Imperial College London


Faculty of Natural SciencesDepartment of Physics

Research Postgraduate



c.labanti18 Website




724Huxley BuildingSouth Kensington Campus





Publication Type

3 results found

Park SY, Labanti C, Luke J, Chin YC, Kim JSet al., 2022, Organic bilayer photovoltaics for efficient indoor light harvesting, Advanced Energy Materials, Vol: 12, Pages: 1-10, ISSN: 1614-6832

Indoor organic photovoltaics (OPVs) are a potential niche application for organic semiconductors due to their strong and well-matched absorption with the emission of indoor lighting. However, due to extremely low photocurrent generation, the device parameters critical for efficient indoor OPVs differ from those under 1 Sun conditions. Herein, these critical device parameters—recombination loss and shunt resistance (Rsh)—are identified and it is demonstrated that bilayer OPVs are suitable for indoor PV applications. Compared to bulk-heterojunction (BHJ), the open-circuit voltage loss of bilayer devices under low light intensities is much smaller, consistent with a larger surface photovoltage response, indicating suppressed recombination losses. The bilayer devices show a higher fill factor at low light intensities, resulting from high Rsh afforded by the ideal interfacial contacts between the photoactive and the charge transport layers. The high Rsh enables bilayer devices to perform well without a light-soaking process. Finally, the charge carriers are extracted rapidly in bilayers, which are attributed to strongly suppressed trap states possibly induced by isolated domains and non-ideal interfacial contacts in BHJs. This study highlights the excellent suitability of bilayer OPVs for indoor applications and demonstrates the importance of device architecture and interfacial structures for efficient indoor OPVs.

Journal article

Labanti C, Sung MJ, Luke J, Kwon S, Kumar R, Hong J, Kim J, Bakulin AA, Kwon S-K, Kim Y-H, Kim J-Set al., 2021, Selenium-substituted non-fullerene acceptors: a route to superior Operational stability for organic bulk heterojunction solar cells., ACS Nano, Vol: 15, Pages: 7700-7712, ISSN: 1936-0851

Non-fullerene acceptors (NFAs) for organic solar cells (OSCs) have significantly developed over the past five years with continuous improvements in efficiency now over 18%. However, a key challenge still remains in order to fully realize their commercialization potential: the need to extend device lifetime and to control degradation mechanisms. Herein, we investigate the effect of two different molecular engineering routes on the widely utilized ITIC NFA, to tune its optoelectronic properties and interactions with the donor polymer in photoactive blends. Heavier selenium (Se) atoms substitute sulfur (S) atoms in the NFA core in either outer or inner positions, and methyl chains are attached to the end groups. By investigating the effects of these structural modifications on the long-term operational stability of bulk-heterojunction OSC devices, we identify outer selenation as a powerful strategy to significantly increase device lifetime compared to ITIC. Combining outer selenation and methylation results in an impressive 95% of the initial OSC efficiency being retained after 450 h under operating conditions, with an exceptionally long projected half-lifetime of 5600 h compared to 400 h for ITIC. We find that the heavier and larger Se atoms at outer-core positions rigidify the molecular structure to form highly crystalline films with low conformational energetic disorder. It further enhances charge delocalization over the molecule, promoting strong intermolecular interactions among acceptor molecules. Upon methylation, this strong intermolecular interaction stabilizes acceptor domains in blends to be resilient to light-induced morphological changes, thereby leading to superior device stability. Our results highlight the crucial role of NFA molecular structure for OSC operational stability and provide important NFA design rules via heteroatom position and end-group control.

Journal article

Yiwen W, Jinho L, Xueyan H, Labanti C, Jun Y, Amber P, Eva M, Jenny N, Ji-Seon K, Zhe Let al., 2021, Recent progress and Challenges toward highly stable nonfullerene acceptor‐based organic solar cells, Advanced Energy Materials, Vol: 11, ISSN: 1614-6832

Organic solar cells (OSCs) based on nonfullerene acceptors (NFAs) have made significant breakthrough in their device performance, now achieving a power conversion efficiency of ≈18% for single junction devices, driven by the rapid development in their molecular design and device engineering in recent years. However, achieving long‐term stability remains a major challenge to overcome for their commercialization, due in large part to the current lack of understanding of their degradation mechanisms as well as the design rules for enhancing their stability. In this review, the recent progress in understanding the degradation mechanisms and enhancing the stability of high performance NFA‐based OSCs is a specific focus. First, an overview of the recent advances in the molecular design and device engineering of several classes of high performance NFA‐based OSCs for various targeted applications is provided, before presenting a critical review of the different degradation mechanisms identified through photochemical‐, photo‐, and morphological degradation pathways. Potential strategies to address these degradation mechanisms for further stability enhancement, from molecular design, interfacial engineering, and morphology control perspectives, are also discussed. Finally, an outlook is given highlighting the remaining key challenges toward achieving the long‐term stability of NFA‐OSCs.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01610784&limit=30&person=true