Imperial College London

DrCristinaBanks-Leite

Faculty of Natural SciencesDepartment of Life Sciences (Silwood Park)

Reader in Conservation Ecology
 
 
 
//

Contact

 

+44 (0)20 7594 2289c.banks

 
 
//

Location

 

2.2MunroSilwood Park

//

Summary

 

Publications

Publication Type
Year
to

65 results found

Rodrigues RC, Hasui É, Assis JC, Pena JCC, Muylaert RL, Tonetti VR, Martello F, Regolin AL, Costa TVVD, Pichorim M, Carrano E, Lopes LE, Vasconcelos MFD, Fontana CS, Roos AL, Gonçalves F, Banks-Leite C, Cavarzere V, Efe MA, Alves MAS, Uezu A, Metzger JP, de Antas PDTZ, Ferraz KMPMDB, Calsavara LC, Bispo AA, Araujo HFP, Duca C, Piratelli AJ, Naka LN, Dias RA, Gatto CAFR, Vallejos MAV, Menezes GDR, Bugoni L, Rajão H, Zocche JJ, Willrich G, Silva ESD, Manica LT, Guaraldo ADC, Althmann G, Serafini PP, Francisco MR, Lugarini C, Machado CG, Marques-Santos F, Bobato R, Souza EAD, Donatelli RJ, Ferreira CD, Morante-Filho JC, Paes-Macarrão ND, Macarrão A, Lima MR, Jacoboski LI, Candia-Gallardo C, Alegre VB, Jahn AE, Barbosa KVDC, Cestari C, Silva JND, Silveira NSD, Crestani ACV, Petronetto AP, Bovo AAA, Viana AD, Araujo AC, Santos AHD, Amaral ACAD, Ferreira A, Vieira-Filho AH, Ribeiro BC, Missagia CCC, Bosenbecker C, Medolago CAB, Espínola CRR, Faxina C, Nunes CEC, Prates C, Luz DTAD, Moreno DJ, Mariz D, Faria D, Meyer D, Doná EA, Alexandrino ER, Fischer E, Girardi F, Giese FB, Shibuya FLS, Faria FA, Farias FBD, Favaro FDL, Freitas FJF, Chaves FG, Las-Casas FMG, Rosa GLM, Torre GMDL, Bochio GMet al., 2019, Atalntic Bird Traits: a data set of bird morphological traits from the Atlantic forests of South America, Ecology, Vol: 100, ISSN: 0012-9658

Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n =&nb

Journal article

Orme D, Mayor S, dos Anjos L, Develey P, Hatfield J, Morante-Filho JC, Tylianakis J, Uezu A, Banks-Leite Cet al., 2019, Distance to range edge determines sensitivity to deforestation, Nature Ecology and Evolution, Vol: 3, Pages: 886-891, ISSN: 2397-334X

It is generally assumed that deforestation affects a species consistently across space, however populations near their geographic range edge may exist at their niche limits and therefore be more sensitive to disturbance. We found that both within and across Atlantic Forest bird species, populations are more sensitive to deforestation when near their range edge. In fact, the negative effects of deforestation on bird occurrences switched to positive in the range core (>829 km), in line with Ellenberg’s rule. We show that the proportion of populations at their range core and edge varies across Brazil, suggesting deforestation effects on communities, and hence the most appropriate conservation action, also vary geographically.

Journal article

Kehoe L, Reis T, Virah-Sawmy M, Balmford A, Kuemmerle Tet al., 2019, Make EU trade with Brazil sustainable, Science, Vol: 364, Pages: 341.1-341, ISSN: 0036-8075

Journal article

Hatfield JH, Orme CDL, Banks-Leite C, 2018, Using functional connectivity to predict potential meta-population sizes in the Brazilian Atlantic Forest, Perspectives in Ecology and Conservation, Vol: 16, Pages: 215-220, ISSN: 2530-0644

Habitat loss and fragmentation reduce population sizes and increase isolation between populations. To better understand how functional connectivity is affected by habitat modification over large scales, we here applied a meta-population framework to the Brazilian Atlantic Forest, a highly degraded and fragmented biodiversity hotspot. Other studies have used mainly hypothetical or estimated dispersal values for connectivity calculation which may not be reflective of species requirements. Here, we collated dispersal values for 45 species of birds, 5 mammals and 4 insects and found that 50% of the Atlantic Forest species can cross only up to 150 m of open gaps between forest patches. Because of the high levels of fragmentation, the median size of a functionally connected network of fragments in the Brazilian Atlantic Forest only decreased from 15 ha to 14 ha when the crossable distance considered was reduced from 150 m to 0 m. We show that for species solely reliant on native forest habitat, a large proportion of the remaining Atlantic Forest fragments represent many small and isolated populations with few large connected areas. Our results support further evidence that for future management and restoration to be successful, existing connectivity must be vastly improved to provide forest areas large enough to support viable populations.

Journal article

Banks-Leite C, Fletcher R, Didham R, Barlow J, Ewers RM, Rosindell JL, Holt RD, Gonzalez A, Pardini R, Damschen E, Melo FPL, Ries L, Prevedello JA, Tscharntke WF, Laurance WF, Lovejoy T, Haddad NMet al., 2018, Is habitat fragmentation good for biodiversity?, Biological Conservation, Vol: 226, Pages: 9-15, ISSN: 0006-3207

Habitat loss is a primary threat to biodiversity across the planet, yet contentious debate has ensued on the importance of habitat fragmentation ‘per se’ (i.e., altered spatial configuration of habitat for a given amount of habitat loss). Based on a review of landscape-scale investigations, Fahrig (2017; Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics 48:1-23) reports that biodiversity responses to habitat fragmentation ‘per se’ are more often positive rather than negative and concludes that the widespread belief in negative fragmentation effects is a ‘zombie idea’. We show that Fahrig's conclusions are drawn from a narrow and potentially biased subset of available evidence, which ignore much of the observational, experimental and theoretical evidence for negative effects of altered habitat configuration. We therefore argue that Fahrig's conclusions should be interpreted cautiously as they could be misconstrued by policy makers and managers, and we provide six arguments why they should not be applied in conservation decision-making. Reconciling the scientific disagreement, and informing conservation more effectively, will require research that goes beyond statistical and correlative approaches. This includes a more prudent use of data and conceptual models that appropriately partition direct vs indirect influences of habitat loss and altered spatial configuration, and more clearly discriminate the mechanisms underpinning any changes. Incorporating these issues will deliver greater mechanistic understanding and more predictive power to address the conservation issues arising from habitat loss and fragmentation.

Journal article

Hatfield JH, Harrison MLK, Banks-Leite C, 2018, Functional diversity metrics: how they are affected by landscape change and how they represent ecosystem functioning in the tropics, Current Landscape Ecology Reports, Vol: 3, Pages: 35-42, ISSN: 2364-494X

It is generally expected that landscape changes, such as habitat loss and fragmentation, should negatively affect functional diversity metrics, which in turn impact ecosystem functioning. In this review, we search for studies conducted in the tropics and published in the last 10 years to understand how different aspects of landscape change affect functional diversity metrics and how the latter are associated to ecosystem functioning. In total, we found 24 papers that assessed the effects of landscape metrics on functional diversity, evenness, divergence and composition, and although there was a general trend for functional diversity metrics to improve with habitat cover, we found a wide range of responses. Most surprisingly, however, we only found five studies from the tropics assessing the extent to which functional diversity metrics were correlated to measures of ecosystem functioning, and in general, very weak support was found. In conclusion, our results show that it is crucial to first investigate the level to which functional diversity metrics truly represent or may lead to changes in ecosystem functioning, and this is particularly important for animal communities in the tropics. Without such confirmation, there is little reason to pursue further work to reach a consensus regarding how landscape modification affects functional diversity metrics.

Journal article

Hasui É, Metzger JP, Pimentel RG, Silveira LF, Bovo AADA, Martensen AC, Uezu A, Regolin AL, Bispo de Oliveira AÂ, Gatto CAFR, Duca C, Andretti CB, Banks-Leite C, Luz D, Mariz D, Alexandrino ER, de Barros FM, Martello F, Pereira IMDS, da Silva JN, Ferraz KMPMDB, Naka LN, dos Anjos L, Efe MA, Pizo MA, Pichorim M, Gonçalves MSS, Cordeiro PHC, Dias RA, Muylaert RDL, Rodrigues RC, da Costa TVV, Cavarzere V, Tonetti VR, Silva WR, Jenkins CN, Galetti M, Ribeiro MCet al., 2018, ATLANTIC BIRDS: a data set of bird species from the Brazilian Atlantic Forest, Ecology, Vol: 99, Pages: 497-497, ISSN: 0012-9658

South America holds 30% of the world's avifauna, with the Atlantic Forest representing one of the richest regions of the Neotropics. Here we have compiled a data set on Brazilian Atlantic Forest bird occurrence (150,423) and abundance samples (N = 832 bird species; 33,119 bird individuals) using multiple methods, including qualitative surveys, mist nets, point counts, and line transects). We used four main sources of data: museum collections, on‐line databases, literature sources, and unpublished reports. The data set comprises 4,122 localities and data from 1815 to 2017. Most studies were conducted in the Florestas de Interior (1,510 localities) and Serra do Mar (1,280 localities) biogeographic sub‐regions. Considering the three main quantitative methods (mist net, point count, and line transect), we compiled abundance data for 745 species in 576 communities. In the data set, the most frequent species were Basileuterus culicivorus, Cyclaris gujanensis, and Conophaga lineata. There were 71 singletons, such as Lipaugus conditus and Calyptura cristata. We suggest that this small number of records reinforces the critical situation of these taxa in the Atlantic Forest. The information provided in this data set can be used for macroecological studies and to foster conservation strategies in this biodiversity hotspot. No copyright restrictions are associated with the data set. Please cite this Data Paper if data are used in publications and teaching events.

Journal article

Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh CJ, Butchart SHM, Arroyo-Rodriguez V, Barlow J, Cerezo A, Cisneros L, D'Cruze N, Faria D, Hadley A, Harris S, Klingbeil BT, Kormann U, Lens L, Medina-Rangel GF, Morante-Filho JC, Olivier P, Peters SL, Pidgeon A, Ribeiro DB, Scherber C, Schneider-Maunory L, Struebig M, Urbina-Cardona N, Watling JI, Willig MR, Wood EM, Ewers RMet al., 2017, Creation of forest edges has a global impact on forest vertebrates, Nature, Vol: 551, Pages: 187-191, ISSN: 0028-0836

Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200–400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

Journal article

Hatfield JH, Orme CDL, Tobias JA, Banks-Leite Cet al., 2017, Trait-based indicators of bird species sensitivity to habitat loss are effective within but not across datasets., Ecological Applications, Vol: 28, Pages: 28-34, ISSN: 1051-0761

Species' traits have been widely championed as the key to predicting which species are most threatened by habitat loss, yet previous work has failed to detect trends that are consistent enough to guide large-scale conservation and management. Here we explore whether traits and environmental variables predict species sensitivity to habitat loss across two datasets generated by independent avifaunal studies in the Atlantic Forest of Brazil, both of which detected a similar assemblage of species, and similar species-specific responses to habitat change, across an overlapping sample of sites. Specifically, we tested whether 25 distributional, climatic, ecological, behavioral and morphological variables predict sensitivity to habitat loss among 196 bird species, both within and across studies, and when data were analysed as occurrence or abundance. We found that 4-9 variables showed high explanatory power within a single study or dataset, but none performed as strong predictors across all datasets. Our results demonstrate that the use of species traits to predict sensitivity to anthropogenic habitat loss can produce predictions that are species- and site-specific and not scalable to whole regions or biomes, and thus should be used with caution. This article is protected by copyright. All rights reserved.

Journal article

Ulrich W, Banks-Leite C, De Coster G, Habel JC, Matheve H, Newmark WD, Tobias JA, Lens Let al., 2017, Environmentally and behaviourally mediated co-occurrence of functional traits in bird communities of tropical forest fragments, Oikos, Vol: 127, Pages: 274-284, ISSN: 0030-1299

Two major theories of community assembly - based on the assumption of 'limiting similarity' or 'habitat filtering', respectively - predict contrasting patterns in the spatial arrangement of functional traits. Previous analyses have made progress in testing these predictions and identifying underlying processes, but have also pointed to theoretical as well as methodological shortcomings. Here we applied a recently developed methodology for spatially explicit analysis of phylogenetic meta-community structure to study the pattern of co-occurrence of functional traits in Afrotropical and Neotropical bird species inhabiting forest fragments. Focusing separately on locomotory, dietary, and dispersal traits, we tested whether environmental filtering causes spatial clustering, or competition leads to spatial segregation as predicted by limiting similarity theory. We detected significant segregation of species co-occurrences in African fragments, but not in the Neotropical ones. Interspecific competition had a higher impact on trait co-occurrence than filter effects, yet no single functional trait was able to explain the observed degree of spatial segregation among species. Despite high regional variability spanning from spatial segregation to aggregation, we found a consistent tendency for a clustered spatial patterning of functional traits among communities in fragmented landscapes, particularly in non-territorial species. Overall, we show that behavioural effects, such as territoriality, and environmental effects, such as the area of forest remnants or properties of the landscape matrix in which they are embedded, can strongly affect the pattern of trait co-occurrence. Our findings suggest that trait-based analyses of community structure should include behavioural and environmental covariates, and we here provide an appropriate method for linking functional traits, species ecology and environmental conditions to clarify the drivers underlying spatial patterns of species c

Journal article

Resasco J, Bruna EM, Haddad NM, Banks-Leite C, Margules CRet al., 2016, The contribution of theory and experiments to conservation in fragmented landscapes, Ecography, Vol: 40, Pages: 109-118, ISSN: 0906-7590

The clearing and fragmentation of terrestrial ecosystems is commonly acknowledged as a major cause of the decline of biodiversity. These and other predicted responses to habitat fragmentation are derived from theory, which ecologists have tested with empirical approaches ranging from observations to experimental manipulations. These empirical approaches have also identified areas of theory in need of additional development. For example, experimental studies of fragmentation have provided insights such as the key role played by the matrix surrounding fragments, the importance of edge effects, and the impacts of corridors linking fragments with one another. Much less clear, however, is the extent to which these theoretical and empirical studies – while advancing our conceptual understanding of ecological responses to landscape change – help guide management and conservation practice. We review lessons learned from landscape-scale fragmentation experiments and observational studies, present the results of a survey of fragmentation and conservation experts which probed for links and mismatches between fragmentation studies and conservation practice, and discuss how future studies can contribute to conservation practice. Our survey showed that respondents consider fragmentation theory and empirical studies and their findings important for guiding conservation and management practices. The survey also identified that there are disconnects between what is typically studied by fragmentation ecologists and factors that are central to the practice of biodiversity conservation, notably, community-based human dimensions (e.g. economic, social, health issues), policy and governance, ecosystem services, eco-evolutionary responses of species, and interaction of multiple threats to biodiversity and ecosystem processes. We discuss how these disconnects can present opportunities for experiments to continue to provide valuable recommendations for conservation practice in f

Journal article

Collins CD, Banks-Leite C, Brudvig LA, Foster BL, Cook WM, Damschen EI, Andrade A, Austin M, Camargo JL, Driscoll DA, Holt RD, Laurance WF, Nicholls AO, Orrock JLet al., 2016, Fragmentation affects plant community composition over time, Ecography, Vol: 40, Pages: 119-130, ISSN: 0906-7590

Habitat fragmentation can lead to major changes in community composition, but little is known about the dynamics of these changes, or how community trajectories are affected by the initial state of habitat maturity. We use four landscape-scale experiments from different biogeographic regions to understand how plant community composition responds to fragmentation over decades. Within each experiment, we consider first whether plant communities in the most-fragmented treatments diverge in composition from plant communities in the least-fragmented treatments. Second, because communities embedded in different fragments may become more similar to one another over time (biotic homogenization), we asked whether beta diversity – compositional variation across space – declines among fragments over time. Third, we assessed whether fragmentation alters the degree to which temporal change in fragmented landscapes is due to ordered species losses and gains (nestedness) versus species replacements (turnover). For each of these three questions, we contrasted patterns of compositional change in mature communities following fragmentation (disassembly; n = 2 experiments) with patterns in newly-developing plant communities in fragments cleared of vegetation (assembly; n = 2 experiments).In the two studies where communities were disassembling, community composition in the most-fragmented habitats diverged from that in least-fragmented habitats. Beta diversity within a fragmentation treatment did not change over time at any of the four sites. In all four experiments, temporal patterns of compositional change were due mostly to species turnover, although nestedness played a role in the least-fragmented sites in two of the studies. Overall, the impacts on community composition varied among landscape experiments, and divergence may have been affected by the maturity of the plant community. Future comparisons across ecosystems that account for species identities (vs simply richn

Journal article

Neate-Clegg MHC, Morshuis EC, Banks-Leite C, 2016, Edge effects in the avifaunal community of riparian rain-forest tracts in Tropical North Queensland, Journal of Tropical Ecology, Vol: 32, Pages: 280-289, ISSN: 1469-7831

Most evidence suggests anthropogenic edges negatively affect rain-forest bird communities but little has been done to test this in Australasia. In this study, avifaunal detection frequency, species richness and community composition were compared between the edge and interior and between flat and more complex-shaped edges of riparian rain-forest tracts in Tropical North Queensland. The detection frequency and richness of guilds based on diet, foraging strata and habitat specialism were also compared. This study detected 15.1% more birds at the rain-forest edge compared with the interior but no difference in species richness. Edge shape had no effect on detection frequency or richness. Many guilds (subcanopy, closed forest, frugivorous and insectivorous species) experienced increased detection frequency at the edge relative to the interior, but for some guilds this response was reduced (habitat generalists) or reversed (understorey and mixed-flock species) along complex edges. Overall community composition was affected by edge distance but not by edge shape. Edge habitat was shorter and had more open canopy than the interior, supporting habitat-based explanations for the observed avifaunal edge effects. These results suggest generally positive edge effects in Australian rain-forest bird communities, possibly reflecting local resource distributions or a disturbance-tolerant species pool.

Journal article

De Coster G, Banks-Leite C, Metzger JP, 2015, Atlantic forest bird communities provide different but not fewer functions after habitat loss, Proceedings of the Royal Society B: Biological Sciences, Vol: 282, ISSN: 1471-2954

Habitat loss often reduces the number of species as well as functional diversity. Dramatic effects to species composition have also been shown, but changes to functional composition have so far been poorly documented, partly owing to a lack of appropriate indices. We here develop three new community indices (i.e. functional integrity, community integrity of ecological groups and community specialization) to investigate how habitat loss affects the diversity and composition of functional traits and species. We used data from more than 5000 individuals of 137 bird species captured in 57 sites in the Brazilian Atlantic Forest, a highly endangered biodiversity hotspot. Results indicate that habitat loss leads to a decrease in functional integrity while measures of functional diversity remain unchanged or are even positively affected. Changes to functional integrity were caused by (i) a decrease in the provisioning of some functions, and an increase in others; (ii) strong within-guild species turnover; and (iii) a replacement of specialists by generalists. Hence, communities from more deforested sites seem to provide different but not fewer functions. We show the importance of investigating changes to both diversity and composition of functional traits and species, as the effects of habitat loss on ecosystem functioning may be more complex than previously thought. Crucially, when only functional diversity is assessed, important changes to ecological functions may remain undetected and negative effects of habitat loss underestimated, thereby imperiling the application of effective conservation actions.

Journal article

Ruffell J, Banks-Leite C, Didham RK, 2015, Accounting for the causal basis of collinearity when measuring the effects of habitat loss versus habitat fragmentation, Oikos, Vol: 125, Pages: 117-125, ISSN: 1600-0706

Collinearity among metrics of habitat loss and habitat fragmentation is typically treated as a nuisance in landscape ecology, and it is the norm to use statistical approaches that remove collinear information prior to estimating model parameters. However, collinearity may arise from causal relationships among landscape metrics and may therefore signal the occurrence of indirect effects (where one model predictor influences the response variable by driving changes in another influential predictor). Here we suggest that, far from being merely a statistical nuisance, collinearity may be crucial for accurately quantifying the effects of habitat loss versus habitat fragmentation. We use simulation modelling to create datasets of collinear landscape metrics in which collinearity arose from causal relationships, then test the ability of two statistical approaches to estimate the effects of these metrics on a simulated response variable: 1) multiple regression, which statistically removes collinearity, and was identified in a recent study as the best approach for estimating the effects of collinear landscape metrics (although this study did not account for any indirect effects implied by collinearity among metrics); and 2) path analysis, which accounts for the causal basis of collinearity. In agreement with this previous study, we found that multiple regression gave unbiased estimates of direct effects (effects not mediated by other model predictors). However, it gave biased estimates of total (direct + indirect) effects when indirect effects occurred. In contrast, path analysis reliably identified the causal basis of collinearity and gave unbiased estimates of direct, indirect, and total effects. We suggest that effective research on the impacts of habitat loss versus fragmentation will often require tools that can empirically test whether collinear landscape metrics are causally related, and if so, account for the indirect effects that these causal relationships imply. Pa

Journal article

Banks-Leite C, Pardini R, Tambosi LR, Pearse WD, Bueno AA, Bruscagin RT, Condez TH, Dixo M, Igari AT, Martensen AC, otherset al., 2015, Response to Comment on “Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot”, Science, Vol: 347, Pages: 731-731

Journal article

Banks-Leite C, Pardini R, Tambosi LR, Pearse WD, Bueno AA, Bruscagin RT, Condez TH, Dixo M, Igari AT, Martensen AC, otherset al., 2014, Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot, Science, Vol: 345, Pages: 1041-1045, ISSN: 1095-9203

Ecological set-asides are a promising strategy for conserving biodiversity in human-modified landscapes; however, landowner participation is often precluded by financial constraints. We assessed the ecological benefits and economic costs of paying landowners to set aside private land for restoration. Benefits were calculated from data on nearly 25,000 captures of Brazilian Atlantic Forest vertebrates, and economic costs were estimated for several restoration scenarios and values of payment for ecosystem services. We show that an annual investment equivalent to 6.5% of what Brazil spends on agricultural subsidies would revert species composition and ecological functions across farmlands to levels found inside protected areas, thereby benefiting local people. Hence, efforts to secure the future of this and other biodiversity hotspots may be cost-effective.

Journal article

Banks-Leite C, Pardini R, Boscolo D, Cassano CR, Puettker T, Barros CS, Barlow Jet al., 2014, Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science, JOURNAL OF APPLIED ECOLOGY, Vol: 51, Pages: 849-859, ISSN: 0021-8901

Journal article

Pfeifer M, Lefebvre V, Gardner TA, Arroyo-Rodriguez V, Baeten L, Banks-Leite C, Barlow J, Betts MG, Brunet J, Cerezo A, Cisneros LM, Collard S, D'Cruze N, da Silva Motta C, Duguay S, Eggermont H, Eigenbrod F, Hadley AS, Hanson TR, Hawes JE, Scalley TH, Klingbeil BT, Kolb A, Kormann U, Kumar S, Lachat T, Lakeman Fraser P, Lantschner V, Laurance WF, Leal IR, Lens L, Marsh CJ, Medina-Rangel GF, Melles S, Mezger D, Oldekop JA, Overal WL, Owen C, Peres CA, Phalan B, Pidgeon AM, Pilia O, Possingham HP, Possingham ML, Raheem DC, Ribeiro DB, Ribeiro Neto JD, Robinson WD, Robinson R, Rytwinski T, Scherber C, Slade EM, Somarriba E, Stouffer PC, Struebig MJ, Tylianakis JM, Tscharntke T, Tyre AJ, Urbina-Cardona JN, Vasconcelos HL, Wearn O, Wells K, Willig MR, Wood E, Young RP, Bradley AV, Ewers RMet al., 2014, BIOFRAG - a new database for analyzing BIOdiversity responses to forest FRAGmentation, Ecology and Evolution, Vol: 4, Pages: 1524-1537, ISSN: 2045-7758

Journal article

Banks-Leite C, Pardini R, Tambosi LR, Pearse WD, Bueno AA, Bruscagin RT, Condez TH, Dixo M, Igari AT, Martensen AC, otherset al., 2014, Conserving Brazil’s Atlantic forests–response., Science (New York, NY), Vol: 346, Pages: 1193-1193

Journal article

Ewers RM, Banks-Leite C, 2013, Fragmentation impairs the microclimate buffering effect of tropical forests, PLoS One, Vol: 8, Pages: 1-7, ISSN: 1932-6203

BackgroundTropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge.Principal FindingsIn the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions.ConclusionsOur results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem.

Journal article

Banks-Leite C, Ewers RM, Pimentel RG, Metzger JPet al., 2012, Decisions on Temporal Sampling Protocol Influence the Detection of EcologicalPatterns, Biotropica, Vol: 44, Pages: 378-385

Journal article

Martensen AC, Ribeiro MC, Banks-Leite C, Prado PI, Metzger JPet al., 2012, Associations of Forest Cover, Fragment Area, and Connectivity with Neotropical Understory Bird Species Richness and Abundance, Conservation Biology, Vol: 6, Pages: 1100-1111

Journal article

Lira PK, Ewers RM, Banks-Leite C, Pardini R, Metzger JPet al., 2012, Evaluating the legacy of landscape history: extinction debt and species credit in bird and small mammal assemblages in the Brazilian Atlantic Forest, Journal of Applied Ecology, Pages: 1325-1333

Journal article

Banks-Leite C, Ewers RM, Metzger JP, 2012, Unravelling the drivers of community dissimilarity and species extinction in fragmented landscapes, ECOLOGY, Vol: 93, Pages: 2560-2569

Journal article

Banks-Leite C, Ewers RM, Kapos V, Martensen AC, Metzger JPet al., 2011, Comparing species and measures of landscape structure as indicators of conservation importance, JOURNAL OF APPLIED ECOLOGY, Vol: 48, Pages: 706-714, ISSN: 0021-8901

Journal article

Banks-Leite C, Ewers RM, Kapos V, Martensen AC, Metzger JPet al., 2011, Comparing species and measures of landscape structure as indicators of conservation importance, Journal of Applied Ecology, Vol: 48, Pages: 706-714

Journal article

Banks-Leite C, Ewers RM, Metzger J-P, 2010, Edge effects as the principal cause of area effects on birds in fragmented secondary forest, OIKOS, Vol: 119, Pages: 918-926, ISSN: 0030-1299

Journal article

Banks-Leite C, 2009, Criando e editando gráficos em R, “Introdução ao R – Uma apostila on-line”., Editors: Batista, Prado, http://ecologia.ib.usp.br/bie5782/doku.php?id=bie5782:03_apostila:05a-graficos

Book chapter

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00543580&person=true&page=2&respub-action=search.html