Imperial College London

DrCristinaBanks-Leite

Faculty of Natural SciencesDepartment of Life Sciences (Silwood Park)

Reader in Conservation Ecology
 
 
 
//

Contact

 

+44 (0)20 7594 2289c.banks

 
 
//

Location

 

2.2MunroSilwood Park

//

Summary

 

Publications

Publication Type
Year
to

57 results found

Weeks TL, Betts MG, Pfeifer M, Wolf C, Banks-Leite C, Barbaro L, Barlow J, Cerezo A, Kennedy CM, Kormann UG, Marsh CJ, Olivier PI, Phalan BT, Possingham HP, Wood EM, Tobias JAet al., 2023, Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds, Nature Ecology and Evolution, Vol: 7, Pages: 1079-1091, ISSN: 2397-334X

Species sensitivity to forest fragmentation varies latitudinally, peaking in the tropics. A prominent explanation for this pattern is that historical landscape disturbance at higher latitudes has removed fragmentation-sensitive species or promoted the evolution of more resilient survivors. However, it is unclear whether this so-called extinction filter is the dominant driver of geographic variation in fragmentation sensitivity, particularly because climatic factors may also cause latitudinal gradients in dispersal ability, a key trait mediating sensitivity to habitat fragmentation. Here we combine field survey data with a morphological proxy for avian dispersal ability (hand-wing index) to assess responses to forest fragmentation in 1,034 bird species worldwide. We find that fragmentation sensitivity is strongly predicted by dispersal limitation and that other factors—latitude, body mass and historical disturbance events—have relatively limited explanatory power after accounting for species differences in dispersal. We also show that variation in dispersal ability is only weakly predicted by historical disturbance and more strongly associated with intra-annual temperature fluctuations (seasonality). Our results suggest that climatic factors play a dominant role in driving global variation in the impacts of forest fragmentation, emphasizing the need for more nuanced environmental policies that take into account local context and associated species traits.

Journal article

Lawson J, Whitworth A, Banks-Leite C, 2022, Soundscapes show disruption across the diel cycle in human modified tropical landscapes, Ecological Indicators, Vol: 144, ISSN: 1470-160X

1. Fluctuations in the diel cycle, especially when compared across different land-use types, can reveal key changes in acoustic activity and the biological community. Yet few studies have assessed the effects of land use change on soundscapes across the diel cycle. The emergence of passive acoustic monitoring (PAM) allows us to monitor landscapes over longer and continuous periods, providing data on temporal variability across the diel cycle.2. Using AudioMoth acoustic recorders we collected data at 120 sites on the Osa Peninsula, Costa Rica, across a gradient of land use intensity. Information was extracted from recordings using a suite of nine acoustic indices. Principal component analysis reduced the indices into two axes, the first reflecting acoustic activity in the mid frequency bands, where the majority of biotic sound is present, and the second, representing acoustic activity in the upper frequency bands and the ratio of activity between the lower and mid-frequency bands.3. In disturbed land use types we found reduced acoustic activity during the characteristic dawn and dusk peaks in the diel cycle; known as the dawn and dusk chorus. Palm oil plantations showed a complete loss of these peaks, while teak plantations retained evidence of a weaker dawn and dusk chorus. Restricting the analysis to narrower temporal windows masks these differences among habitats.4. Synthesis and applications. Evaluating acoustic diversity at specific times of the day, which is common practice in bioacoustics studies, may be misleading, as pronounced changes in acoustic activity at dawn and duskwere obscured. By assessing trends across the diel cycle, we can gain a much better representation of the changes in acoustic activity. Our results show that in disturbed ecosystems there is a deviation in acoustic activity from that seen in a healthy native forest ecosystem, suggesting that there are likely changes within the biotic community in these ecosystems.

Journal article

Banks-Leite C, Betts MG, Ewers RM, Orme CDL, Pigot ALet al., 2022, The macroecology of landscape ecology, Trends in Ecology and Evolution, Vol: 37, ISSN: 0169-5347

One of landscape ecology's main goals is to unveil how biodiversity is impacted by habitat transformation. However, the discipline suffers from significant context dependency in observed spatial and temporal trends, hindering progress towards understanding the mechanisms driving species declines and preventing the development of accurate estimates of future biodiversity change. Here, we discuss recent evidence that populations' and species' responses to habitat change at the landscape scale are modulated by factors and processes occurring at macroecological scales, such as historical disturbance rates, distance to geographic range edges, and climatic suitability. We suggest that placing landscape ecology studies in a macroecological lens will help to explain seemingly inconsistent results and will ultimately create better predictive models to help mitigate the biodiversity crisis.

Journal article

Medeiros GG, Antonio J, Harrison M, Della Coletta L, Soltangheisi A, Banks-Leite C, Duarte-Neto PJ, Martinelli LAet al., 2021, Effect of vertebrate exclusion on leaf litter decomposition in the coastal Atlantic forest of southeast Brazil, TROPICAL ECOLOGY, Vol: 63, Pages: 151-154, ISSN: 0564-3295

Journal article

Folkard-Tapp H, Banks-Leite C, Cavan EL, 2021, Nature-based Solutions to tackle climate change and restore biodiversity, JOURNAL OF APPLIED ECOLOGY, Vol: 58, Pages: 2344-2348, ISSN: 0021-8901

Journal article

Banks-Leite C, Larrosa C, Carrasco LR, Tambosi LR, Milner-Gulland Eet al., 2021, The suggestion that landscapes should contain 40% of forest cover lacks evidence and is problematic, Ecology Letters, Vol: 24, Pages: 1112-1113, ISSN: 1461-023X

A recent review suggests that forest cover needs to be restored or maintained on at least 40% of land area. In the absence of empirical evidence to support this threshold, we discuss how this suggestion is unhelpful and potentially dangerous. We advocate for regionally defined thresholds to inform conservation and restoration.

Journal article

Banks-Leite C, Ewers R, Folkard-Tapp H, Fraser Aet al., 2020, Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration, One Earth, Vol: 3, Pages: 672-676, ISSN: 2590-3322

Habitat loss, fragmentation and degradation impacts are the most direct threat to global biodiversity. In this Primer, we discuss how these three forms of habitat transformation are inextricably intertwined, and how their effects on biodiversity and ecosystems are often context-specific. We draw on recent analyses that have explored this context-dependence directly, to discuss how local-scale impacts of habitat transformation are mediated by biogeographic-scale variation in evolutionary histories and species’ geographic ranges. We also discuss how changes to ecosystem functions and services in modified habitats can be just as context-dependent – and how these changes are further obscured by high levels of ecological redundancy in species functions, which can confer resilience to habitat transformation. To avoid the impending extinction of millions of species, it is crucial that the impacts of habitat transformation are mitigated through a combination of preventing further habitat loss while simultaneously extending and repairing the habitats that remain.

Journal article

Parra-Sanchez E, Banks-Leite C, 2020, The magnitude and extent of edge effects on vascular epiphytes across the Brazilian Atlantic Forest, Scientific Reports, Vol: 10, Pages: 1-11, ISSN: 2045-2322

Edge effects are ubiquitous landscape processes influencing over 70% of forest cover worldwide. However, little is known about how edge effects influence the vertical stratification of communities in forest fragments. We combined a spatially implicit and a spatially explicit approach to quantify the magnitude and extent of edge effects on canopy and understorey epiphytic plants in the Brazilian Atlantic Forest. Within the human-modified landscape, species richness, species abundance and community composition remained practically unchanged along the interior-edge gradient, pointing to severe biotic homogenisation at all strata. This is because the extent of edge effects reached at least 500 m, potentially leaving just 0.24% of the studied landscape unaffected by edges. We extrapolated our findings to the entire Atlantic Forest and found that just 19.4% of the total existing area is likely unaffected by edge effects and provide suitable habitat conditions for forest-dependent epiphytes. Our results suggest that the resources provided by the current forest cover might be insufficient to support the future of epiphyte communities. Preserving large continuous ‘intact’ forests is probably the only effective conservation strategy for vascular epiphytes.

Journal article

Chan A, Banks-Leite C, 2020, Habitat modification mediates the strength of trophic cascades on oak trees, Perspectives in Ecology and Conservation, Vol: 18, Pages: 313-318, ISSN: 2530-0644

Habitat modification is now a widespread phenomenon, impacting landscape structure, biophysical processes, food webs and biodiversity. These changes have trickle-down effects on trophic cascades: predators often become rarer, increasing prey populations, which then subject plants to higher levels of herbivory. How habitat modification mediates this trophic cascade, however, is poorly understood, and this is particularly true for temperate forests. Here we investigate if the strength of trophic cascades, defined as the magnitude of the effect of bird exclusion on leaf damage, varies along a gradient of increasing habitat modification, from forest interior to forest edge to open habitat, through an experimental manipulation of bird exclusion. We found that habitat modification reduces the number of bird observations, with trophic cascades being three times stronger in the forest interior than edge and open habitats. However, there is no corresponding increase in leaf damage with habitat modification in the presence of birds, suggesting that other taxa or factors may mediate leaf damage in modified habitats. Our findings suggest that even though habitat modification disrupts the functions that birds perform in the ecosystem, overall ecosystem function is not dramatically altered, possibly due to the functional redundancy of birds.

Journal article

Lima RAFD, Condé PA, Banks-Leite C, Campos RC, Hernández MIM, Rodrigues RR, Prado PIet al., 2020, Disentangling the effects of sampling scale and size on the shape of species abundance distributions, PLoS One, Vol: 15, Pages: e0238854-e0238854, ISSN: 1932-6203

Many authors have tried to explain the shape of the species abundance distribution (SAD). Some of them have suggested that sampling spatial scale is an important factor shaping SADs. These suggestions, however, did not consider the indirect and well-known effect of sample size, which increases as samples are combined to generate SADs at larger spatial scales. Here, we separate the effects of sample size and sampling scale on the shape of the SAD for three groups of organisms (trees, beetles and birds) sampled in the Brazilian Atlantic Forest. We compared the observed SADs at different sampling scales with simulated SADs having the same richness, relative abundances but comparable sample sizes, to show that the main effect shaping SADs is sample size and not sampling spatial scale. The effect of scale was minor and deviations between observed and simulated SADs were present only for beetles. For trees, the match between observed and simulated SADs was improved at all spatial scales when we accounted for conspecific aggregation, which was even more important than the sampling scale effect. We build on these results to propose a conceptual framework where observed SADs are shaped by three main factors, in decreasing order of importance: sample size, conspecific aggregation and beta diversity. Therefore, studies comparing SADs across sites or scales should use sampling and/or statistical approaches capable of disentangling these three effects on the shape of SADs.

Journal article

Lima DO, BanksLeite C, Lorini ML, Nicholson E, Vieira MVet al., 2020, Anthropogenic effects on the occurrence of medium‐sized mammals on the Brazilian Pampa biome, Animal Conservation, ISSN: 1367-9430

Journal article

Harrison MLK, Banks-Leite C, 2020, Edge effects on trophic cascades in tropical rainforests, CONSERVATION BIOLOGY, Vol: 34, Pages: 977-987, ISSN: 0888-8892

Journal article

Hintzen RE, Papadopoulou M, Mounce R, Banks-Leite C, Holt RD, Mills M, Knight A, Leroi AM, Rosindell Jet al., 2020, Relationship between conservation biology and ecology shown through machine reading of 32,000 articles, Conservation Biology, Vol: 34, Pages: 721-732, ISSN: 0888-8892

Conservation biology was founded on the idea that efforts to save nature depend on a scientific understanding of how it works. It sought to apply ecological principles to conservation problems. We investigated whether the relationship between these fields has changed over time through machine reading the full texts of 32,000 research articles published in 16 ecology and conservation biology journals. We examined changes in research topics in both fields and how the fields have evolved from 2000 to 2014. As conservation biology matured, its focus shifted from ecology to social and political aspects of conservation. The 2 fields diverged and now occupy distinct niches in modern science. We hypothesize this pattern resulted from increasing recognition that social, economic, and political factors are critical for successful conservation and possibly from rising skepticism about the relevance of contemporary ecological theory to practical conservation. Article Impact statement: Quantitative literature evaluation reveals that the research topics of ecology and conservation biology are drawing apart. This article is protected by copyright. All rights reserved.

Journal article

Hatfield J, Barlow J, Joly CA, Lees AC, Parruco CF, Tobias J, Orme C, Banks-Leite Cet al., 2020, Mediation of area and edge effects by adjacent land use, Conservation Biology, Vol: 34, Pages: 395-404, ISSN: 0888-8892

Habitat loss, fragmentation and degradation have pervasive detrimental effects on tropical forest biodiversity, but the role of the surrounding land use (i.e. matrix) in determining the severity of these impacts remains poorly understood. We surveyed bird species across an interior-edge-matrix gradient to assess the effects of matrix type on biodiversity at 49 different sites with varying levels of landscape fragmentation in the Brazilian Atlantic Forest – a highly threatened biodiversity hotspot. Our findings revealed that both area and edge effects are more pronounced in forest patches bordering pasture matrix, while patches bordering Eucalyptus plantation maintained compositionally similar bird communities between the edge and the interior, in addition to exhibiting reduced effects of patch size. These results suggest that the type of matrix in which forest fragments are situated can explain a substantial amount of the widely-reported variability in biodiversity responses to forest loss and fragmentation.

Journal article

Watling J, Arroyo-Rodriguez V, Pfeifer M, Baeten L, Banks-Leite C, Cisneros LM, Fang R, Hamel-Leigue AC, Lachat T, Leal IR, Lens L, Possingham HP, Raheem DC, Ribeiro DB, Slade EM, Urbina-Cardona JN, Wood EM, Fahrig Let al., 2020, Support for the habitat amount hypothesis from a global synthesis of species density studies, ECOLOGY LETTERS, Vol: 23, Pages: 674-681, ISSN: 1461-023X

Journal article

Püttker T, Crouzeilles R, Almeida-Gomes M, Schmoeller M, Maurenza D, Alves-Pinto H, Pardini R, Vieira MV, Banks-Leite C, Fonseca CR, Metzger JP, Accacio GM, Alexandrino ER, Barros CS, Bogoni JA, Boscolo D, Brancalion PHS, Bueno AA, Cambui ECB, Canale GR, Cerqueira R, Cesar RG, Colletta GD, Delciellos AC, Dixo M, Estavillo C, Esteves CF, Falcão F, Farah FT, Faria D, Ferraz KMPMB, Ferraz SFB, Ferreira PA, Graipel ME, Grelle CEV, Hernández MIM, Ivanauskas N, Laps RR, Leal IR, Lima MM, Lion MB, Magioli M, Magnago LFS, Mangueira JRAS, Marciano-Jr E, Mariano-Neto E, Marques MCM, Martins SV, Matos MA, Matos FAR, Miachir JI, Morante-Filho JM, Olifiers N, Oliveira-Santos LGR, Paciencia MLB, Paglia AP, Passamani M, Peres CA, Pinto Leite CM, Porto TJ, Querido LCA, Reis LC, Rezende AA, Rigueira DMG, Rocha PLB, Rocha-Santos L, Rodrigues RR, Santos RAS, Santos JS, Silveira MS, Simonelli M, Tabarelli M, Vasconcelos RN, Viana BF, Vieira Emerson M, Prevedello JAet al., 2020, Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species, Biological Conservation, Vol: 241, Pages: 1-10, ISSN: 0006-3207

Recent studies suggest that habitat amount is the main determinant of species richness, whereas habitat fragmentation has weak and mostly positive effects. Here, we challenge these ideas using a multi-taxa database including 2230 estimates of forest-dependent species richness from 1097 sampling sites across the Brazilian Atlantic Forest biodiversity hotspot. We used a structural equation modeling approach, accounting not only for direct effects of habitat loss, but also for its indirect effects (via habitat fragmentation), on the richness of forest-dependent species. We reveal that in addition to the effects of habitat loss, habitat fragmentation has negative impacts on animal species richness at intermediate (30–60%) levels of habitat amount, and on richness of plants at high (>60%) levels of habitat amount, both of which are mediated by edge effects. Based on these results, we argue that dismissing habitat fragmentation as a powerful force driving species extinction in tropical forest landscapes is premature and unsafe.

Journal article

Betts MG, Wolf C, Pfeifer M, Banks-Leite C, Arroyo-Rodríguez V, Ribeiro DB, Barlow J, Eigenbrod F, Faria D, Fletcher RJ, Hadley AS, Hawes JE, Holt RD, Klingbeil B, Kormann U, Lens L, Levi T, Medina-Rangel GF, Melles SL, Mezger D, Morante-Filho JC, Orme CDL, Peres CA, Phalan BT, Pidgeon A, Possingham H, Ripple WJ, Slade EM, Somarriba E, Tobias JA, Tylianakis JM, Urbina-Cardona JN, Valente JJ, Watling JI, Wells K, Wearn OR, Wood E, Young R, Ewers RMet al., 2019, Extinction filters mediate the global effects of habitat fragmentation on animals, Science, Vol: 366, Pages: 1236-1239, ISSN: 0036-8075

Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity-affected by avoidance of habitat edges-should be driven by historical exposure to, and therefore species' evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world's tropical forests.

Journal article

Ewers RM, Barlow J, Banks-Leite C, Rahbek Cet al., 2019, Separate authorship categories to recognize data collectors and code developers, NATURE ECOLOGY & EVOLUTION, Vol: 3, Pages: 1610-1610, ISSN: 2397-334X

Journal article

Vargas-Pellicer P, Watrobska C, Knowles S, Schroeder J, Banks-Leite Cet al., 2019, How should we store avian faecal samples for microbiota analyses? Comparing efficacy and cost-effectiveness, JOURNAL OF MICROBIOLOGICAL METHODS, Vol: 165, ISSN: 0167-7012

Journal article

Larrosa CR, Carrasco LR, Tambosi LR, Banks-Leite C, Milner-Gulland Eet al., 2019, Spatial conservation planning with ecological and economic feedback effects, Biological Conservation, Vol: 237, Pages: 308-316, ISSN: 0006-3207

Most spatial conservation prioritisations being implemented across the globe are based on static approaches to conservation planning. These use snapshots of systems to support decision-making. However, ignoring the dynamic nature of systems can result in misleading spatial prioritisations and missed opportunities to encourage participation in conservation programmes. Using a modelling approach, we show that integrating economic and ecological feedbacks into conservation planning improved social and ecological outcomes. We developed an approach that enabled accounting for feedbacks of farmland set-asides using a popular conservation planning tool. We empirically assessed the impact of ignoring feedbacks on plans to restore the Brazilian Atlantic Forest by comparing outcomes of our approach and a widely used static approach. The proposed approach attained better conservation outcomes than a static approach, at about 7% lower cost, while also allowing more farmers to benefit economically from the set-aside scheme through capitalising on the differences between their opportunity costs and the amount paid by the scheme. Accounting for feedbacks led to substantially different areas being prioritised for farmland set-asides, and to more farmers being included in the set-aside scheme. These results show important benefits from understanding, and then working with, feedbacks that inevitably accompany large-scale conservation interventions. Our approach is the first to integrate both environmental and economic feedbacks into spatial conservation planning, and model information rent capture. In doing so, it demonstrates how existing economic incentives can be used to encourage farmers to join a conservation set-aside, while still resulting in a lower overall intervention cost.

Journal article

Vidal MM, Banks-Leite C, Tambosi LR, Hasui E, Develey PF, Silva WR, Guimaraes Jr PR, Metzger JPet al., 2019, Predicting the non-linear collapse of plant-frugivore networks due to habitat loss, Ecography, ISSN: 0906-7590

Journal article

Orme CDL, Mayor S, Dos Anjos L, Develey PF, Hatfield JH, Morante-Filho JC, Tylianakis JM, Uezu A, Banks-Leite Cet al., 2019, Publisher Correction: Distance to range edge determines sensitivity to deforestation, Nature Ecology and Evolution, Vol: 3, Pages: 1131-1131, ISSN: 2397-334X

Correction to: Nature Ecology & Evolution https://doi.org/10.1038/s41559-019-0889-z, published online 06 May 2019.

Journal article

Rodrigues RC, Hasui É, Assis JC, Pena JCC, Muylaert RL, Tonetti VR, Martello F, Regolin AL, Costa TVVD, Pichorim M, Carrano E, Lopes LE, Vasconcelos MFD, Fontana CS, Roos AL, Gonçalves F, Banks-Leite C, Cavarzere V, Efe MA, Alves MAS, Uezu A, Metzger JP, de Antas PDTZ, Ferraz KMPMDB, Calsavara LC, Bispo AA, Araujo HFP, Duca C, Piratelli AJ, Naka LN, Dias RA, Gatto CAFR, Vallejos MAV, Menezes GDR, Bugoni L, Rajão H, Zocche JJ, Willrich G, Silva ESD, Manica LT, Guaraldo ADC, Althmann G, Serafini PP, Francisco MR, Lugarini C, Machado CG, Marques-Santos F, Bobato R, Souza EAD, Donatelli RJ, Ferreira CD, Morante-Filho JC, Paes-Macarrão ND, Macarrão A, Lima MR, Jacoboski LI, Candia-Gallardo C, Alegre VB, Jahn AE, Barbosa KVDC, Cestari C, Silva JND, Silveira NSD, Crestani ACV, Petronetto AP, Bovo AAA, Viana AD, Araujo AC, Santos AHD, Amaral ACAD, Ferreira A, Vieira-Filho AH, Ribeiro BC, Missagia CCC, Bosenbecker C, Medolago CAB, Espínola CRR, Faxina C, Nunes CEC, Prates C, Luz DTAD, Moreno DJ, Mariz D, Faria D, Meyer D, Doná EA, Alexandrino ER, Fischer E, Girardi F, Giese FB, Shibuya FLS, Faria FA, Farias FBD, Favaro FDL, Freitas FJF, Chaves FG, Las-Casas FMG, Rosa GLM, Torre GMDL, Bochio GMet al., 2019, Atalntic Bird Traits: a data set of bird morphological traits from the Atlantic forests of South America, Ecology, Vol: 100, ISSN: 0012-9658

Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n =&nb

Journal article

Orme D, Mayor S, dos Anjos L, Develey P, Hatfield J, Morante-Filho JC, Tylianakis J, Uezu A, Banks-Leite Cet al., 2019, Distance to range edge determines sensitivity to deforestation, Nature Ecology and Evolution, Vol: 3, Pages: 886-891, ISSN: 2397-334X

It is generally assumed that deforestation affects a species consistently across space, however populations near their geographic range edge may exist at their niche limits and therefore be more sensitive to disturbance. We found that both within and across Atlantic Forest bird species, populations are more sensitive to deforestation when near their range edge. In fact, the negative effects of deforestation on bird occurrences switched to positive in the range core (>829 km), in line with Ellenberg’s rule. We show that the proportion of populations at their range core and edge varies across Brazil, suggesting deforestation effects on communities, and hence the most appropriate conservation action, also vary geographically.

Journal article

Kehoe L, Reis T, Virah-Sawmy M, Balmford A, Kuemmerle Tet al., 2019, Make EU trade with Brazil sustainable, Science, Vol: 364, Pages: 341.1-341, ISSN: 0036-8075

Journal article

Hatfield JH, Orme CDL, Banks-Leite C, 2018, Using functional connectivity to predict potential meta-population sizes in the Brazilian Atlantic Forest, Perspectives in Ecology and Conservation, Vol: 16, Pages: 215-220, ISSN: 2530-0644

Habitat loss and fragmentation reduce population sizes and increase isolation between populations. To better understand how functional connectivity is affected by habitat modification over large scales, we here applied a meta-population framework to the Brazilian Atlantic Forest, a highly degraded and fragmented biodiversity hotspot. Other studies have used mainly hypothetical or estimated dispersal values for connectivity calculation which may not be reflective of species requirements. Here, we collated dispersal values for 45 species of birds, 5 mammals and 4 insects and found that 50% of the Atlantic Forest species can cross only up to 150 m of open gaps between forest patches. Because of the high levels of fragmentation, the median size of a functionally connected network of fragments in the Brazilian Atlantic Forest only decreased from 15 ha to 14 ha when the crossable distance considered was reduced from 150 m to 0 m. We show that for species solely reliant on native forest habitat, a large proportion of the remaining Atlantic Forest fragments represent many small and isolated populations with few large connected areas. Our results support further evidence that for future management and restoration to be successful, existing connectivity must be vastly improved to provide forest areas large enough to support viable populations.

Journal article

Banks-Leite C, Fletcher R, Didham R, Barlow J, Ewers RM, Rosindell JL, Holt RD, Gonzalez A, Pardini R, Damschen E, Melo FPL, Ries L, Prevedello JA, Tscharntke WF, Laurance WF, Lovejoy T, Haddad NMet al., 2018, Is habitat fragmentation good for biodiversity?, Biological Conservation, Vol: 226, Pages: 9-15, ISSN: 0006-3207

Habitat loss is a primary threat to biodiversity across the planet, yet contentious debate has ensued on the importance of habitat fragmentation ‘per se’ (i.e., altered spatial configuration of habitat for a given amount of habitat loss). Based on a review of landscape-scale investigations, Fahrig (2017; Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics 48:1-23) reports that biodiversity responses to habitat fragmentation ‘per se’ are more often positive rather than negative and concludes that the widespread belief in negative fragmentation effects is a ‘zombie idea’. We show that Fahrig's conclusions are drawn from a narrow and potentially biased subset of available evidence, which ignore much of the observational, experimental and theoretical evidence for negative effects of altered habitat configuration. We therefore argue that Fahrig's conclusions should be interpreted cautiously as they could be misconstrued by policy makers and managers, and we provide six arguments why they should not be applied in conservation decision-making. Reconciling the scientific disagreement, and informing conservation more effectively, will require research that goes beyond statistical and correlative approaches. This includes a more prudent use of data and conceptual models that appropriately partition direct vs indirect influences of habitat loss and altered spatial configuration, and more clearly discriminate the mechanisms underpinning any changes. Incorporating these issues will deliver greater mechanistic understanding and more predictive power to address the conservation issues arising from habitat loss and fragmentation.

Journal article

Hatfield JH, Harrison MLK, Banks-Leite C, 2018, Functional diversity metrics: how they are affected by landscape change and how they represent ecosystem functioning in the tropics, Current Landscape Ecology Reports, Vol: 3, Pages: 35-42, ISSN: 2364-494X

It is generally expected that landscape changes, such as habitat loss and fragmentation, should negatively affect functional diversity metrics, which in turn impact ecosystem functioning. In this review, we search for studies conducted in the tropics and published in the last 10 years to understand how different aspects of landscape change affect functional diversity metrics and how the latter are associated to ecosystem functioning. In total, we found 24 papers that assessed the effects of landscape metrics on functional diversity, evenness, divergence and composition, and although there was a general trend for functional diversity metrics to improve with habitat cover, we found a wide range of responses. Most surprisingly, however, we only found five studies from the tropics assessing the extent to which functional diversity metrics were correlated to measures of ecosystem functioning, and in general, very weak support was found. In conclusion, our results show that it is crucial to first investigate the level to which functional diversity metrics truly represent or may lead to changes in ecosystem functioning, and this is particularly important for animal communities in the tropics. Without such confirmation, there is little reason to pursue further work to reach a consensus regarding how landscape modification affects functional diversity metrics.

Journal article

Hasui É, Metzger JP, Pimentel RG, Silveira LF, Bovo AADA, Martensen AC, Uezu A, Regolin AL, Bispo de Oliveira AÂ, Gatto CAFR, Duca C, Andretti CB, Banks-Leite C, Luz D, Mariz D, Alexandrino ER, de Barros FM, Martello F, Pereira IMDS, da Silva JN, Ferraz KMPMDB, Naka LN, dos Anjos L, Efe MA, Pizo MA, Pichorim M, Gonçalves MSS, Cordeiro PHC, Dias RA, Muylaert RDL, Rodrigues RC, da Costa TVV, Cavarzere V, Tonetti VR, Silva WR, Jenkins CN, Galetti M, Ribeiro MCet al., 2018, ATLANTIC BIRDS: a data set of bird species from the Brazilian Atlantic Forest, Ecology, Vol: 99, Pages: 497-497, ISSN: 0012-9658

South America holds 30% of the world's avifauna, with the Atlantic Forest representing one of the richest regions of the Neotropics. Here we have compiled a data set on Brazilian Atlantic Forest bird occurrence (150,423) and abundance samples (N = 832 bird species; 33,119 bird individuals) using multiple methods, including qualitative surveys, mist nets, point counts, and line transects). We used four main sources of data: museum collections, on‐line databases, literature sources, and unpublished reports. The data set comprises 4,122 localities and data from 1815 to 2017. Most studies were conducted in the Florestas de Interior (1,510 localities) and Serra do Mar (1,280 localities) biogeographic sub‐regions. Considering the three main quantitative methods (mist net, point count, and line transect), we compiled abundance data for 745 species in 576 communities. In the data set, the most frequent species were Basileuterus culicivorus, Cyclaris gujanensis, and Conophaga lineata. There were 71 singletons, such as Lipaugus conditus and Calyptura cristata. We suggest that this small number of records reinforces the critical situation of these taxa in the Atlantic Forest. The information provided in this data set can be used for macroecological studies and to foster conservation strategies in this biodiversity hotspot. No copyright restrictions are associated with the data set. Please cite this Data Paper if data are used in publications and teaching events.

Journal article

Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh CJ, Butchart SHM, Arroyo-Rodriguez V, Barlow J, Cerezo A, Cisneros L, D'Cruze N, Faria D, Hadley A, Harris S, Klingbeil BT, Kormann U, Lens L, Medina-Rangel GF, Morante-Filho JC, Olivier P, Peters SL, Pidgeon A, Ribeiro DB, Scherber C, Schneider-Maunory L, Struebig M, Urbina-Cardona N, Watling JI, Willig MR, Wood EM, Ewers RMet al., 2017, Creation of forest edges has a global impact on forest vertebrates, Nature, Vol: 551, Pages: 187-191, ISSN: 0028-0836

Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200–400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00543580&limit=30&person=true