Imperial College London

DrBalvinderHanda

Faculty of MedicineNational Heart & Lung Institute

Research Postgraduate
 
 
 
//

Contact

 

balvinder.handa05

 
 
//

Location

 

Commonwealth BuildingHammersmith Campus

//

Summary

 

Summary

Dr. Balvinder Handa is a Honorary Clinical Research Fellow at the National Heart and Lung Institute (NHLI), and a Cardiology Registrar undertaking a fellowship in Cardiac Electrophysiology and Devices at Imperial College London Healthcare NHS Trust. His research focuses on the underlying mechanisms sustaining ventricular fibrillation and atrial fibrillation, and the role of fibrosis and gap junction coupling in arrhythmogenesis. He is interested in optimising mapping tools in fibrillation and holds a patent for Granger-Causality mapping in fibrillation. He undertook his out of programme PhD research under the supervision of Dr. Fu Siong Ng and co-supervision of Prof. Nicholas Peters.

His research work has been presented at multiple national and international Cardiology and Cardiac Electrophysiology conferences (ESC, HRS, EHRA, HRC, BCS) and has been featured in the conference highlights sessions at both EHRA and ESC. 

He has received numerous international travel grants and been nominated on three separate occassions for the Young Investigator Award on a national and international stage for his research work:

1) Young Investigator Award Winner, Heart Rhythm Congress 2019, Birmingham UK. 

2) Young Investigator Award Finalist at the European Heart Rhythm Association Congress, Lisbon, Portugal 2019 

3) Young Investigator Award Finalist at the Sudden Arrhythmic Death Syndrome Foundation event at the Heart Rhythm Society (HRS) Congress, San Francisco, USA 2019.

Dr. Handa graduated from Medicine at Imperial College London in 2011 with multiple distinctions. He was also awarded a First Class (Honours) BSc degree in Cardiovascular Sciences. Dr. Handa achieved the MRCP accreditation prior to starting his specialist training in Cardiology in a highly competitive training post in the London Deanery (North West Thames). 

He has a strong interest in medical education, and is a lecturer on the Cardiovascular Sciences BSc course and has supervised student research projects on the course. He has tutored junior doctor undertaking the PACES examination for MRCP accreditation and is an examiner on the CentralPaces course.  


Publications

Handa BS, Li X, Baxan N, Roney CH, Shchendrygina A, Mansfield CA, Jabbour R, Pitcher D, Chowdhury RA, Peters NS, Ng FS. Ventricular fibrillation mechanism and global fibrillatory organisation are determined by gap junction coupling and fibrosis pattern, Cardiovascular Research, , cvaa141, https://doi.org/10.1093/cvr/cvaa141

Handa BS, Li X, Aras KK, Qureshi NA, Mann I, Chowdhury RA, Whinnett ZI, Linton NWF, Lim PB, Kanagaratnam P, Efimov IR, Peters NS, Ng FS. Granger Causality-Based Analysis for Classification of Fibrillation Mechanisms and Localization of Rotational Drivers. Circ Arrhythm Electrophysiol. 2020 Mar;13(3):e008237.

Li, X., Roney, C.H., Handa, B.S. et al. Standardised Framework for Quantitative Analysis of Fibrillation Dynamics. Sci Rep 9, 16671 (2019) doi:10.1038/s41598-019-52976-y

Handa BS, Lawal S, Wright IJ, Li X, Cabello-García J, Mansfield C, et al. Interventricular Differences in Action Potential Duration Restitution Contribute to Dissimilar Ventricular Rhythms in ex vivo Perfused Hearts    [Internet]. Vol. 6, Frontiers in Cardiovascular Medicine. 2019. p. 34. Available from: https://www.frontiersin.org/article/10.3389/fcvm.2019.00034 

Handa BS, Roney CH, Houston C et al. Analytical approaches for myocardial fibrillation signals. Comput Biol Med. 2018;102:315–26.

Meijles DN, Zoumpoulidou G, Markou T, Rostron KA, Patel R, Lay K, Handa BS et al. The cardiomyocyte “redox rheostat”: Redox signalling via the AMPK-mTOR axis and regulation of gene and protein expression balancing survival and death. J Mol Cell Cardiol. 2019 Feb;

Pikkarainen S, Kennedy RA, Marshall AK, Tham el L, Lay K, Kriz TA, Handa BS, Clerk A, Sugden PH. Regulation of expression of the rat orthologue of mouse double minute 2 (MDM2) by H(2)O(2)-induced oxidative stress in neonatal rat cardiac myocytes. J Biol Chem. 2009 Oct 2;284(40):27195-210.

Publications

Journals

Brook J, Kim M-Y, Koutsoftidis S, et al., 2020, Development of a pro-arrhythmic ex vivo intact human and porcine model: cardiac electrophysiological changes associated with cellular uncoupling, Pflügers Archiv European Journal of Physiology, Vol:472, ISSN:0031-6768, Pages:1435-1446

Ng FS, Handa B, Li X, et al., 2020, Towards mechanism-directed electrophenotype-based treatments for atrial fibrillation, Frontiers in Physiology, Vol:11, ISSN:1664-042X, Pages:1-7

Handa BS, Li X, Aras KK, et al., 2020, Response by Handa et al to Letter Regarding Article, "Granger Causality-Based Analysis for Classification of Fibrillation Mechanisms and Localization of Rotational Drivers", Circulation-arrhythmia and Electrophysiology, Vol:13, ISSN:1941-3149

Handa B, Li X, Baxan N, et al., 2020, Ventricular fibrillation mechanism and global fibrillatory organisation are determined by gap junction coupling and fibrosis pattern, Cardiovascular Research, ISSN:0008-6363

Handa B, Li X, Aras KK, et al., 2020, Granger causality-based analysis for classification of fibrillation mechanisms and localisation of rotational drivers, Circulation: Arrhythmia and Electrophysiology, Vol:12, ISSN:1941-3084, Pages:258-273

More Publications