Imperial College London

ProfessorBrendanDelaney

Faculty of MedicineDepartment of Surgery & Cancer

Chair in Medical Informatics and Decision Making
 
 
 
//

Contact

 

+44 (0)20 7594 3427brendan.delaney Website

 
 
//

Location

 

506Medical SchoolSt Mary's Campus

//

Summary

 

Summary


I am a leading exponent internationally of the “Learning Health System’ (LHS) concept. Although my initial training in research was in heath technology assessment, real-world (pragmatic) clinical trials and clinical research in Family Medicine, since 2003 I have worked in the area of Clinical Informatics, being appointed to a Chair in Medical Informatics at Imperial in 2015 and elected one of the first 100 founding fellows of the new UK Faculty of Clinical Informatics in 2017. I have had wide exposure to European and US clinical informatics through workshops and symposia.  

I was the UK lead investigator on an NIH Clinical Research Roadmap project (The Electronic Primary Care Research Network. HHS268N200425212C) 2006-10. From 2010-15 I led a €9million EU FP7 programme, ‘TRANSFoRm: Patient Safety and Translational Research in Europe’.

TRANSFoRm set about using ontologies, data standards and models to create a common infrastructure for the LHS with three specific use cases (eSource for clinical trials, phenomics and clinical diagnosis.

Prior to moving to Imperial I was Wolfson Professor of General Practice at King's College London. At Imperial, I work in the Institute of Global Health Innovation, with research in Artificial Intelligence, cancer diagnosis and learning systems, eSource for clinical trials and global eHealth. I sit on the Cancer Research UK Population research funding panel and the Medical Research Council Methodology Research panel.


Currently there are three areas of active research:

1. LHS and guidelines. Completing the LHS cycle with a computational infrastructure for deploying guidelines as decision support linked to the EHR. Currently supported as an EPSRC Global Health Development Project (www.ROAD2H.org).

2. Establishing a LHS for diagnosis. Currently moving from a prototype evaluated in a rich simulation to deployment in practices. Funded by CRUK.

3. Developing a clinical prediction rule for the risk of admission/death in acute Covid in Primary care. RECAP - funded by the Community Jameel Imperial College Covid-19 Excellence fund (and collaborating with Oxford University). RECAP

Publications

Journals

Cabral C, Curtis K, Curcin V, et al., 2021, Challenges to implementing electronic trial data collection in primary care: a qualitative study, Bmc Family Practice, Vol:22

Chapman M, Domínguez J, Fairweather E, et al., 2021, Using Computable Phenotypes in Point-of-Care Clinical Trial Recruitment., Stud Health Technol Inform, Vol:281, Pages:560-564

Espinosa-Gonzalez AB, Neves AL, Fiorentino F, et al., 2021, Predicting Risk of Hospital Admission in Patients With Suspected COVID-19 in a Community Setting: Protocol for Development and Validation of a Multivariate Risk Prediction Tool, Jmir Research Protocols, Vol:10, ISSN:1929-0748

Sivan M, Rayner C, Delaney B, 2021, Fresh evidence of the scale and scope of long covid., Bmj, Vol:373

Kostopoulou O, Tracey C, Delaney B, 2021, Can decision support combat incompleteness and bias in routine primary care data?, Journal of the American Medical Informatics Association, ISSN:1067-5027

More Publications