foo LH, Forslund A-S, Fouad HM, Francis DK, Franco MDC, Franco OH, Frontera G, Furusawa T, Gaciong Z, Garnett SP, Gaspoz J-M, Gasull M, Gates L, Geleijnse JM, Ghasemian A, Ghimire A, Giampaoli S, Gianfagna F, Giovannelli J, Giwercman A, Gonzalez Gross M, Gonzalez Rivas JP, Bonet Gorbea M, Gottrand F, Grafnetteet al., 2016, Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants, Lancet, Vol: 387, Pages: 1513-1530, ISSN: 1474-547X

BackgroundOne of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes.MethodsWe pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue.FindingsWe used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalenc

Journal article

Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G, Lu Y, Bixby H, Cowan MJ, Riley LM, Hajifathalian K, Fortunato L, Taddei C, Bennett JE, Ikeda N, Khang Y-H, Kyobutungi C, Laxmaiah A, Li Y, Lin H-H, Miranda JJ, Mostafa A, Turley ML, Paciorek CJ, Gunter M, Ezzati M, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Adams R, Aekplakorn W, Aguilar-Salinas CA, Ahmadvand A, Ahrens W, Ali MM, Alkerwi A, Alvarez-Pedrerol M, Aly E, Amouyel P, Amuzu A, Andersen LB, Anderssen SA, Andrade DS, Anjana RM, Aounallah-Skhiri H, Ariansen I, Aris T, Arlappa N, Arveiler D, Assah FK, Avdicova M, Azizi F, Babu BV, Balakrishna N, Bandosz P, Banegas JR, Barbagallo CM, Barcelo A, Barkat A, Barros MV, Bata I, Batieha AM, Batista RL, Baur LA, Beaglehole R, Ben Romdhane H, Benet M, Bernabe-Ortiz A, Bernotiene G, Bettiol H, Bhagyalaxmi A, Bharadwaj S, Bhargava SK, Bhatti Z, Bhutta ZA, Bi H, Bi Y, Bjerregaard P, Bjertness E, Bjertness MB, Bjorkelund C, Blake M, Blokstra A, Bo S, Bobak M, Boddy LM, Boehm BO, Boeing H, Boissonnet CP, Bongard V, Bovet P, Braeckman L, Bragt MCE, Brajkovich I, Branca F, Breckenkamp J, Brenner H, Brewster LM, Brian GR, Bruno G, Bueno-de-Mesquita HBA, Bugge A, Burns C, Cabrera de Leon A, Cacciottolo J, Cama T, Cameron C, Camolas J, Can G, Candido APC, Capuano V, Cardoso VC, Carvalho MJ, Casanueva FF, Casas J-P, Caserta CA, Castetbon K, Chamukuttan S, Chan AW, Chan Q, Chaturvedi HK, Chaturvedi N, Chen C-J, Chen F, Chen H, Chen S, Chen Z, Cheng C-Y, Chetrit A, Chiolero A, Chiou S-T, Chirita-Emandi A, Cho Y, Christensen K, Chudek J, Cifkova R, Claessens F, Clays E, Concin H, Cooper C, Cooper R, Coppinger TC, Costanzo S, Cottel D, Cowell C, Craig CL, Crujeiras AB, D'Arrigo G, d'Orsi E, Dallongeville J, Damasceno A, Damsgaard CT, Danaei G, Dankner R, Dauchet L, De Backer G, De Bacquer D, de Gaetano G, De Henauw S, De Smedt D, Deepa M, Deev AD, Dehghan A, Delisle H, Delpeuch F, Dhana K, Di Castelnuovo AF, Dias-da-Costa JS, Diaz A, Djalalinia S, Do HTP, Dobson AJ, Doet al., 2016, Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants, Lancet, Vol: 387, Pages: 1377-1396, ISSN: 1474-547X

BackgroundUnderweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries.MethodsWe analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m2 [underweight], 18·5 kg/m2 to <20 kg/m2, 20 kg/m2 to <25 kg/m2, 25 kg/m2 to <30 kg/m2, 30 kg/m2 to <35 kg/m2, 35 kg/m2 to <40 kg/m2, ≥40 kg/m2 [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue.FindingsWe used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m2 (95% credible interval 21·3–22·1) in 1975 to 24·2 kg/m2 (24·0–24·4) in 2014 in men, and from 22·1 kg/m2 (21·7–22·5) in 1975 to 24·4 kg/m2 (24·2–24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m2 in central Africa and south Asia to 29·2 kg/m2 (28·6–29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m2 (21·4–22·3) in south Asia to 32·2 kg/m2 (31·5–32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of un

Journal article

Ezzati M, Danaei G, Fahimi S, Lu Y, Zhou B, Hajifathalian K, Di Cesare M, Lo W, Reis-Santos B, Cowan MJ, Shaw JE, Bentham J, Lin JK, Bixby H, Magliano D, Bovet P, Miranda JJ, Khang Y, Stevens GA, Riley LM, Ali MKet al., 2015, Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331 288 participants, The Lancet Diabetes & Endocrinology, Vol: 3, Pages: 624-637, ISSN: 2213-8587

Background: Over time, diabetes has been defined based on different biomarkers, includingfasting plasma glucose (FPG) or 2-hour plasma glucose in an oral glucose tolerance test (2hOGTT) and,more recently, haemoglobin A1c (HbA1c). We examined the influence of diagnostic definitions on boththe population prevalence of diabetes and the classification of previously-undiagnosed individuals aswith vs. without diabetes in a pooled analysis of data from population-based health examinationsurveys in different world regions.

Journal article

Hajifathalian K, Ueda P, Lu Y, Woodward M, Ahmadvand A, Aguilar-Salinas CA, Azizi F, Cifkova R, Di Cesare M, Eriksen L, Farzadfar F, Ikeda N, Khalili D, Khang Y-H, Lanska V, Leon-Munoz L, Magliano D, Msyamboza KP, Oh K, Rodriguez-Artalejo F, Rojas-Martinez R, Shaw JE, Stevens GA, Tolstrup J, Zhou B, Salomon JA, Ezzati M, Danaei Get al., 2015, A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys, The Lancet Diabetes & Endocrinology, Vol: 3, Pages: 339-355, ISSN: 2213-8587

BackgroundTreatment of cardiovascular risk factors based on disease risk depends on valid risk prediction equations. We aimed to develop, and apply in example countries, a risk prediction equation for cardiovascular disease (consisting here of coronary heart disease and stroke) that can be recalibrated and updated for application in different countries with routinely available information.MethodsWe used data from eight prospective cohort studies to estimate coefficients of the risk equation with proportional hazard regressions. The risk prediction equation included smoking, blood pressure, diabetes, and total cholesterol, and allowed the effects of sex and age on cardiovascular disease to vary between cohorts or countries. We developed risk equations for fatal cardiovascular disease and for fatal plus non-fatal cardiovascular disease. We validated the risk equations internally and also using data from three cohorts that were not used to create the equations. We then used the risk prediction equation and data from recent (2006 or later) national health surveys to estimate the proportion of the population at different levels of cardiovascular disease risk in 11 countries from different world regions (China, Czech Republic, Denmark, England, Iran, Japan, Malawi, Mexico, South Korea, Spain, and USA).FindingsThe risk score discriminated well in internal and external validations, with C statistics generally 70% or more. At any age and risk factor level, the estimated 10 year fatal cardiovascular disease risk varied substantially between countries. The prevalence of people at high risk of fatal cardiovascular disease was lowest in South Korea, Spain, and Denmark, where only 5–10% of men and women had more than a 10% risk, and 62–76% of men and 79–82% of women had less than a 3% risk. Conversely, the proportion of people at high risk of fatal cardiovascular disease was largest in China and Mexico. In China, 33% of men and 28% of women had a 10-year risk of

Journal article

Zhou B, Zhao B, 2014, Analysis of intervention strategies for inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk based on a monte carlo population exposure assessment model, PLoS One, Vol: 9, Pages: 1-11, ISSN: 1932-6203

It is difficult to evaluate and compare interventions for reducing exposure to air pollutants, including polycyclic aromatic hydrocarbons (PAHs), a widely found air pollutant in both indoor and outdoor air. This study presents the first application of the Monte Carlo population exposure assessment model to quantify the effects of different intervention strategies on inhalation exposure to PAHs and the associated lung cancer risk. The method was applied to the population in Beijing, China, in the year 2006. Several intervention strategies were designed and studied, including atmospheric cleaning, smoking prohibition indoors, use of clean fuel for cooking, enhancing ventilation while cooking and use of indoor cleaners. Their performances were quantified by population attributable fraction (PAF) and potential impact fraction (PIF) of lung cancer risk, and the changes in indoor PAH concentrations and annual inhalation doses were also calculated and compared. The results showed that atmospheric cleaning and use of indoor cleaners were the two most effective interventions. The sensitivity analysis showed that several input parameters had major influence on the modeled PAH inhalation exposure and the rankings of different interventions. The ranking was reasonably robust for the remaining majority of parameters. The method itself can be extended to other pollutants and in different places. It enables the quantitative comparison of different intervention strategies and would benefit intervention design and relevant policy making.

Journal article

Chen R, Zhou B, Kan H, Zhao Bet al., 2013, Associations of particulate air pollution and daily mortality in 16 Chinese cities: An improved effect estimate after accounting for the indoor exposure to particles of outdoor origin, ENVIRONMENTAL POLLUTION, Vol: 182, Pages: 278-282, ISSN: 0269-7491

Journal article

Zhou B, Zhao B, Zhou W, 2012, Characterizing PM<inf>2.5</inf> concentration and air exchange rates in Chinese rural kitchens: A field study, Pages: 260-261

Conference paper

Wang S, Zhao B, Zhou B, Tan Zet al., 2012, An experimental study on short-time particle resuspension from inner surfaces of straight ventilation ducts, BUILDING AND ENVIRONMENT, Vol: 53, Pages: 119-127, ISSN: 0360-1323

Journal article

Zhu Y, Zhao B, Zhou B, Tan Zet al., 2012, A Particle Resuspension Model in Ventilation Ducts, AEROSOL SCIENCE AND TECHNOLOGY, Vol: 46, Pages: 222-235, ISSN: 0278-6826

Journal article

Zhou B, Zhao B, 2011, Effect of particle resuspension from ventilation duct on indoor environment

Resuspension of accumulated dust inside ventilation ducts is a serious problem in HVAC operation. Many countries have hygienic standards regarding how much dust is tolerable in ventilation ducts. The standards, however, diverge from each other. In this study, we established a quantitative method to evaluate the health impact brought by in-duct resuspension. A mass balance model was developed to incorporate the particle deposition and resuspension in both ventilation ducts and indoor environment, by which the resuspended particles from ventilation ducts could be evaluated. The quantity of the attached bacteria on the resus-pended particles was estimated and LD QRMA model was employed in the health-concerning assessment. Suggestions for building management are provided. © 2011 ASHRAE.

Conference paper

Zhou B, Zhao B, Tan Z, 2011, How Particle Resuspension from Inner Surfaces of Ventilation Ducts Affects Indoor Air Quality-A Modeling Analysis, AEROSOL SCIENCE AND TECHNOLOGY, Vol: 45, Pages: 996-1009, ISSN: 0278-6826

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00844944&limit=30&person=true&page=2&respub-action=search.html