Imperial College London

DrBennyLo

Faculty of MedicineDepartment of Surgery & Cancer

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 0806benny.lo Website

 
 
//

Location

 

B414BBessemer BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Zhang:2019:10.1111/exsy.12432,
author = {Zhang, Y and Zhang, Y and Lo, B and Xu, W},
doi = {10.1111/exsy.12432},
journal = {Expert Systems},
title = {Wearable ECG signal processing for automated cardiac arrhythmia classification using CFASEbased feature selection},
url = {http://dx.doi.org/10.1111/exsy.12432},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Classification of electrocardiogram (ECG) signals is obligatory for the automatic diagnosis of cardiovascular disease. With the recent advancement of lowcost wearable ECG device, it becomes more feasible to utilize ECG for cardiac arrhythmia classification in daily life. In this paper, we propose a lightweight approach to classify five types of cardiac arrhythmia, namely, normal beat (N), atrial premature contraction (A), premature ventricular contraction (V), left bundle branch block beat (L), and right bundle branch block beat (R). The combined method of frequency analysis and Shannon entropy is applied to extract appropriate statistical features. Information gain criterion is employed to select features that the results show that 10 highly effective features can obtain performance measures comparable to those obtained by using the complete features. The selected features are then fed to the input of Random Forest, KNearest Neighbour, and J48 for classification. To evaluate classification performance, tenfold cross validation is used to verify the effectiveness of our method. Experimental results show that Random Forest classifier demonstrates significant performance with the highest sensitivity of 98.1%, the specificity of 99.5%, the precision of 98.1%, and the accuracy of 98.08%, outperforming other representative approaches for automated cardiac arrhythmia classification.
AU - Zhang,Y
AU - Zhang,Y
AU - Lo,B
AU - Xu,W
DO - 10.1111/exsy.12432
PY - 2019///
SN - 0266-4720
TI - Wearable ECG signal processing for automated cardiac arrhythmia classification using CFASEbased feature selection
T2 - Expert Systems
UR - http://dx.doi.org/10.1111/exsy.12432
UR - https://onlinelibrary.wiley.com/doi/full/10.1111/exsy.12432
UR - http://hdl.handle.net/10044/1/75184
ER -