Imperial College London

Dr. Clementine Chambon

Faculty of EngineeringDepartment of Chemical Engineering

 
 
 
//

Contact

 

c.chambon13

 
 
//

Location

 

Bone 329Bone BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Luo:2021:10.3390/en14020507,
author = {Luo, X and Varela, Barreras J and Chambon, C and Wu, B and Batzelis, E},
doi = {10.3390/en14020507},
journal = {Energies},
title = {Hybridizing Lead-Acid Batteries with Supercapacitors: A Methodology},
url = {http://dx.doi.org/10.3390/en14020507},
volume = {14},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Hybridizing a lead–acid battery energy storage system (ESS) with supercapacitors is a promising solution to cope with the increased battery degradation in standalone microgrids that suffer from irregular electricity profiles. There are many studies in the literature on such hybrid energy storage systems (HESS), usually examining the various hybridization aspects separately. This paper provides a holistic look at the design of an HESS. A new control scheme is proposed that applies power filtering to smooth out the battery profile, while strictly adhering to the supercapacitors’ voltage limits. A new lead–acid battery model is introduced, which accounts for the combined effects of a microcycle’s depth of discharge (DoD) and battery temperature, usually considered separately in the literature. Furthermore, a sensitivity analysis on the thermal parameters and an economic analysis were performed using a 90-day electricity profile from an actual DC microgrid in India to infer the hybridization benefit. The results show that the hybridization is beneficial mainly at poor thermal conditions and highlight the need for a battery degradation model that considers both the DoD effect with microcycle resolution and temperate impact to accurately assess the gain from such a hybridization.
AU - Luo,X
AU - Varela,Barreras J
AU - Chambon,C
AU - Wu,B
AU - Batzelis,E
DO - 10.3390/en14020507
PY - 2021///
SN - 1996-1073
TI - Hybridizing Lead-Acid Batteries with Supercapacitors: A Methodology
T2 - Energies
UR - http://dx.doi.org/10.3390/en14020507
UR - https://www.mdpi.com/1996-1073/14/2/507/htm
UR - http://hdl.handle.net/10044/1/86878
VL - 14
ER -